4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele

Größe: px
Ab Seite anzeigen:

Download "4. Landeswettbewerb Mathematik Bayern 2. Runde 2001/2002 Aufgaben und Lösungsbeispiele"

Transkript

1 4. Landeswettbewerb athematik ayern. Runde 00/00 ufgaben und Lösungsbeispiele ufgabe In einem Viereck sind die Seiten [], [] und [] gleich lang. ie Seite [] hat die gleiche Länge wie die iagonale []. iese iagonale halbiert den Winkel. lanfigur Wie groß können die Innenwinkel eines solchen Vierecks sein? Lösung Nach den Voraussetzungen ist das reieck gleichschenklig mit der asis [], denn es gilt =. Somit sind die Winkel und gleich weit w() = w() =. a die iagonale [] den Winkel halbiert, gilt w() = w() =. ie Geraden und schließen mit der iagonalen [] Winkel der gleichen Weite ein und sind nach der Umkehrung des Satzes über Wechselwinkel an sich schneidenden Geraden deshalb zueinander parallel. as reieck ist nach ufgabenstellung ebenfalls gleichschenklig mit der asis []. Wegen der Winkelsumme in diesem reieck gilt + = 80. Im Viereck sind die Seiten [] und [] parallel und die Seiten [] und [] gleich lang. as Viereck ist deshalb entweder ein gleichschenkliges Trapez oder ein arallelogramm. Ist ein gleichschenkliges Trapez mit der asis [], so sind die asiswinkel und gleich weit. us = + = 80 folgt = 36, = 7. Ist ein arallelogramm, dann ergänzen sich die Winkel und zu 80. us = 80 + = 80 folgt = 60, = LW 00/00. Runde Lösungsbeispiele Seite

2 ufgabe Zeige: Ist eine Zahl n IN die Summe zweier verschiedener positiver uadratzahlen, so hat auch jede k otenz n (k IN, k > 0) diese Eigenschaft. Lösung Nach ufgabenstellung ist die natürliche Zahl n die Summe verschiedener positiver uadratzahlen. Es gibt also natürliche Zahlen a > b > 0 mit n = a + b. ls erstes wollen wir zeigen, dass auch n als Summe von zwei unterschiedlichen positiven uadratzahlen dargestellt werden kann. Es ist n = (a + b ) = a 4 + a b + b 4 = 4a b + a 4 a b + b 4 = (ab) + (a b ) eine Summe von zwei uadratzahlen. a 0 < b < a gilt, sind die beiden Zahlen positiv. Wären sie gleich, also x = ab = a b, so wäre n = x und somit wäre was bekanntlich nicht der Fall ist. Wir wissen also jetzt, dass es natürliche Zahlen c > d > 0 gibt, mit n = c + d. n = eine rationale Zahl, x Jetzt untersuchen wir als nächstes, ob wir auch n 3 bzw. n 4 als Summe verschiedener positiver uadratzahlen darstellen können. Es ist n 3 = n n = (a + b ) n = a n + b n = (an) + (bn) bzw. n 4 = n n = (c + d ) n = c n + d n = (cn) + (dn). a a > b > 0 bzw. c > d > 0 und n IN, ist auch an > bn > 0 bzw. cn > dn > 0, d. h. n 3 bzw. n 4 lässt sich als Summe zweier verschiedener positiver uadratzahlen darstellen. Genauso wie wir jetzt von der Zerlegung von n bzw. n auf die Zerlegung von n 3 bzw. n 4 geschlossen haben, können wir von der Zerlegung von n 3 bzw. n 4 auf die Zerlegung von n 5 bzw. n 6 schließen, davon wiederum auf die Zerlegung von n 7 bzw. n 8 usw. llgemein kann man von der arstellung von n k = e + f (e > f > 0) als Summe zweier verschiedener positiver uadratzahlen auf eine solche arstellung von n k+ schließen. an muss im gerade geführten eweis nur n k statt n bzw. n schreiben und n k+ statt n 3 bzw. n 4. Somit gibt es eine solche gesuchte arstellung für alle otenzen n k von n. 4. LW 00/00. Runde Lösungsbeispiele Seite

3 ufgabe 3 Gegeben sind drei verschiedene unkte, und, die nicht auf einer Geraden liegen. Es soll ein uadrat mit dem ittelpunkt konstruiert werden, so dass und auf zwei benachbarten Seiten des uadrats oder deren Verlängerungen liegen. Wie viele verschiedene uadrate gibt es in bhängigkeit von der gegenseitigen Lage der unkte, und?. Lösung Grundidee der Konstruktion us den gegebenen unkten, und soll ein uadrat mit den genannten Eigenschaften konstruiert werden. Wir können die ezeichnung der Eckpunkte des uadrats so wählen, dass auf der Geraden liegt. er unkt liegt dann auf der Geraden oder auf der Geraden. ie nachfolgenden ilder zeigen diese öglichkeiten, wobei die Lage der unkte und auf den jeweiligen Geraden und bzw. variieren kann. ' reht man die Strecke [] um mit 90 bzw. 70, dann liegen und bzw. und auf der Trägergeraden der uadratseite [] bzw. []. iese Eigenschaft folgt aus der rehsymmetrie des uadrats um seinen ittelpunkt als Zentrum. ie Gerade wird bei der rehung um und dem rehwinkel 90 auf die Gerade und bei rehung um 70 auf die Gerade abgebildet. er ildpunkt von liegt deshalb auf bzw.. Entsprechendes gilt für die rehung der Strecke [] um mit 90 bzw. 70. Es entstehen dabei Trägergeraden des gleichen uadrats. ie Gerade ' und die Gerade sind mögliche Trägergeraden von uadratseiten. it Kenntnis der Trägergeraden g einer uadratseite und der Lage des unktes kann man das uadrat konstruieren, da der bstand von zu g die Länge der halben uadratseite ist. ie Konstruktion ergibt sich aus dem nebenstehenden ild. as uadrat ist durch die Trägergerade g und den ittelpunkt eindeutig bestimmt. g 4. LW 00/00. Runde Lösungsbeispiele Seite 3

4 llgemeiner Fall Liegt der unkt nicht auf der Geraden ' = = ', so sind die Verbindungsgeraden ' und verschieden. Jede dieser Geraden ist die Trägergerade einer uadratseite. Es gibt also genau zwei verschiedene uadrate. ' Hinweis Liegt auf der Geraden ' (oder ), so ist die Gerade selbst eine Trägergerade des uadrats. Konstruiert man nun das zugehörige uadrat, dann sind, ' und Eckpunkte dieses uadrats. er unkt liegt als Eckpunkt gleichzeitig auf zwei benachbarten Seiten. ußerdem gibt es ein zweites uadrat mit einer Seite auf der Trägergeraden (oder '), falls ' (oder ). iese usganglage wird bei den Sonderfällen behandelt. ' Sonderfälle ) Fällt mit ' oder mit zusammen, so bilden die unkte, und ein gleichschenklig-rechtwinkliges reieck. ie Gerade ' oder die Gerade ist nicht mehr eindeutig bestimmt. Jede Gerade durch, die nicht durch geht, ist Trägergerade eines uadrats. as nebenstehende ild zeigt drei öglichkeiten. ei diesen beiden Lagen von gibt es jeweils unendlich viele Lösungen. ' = ) Liegt auf der Geraden ' = = ' und stimmt weder mit ' noch mit überein, so ist der bstand der Geraden ' = von gleich 0. Es existiert kein uadrat. 4. LW 00/00. Runde Lösungsbeispiele Seite 4

5 . Lösung Grundidee der Konstruktion Falls ein solches uadrat existiert, gibt es einen von verschiedenen Eckpunkt S des uadrats, für den die Geraden S und S orthogonal sind. urch den ittelpunkt und den Eckpunkt S ist das uadrat eindeutig bestimmt. Es gilt:. S liegt auf dem Thaleskreis über [].. Wegen w(s) = 45 oder w(s) = = 35 liegt S auf dem Fasskreisbogen über zu 45 bzw. 35. Um diese Fasskreise zu erhalten, konstruiert man über der Strecke [] nach beiden Seiten ein gleichschenklig rechtwinkliges reieck. ie der Strecke [] gegenüberliegenden unkte und sind die ittelpunkte der Fasskreise. ie Fasskreise mit den ittelpunkten bzw. und der Thaleskreis über mit dem ittelpunkt T schneiden sich auf Grund der Konstruktion immer in. Für die übrigen Schnittpunkte der Fasskreise mit dem Thaleskreis gibt es mehrere öglichkeiten: llgemeiner Fall er unkt liegt nicht auf dem Thaleskreis über []. ie Schnittpunkte S bzw. S der Fasskreise mit dem Thaleskreis sind dann von verschieden. S T Es gibt zwei verschiedene uadrate. as nebenstehende ild zeigt eine solche Situation. S Hinweis Wenn der ittelpunkt eines Fasskreises auf der Geraden liegt, aber nicht mit dem ittelpunkt der Strecke [] zusammenfällt, dann berührt dieser Fasskreis den Thaleskreis über [] in genau einem unkt. ieser unkt ist. er ittelpunkt des anderen Fasskreises liegt dann auf der Orthogonalen zu durch. S = S as nebenstehende ild zeigt die beiden möglichen uadrate, wobei in einem Fall der unkt selbst Eckpunkt des uadrates ist und zwei Seiten zugeordnet werden kann. Sonderfälle. er unkt ist der Schnittpunkt des Thaleskreises über [] und der ittelsenkrechten von []. as reieck ist gleichschenklig rechtwinklig. er ittelpunkt des einen Fasskreises fällt mit dem ittelpunkt des Thaleskreises zusammen, d.h. einer der Fasskreise ist mit dem Thaleskreis identisch. In diesem Fall gibt es unendlich viele Lösungen. R Im nebenstehenden ild sind zwei dieser uadrate mit den beliebig auf dem Thaleskreis gewählten Eckpunkten R und R angegeben. R 4. LW 00/00. Runde Lösungsbeispiele Seite 5

6 . er unkt liegt auf dem Thaleskreis über [] aber nicht auf der ittelsenkrechten von []. ie Fasskreise und der Thaleskreis schneiden sich in den unkten und. ie öglichkeit = S scheidet aus, da in diesem Fall die Seitenlänge des uadrats 0 wäre. Für = S wäre die Gerade S und damit auch Trägergerade einer uadratseite. a weiterhin auf dem Thaleskreis über [] aber nicht auf der ittelsenkrechten von [] liegt, ist die Winkelweite von S von 45 verschieden. Es gibt deshalb kein uadrat mit dem Eckpunkt S und einer Seite mit der Trägergeraden S. ufgabe 4 Für natürliche Zahlen werden die beiden folgenden Operationen definiert: () n die Zahl kann eine der Ziffern 0, 4 oder 8 angehängt werden. () ie Zahl kann halbiert werden, wenn sie gerade ist. Zeige, dass von 4 ausgehend jede positive natürliche Zahl durch eine endliche nzahl dieser Operationen erreicht werden kann. Zum eispiel kann die Zahl 5 erreicht werden durch: ( ) ( ) ( ) ( ) ( ) Lösung Idee Es wird gezeigt, dass es zu jeder der genannten Operationen eine eindeutige Umkehrung gibt und dass man durch die nwendung dieser Umkehrungen von jeder beliebigen natürlichen Zahl n zur Zahl 4 gelangen kann. ieser Nachweis soll in zwei Teilen erfolgen. Im ersten Teil wird gezeigt, dass durch die nwendung der Umkehroperationen jede natürliche Zahl n verkleinert werden kann. Nach endlich vielen Schritten gelangt man dann zu einer einstelligen Zahl. Im zweiten Teil wird nachgewiesen, dass man von jeder einstelligen Zahl durch die nwendung der Umkehroperationen zur Zahl 4 gelangen kann. Teil ie drei unter () zusammengefassten Operationen werden zur einfacheren arstellung mit 0, 4 bzw. 8 bezeichnet, je nach dem ob die Ziffer 0, 4 oder 8 angehängt wird. Zu jeder der Operationen () und () gibt es eine eindeutige Umkehroperation: 0 : Von einer natürlichen Zahl n mit der Einerziffer 0 wird die Endnull abgeschnitten, d.h. 0 (n) = n : 0, 0 hat demnach den Verkleinerungsfaktor 0,. 4 : Von einer natürlichen Zahl n mit der Einerziffer 4 wird die Endziffer abgeschnitten, d.h. 4 (n) = ( n 4 ) : 0, 4 hat demnach einen Verkleinerungsfaktor kleiner als 0,, da vor der ivision durch 0 die Zahl 4 subtrahiert wurde. 8 : Von einer natürlichen Zahl n mit der Einerziffer 8 wird die Endziffer abgeschnitten, d.h. 8 (n) = ( n 8 ) : 0, 8 hat demnach einen Verkleinerungsfaktor kleiner als 0,. : n wird verdoppelt, d.h. (n) = n, hat demnach den Vergrößerungsfaktor. Jede beliebige Verkettung von Operationen 0, 4, 8 und kann durch Ersetzen von 0 durch 0, 4 durch 4 usw. rückgängig gemacht werden und umgekehrt. Gelingt also der Nachweis, dass es durch die nwendung von 0, 4, 8 und einen Weg von einer beliebigen Zahl n zur Zahl 4 gibt, so gibt es durch die nwendung von 0, 4, 8 und einen Weg von der Zahl 4 zur Zahl n. 4. LW 00/00. Runde Lösungsbeispiele Seite 6

7 Es wird nun am eispiel einer Zahl n mit der Einerziffer gezeigt, dass durch eine endliche nwendung der Umkehroperationen die Zahl verkleinert werden kann. Zweimaliges nwenden von, also zweimaliges Verdoppeln der Zahl n führt zu einer Zahl mit der Einerziffer 4. ie anschließende nwendung von 4 ergibt eine natürliche Zahl n'. er Wert von n' ist kleiner als 0,4 n, denn es gilt: n' = (n 4) :0 = 0,4 n 0,4 < 0,4 n it den oben angegebenen ezeichnungen kann man dies kurz so ausdrücken: 4 { [ (n)]}= ( n 4) :0 < 0,4 n Für die übrigen Einerziffern ist die Folge der Umkehroperationen, die zu einer Verkleinerung von n führen, in Kurzform in der nachfolgenden Tabelle angegeben. Endziffer von n ( n 0) Verkettung von Operationen Verkleinerungsfaktor 0 0 : n n:0 = 0, / 6 4 { [ (n)]}: n (n 4):0 < 0,4 / 7 4 [ (n)]: n (n 4):0 < 0, 3 4 ( { [ (n)]}): n (n 4):0 < 0,8 4 4 (n): n (n 4):0 < 0, 5 0 [ (n)]: n n :0 = 0, 8 8 (n): n (n 8):0 < 0, 9 8 [ (n)]: n (n 8):0 < 0, ie Tabelle zeigt, dass jede natürliche Zahl n durch die nwendung von höchstens vier geeigneten Umkehroperationen in eine kleinere Zahl n' übergeht. Wendet man nun auf die jeweils verkleinerte Zahl immer wieder die gleichen Verfahren an, so gelangt man schließlich zu einer einstelligen, von 0 verschiedenen Zahl. Teil ie folgende Tabelle zeigt, wie man von einer einstelligen Zahl zur Zahl 4 gelangt: einstellige Zahl Verkettung von Operationen { [ ()]} = 4 () = ( { [ (3)]}) =, weiter wie bei [ (5)] =, weiter wie bei. 6 4 { [ (6)]} =, weiter wie bei. 7 4 [ (7)] =, weiter wie bei. 8 4 ( { [ (8)]}) = 6, weiter wie bei [ (9)] =, weiter wie bei. 4. LW 00/00. Runde Lösungsbeispiele Seite 7

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb athematik aden-württemberg Lösungsvorschläge für die ufgaben der Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt Für die ganze Figur sind

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 1996 Runde 1 ufgabe 1 Ein Rechteck mit den eitenlängen 5 cm und 9 cm wird in kleinere Rechtecke mit ganzzahligen eitenlängen, in Zentimeter gemessen, zerlegt.

Mehr

9. Landeswettbewerb Mathematik Bayern

9. Landeswettbewerb Mathematik Bayern 9 Landeswettbewerb Mathematik aern ufgaben und Lösungsbeispiele Runde 006/00 ufgabe us Streichhölzern wird wie in der bbildung ein (6 3) Rechteckgitter gelegt ür die ganze igur sind 6² 3² Streichhölzer

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Yannick besitzt gleichseitige reiecke, Quadrate sowie regelmäßige Sechs- und chtecke, die alle dieselbe Seitenlänge haben. Er legt damit ohne Lücken und Überlappungen regelmäßige Muster.

Mehr

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A

Aufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten A und B. Der Kreis um A 1997 Runde ufgabe 1 Zwei Kreise und k mit gleichem Radius schneiden sich in den Punkten und Der Kreis um k1 k 1 durch schneidet zum zweiten Mal in einem Punkt Zeige, dass die Gerade () Tangente an den

Mehr

c+ f + i= b + e+ h = a+ d+ g=

c+ f + i= b + e+ h = a+ d+ g= 1988 Runde 1 ufgabe 1 ie neun Ziffern 1,, 3,..., 9 werden jeweils auf eine Karte geschrieben. us diesen neun Karten wird ein 3x3 Quadrat gelegt. adurch entsteht in jeder Zeile und in jeder Spalte eine

Mehr

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze.

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze. Umfangswinkelsatz 1 Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? egründe deine ntwort 5 anhand einer Skizze 108, Zusammenhang zwischen ittelpunkts- und Umfangwinkel 2 Gegeben ist die Strecke []

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 Landeswettbewerb athematik aden-württemberg 999 Runde ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Beispiellösungen zu Blatt 3

Beispiellösungen zu Blatt 3 µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2

Landeswettbewerb Mathematik Baden-Württemberg. Runde 2 Lneswettbewerb themtik en-württemberg 001 Rune ufgbe 1 In einem Viereck sin ie Seiten, un gleich lng. ie Seite ht ie gleiche Länge wie ie igonle. iese igonle hlbiert en Winkel. Wie groß können ie Innenwinkel

Mehr

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion:

Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Konstruktion: Lösungen Geometrie-ossier 7 - Ebene Figuren eiten 7/ 8 ufgaben reiecke (ie Lösungen sind verkleinert gezeichnet. ie hier vorgeschlagenen Konstruktionswege sind nur eispiele unter einige Möglichkeiten.)

Mehr

3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele

3. Landeswettbewerb Mathematik Bayern 2. Runde 2000/ Aufgaben und Lösungsbeispiele . Landeswettbewerb Mathematik ayern. Runde 000/001 - ufgaben und Lösungsbeispiele ufgabe 1 uf einer Tafel stehen 40 positive, ganze Zahlen in acht Zeilen und fünf Spalten angeordnet. Die Zahlen dürfen

Mehr

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 1. Runde 1999/2000 . Landeswettbewerb Mathematik ayern. Runde 999/000 ufgabe In einem regelmäßigen Sechseck werden wie abgebildet Diagonalen eingezeichnet. Dadurch entsteht ein kleines Sechseck. Welchen nteil an der Gesamtfläche

Mehr

Inhalt. Aufgaben zu den Themen: Umfangswinkel Mittelpunktwinkel Sehnen-Tangenten-Winkel Satz des Thales Fasskreis

Inhalt. Aufgaben zu den Themen: Umfangswinkel Mittelpunktwinkel Sehnen-Tangenten-Winkel Satz des Thales Fasskreis Geometrie Kreis Inhalt ufgaben zu den Themen: Umfangswinkel ittelpunktwinkel Sehnen-Tangenten-Winkel Satz des Thales Fasskreis Sekantensatz Sekanten-Tangentensatz Sehnensatz it vielen Konstruktionsbeispielen

Mehr

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick

Geometrische Konstruktionen Die Macht der Werkzeuge. Zirkel allein. Christian Dick Geometrische Konstruktionen ie Macht der Werkzeuge Zirkel allein hristian ick dick@in.tum.de Letzte Woche Was ist mit Lineal und Zirkel konstruierbar? 2 Zirkel allein hristian ick TU München SS 2004 Heute

Mehr

997 Runde ufgabe n jeder Kante eines Drahtwürfels wird ein Zettel mit einer der Zahlen + oder angebracht. Danach werden für jede der acht Ecken die Zahlen an den drei Kanten multipliziert, die zu dieser

Mehr

Problem des Monats Februar 2019

Problem des Monats Februar 2019 Problem des Monats Februar 09 Bei welcher Lage ist die Fläche maximal? In ein regelmäßiges n-eck soll ein möglichst großes regelmäßiges m-eck gezeichnet werden. ie bbildungen zeigen die eingeschlossenen

Mehr

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006

Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2006 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die

Mehr

Schritt 4: Man wiederholt Schritt 2 und Schritt 3 so lange, bis in allen Feldern der i-ten Spalte nur Einsen

Schritt 4: Man wiederholt Schritt 2 und Schritt 3 so lange, bis in allen Feldern der i-ten Spalte nur Einsen 000 Runde ufgabe 1 uf einer Tafel stehen 40 positive, ganze Zahlen in acht Zeilen und fünf Spalten angeordnet. Die Zahlen dürfen nur auf folgende zwei rten abgeändert werden: (Z) lle Zahlen einer Zeile

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 998 Runde ufgabe Helena möchte für Weihnachten Strohsterne aus gleich langen Strohhalmen basteln. Dazu will sie zunächst Elemente aus fünf gleich langen Strohhalmen wie in der Skizze anfertigen und diese

Mehr

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis

Der Feuerbach Kreis oder Neun Punkte Kreis 1. Der Feuerbach Kreis oder Neun Punkte Kreis er euerbach Kreis oder eun unkte Kreis 1 Geometrie er euerbach Kreis oder eun unkte Kreis utor: eter ndree Inhaltsverzeichnis 6 er euerbach Kreis oder eun unkte Kreis 1 6.1 Vorbemerkungen und Satz über

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 005 Runde 1 ufgabe 1 Ein Stück Papier wird in oder Stücke zerschnitten. Nun wird eines der vorhandenen Stücke wieder wahlweise in oder Stücke zerschnitten; dieser Vorgang wird mehrmals wiederholt. Kann

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2016/2017 Landeswettbewerb Mathematik aden-württemberg Musterlösungen 2. Runde 206/207 ufgabe Paul soll fünf positive ganze Zahlen nebeneinander schreiben. abei muss er Folgendes beachten: ie erste Zahl ist so groß

Mehr

Städtewettbewerb Frühjahr 2016 Lösungsvorschläge

Städtewettbewerb Frühjahr 2016 Lösungsvorschläge Städtewettbewerb Frühjahr 2016 Lösungsvorschläge Hamburg 29. Februar 2016 [Version 17. ärz 2016] ittelstufe ufgabe.1 (3 P.). Zwanzig Kinder stehen im Kreis (sowohl Jungen als auch ädchen sind anwesend).

Mehr

Dreieckskonstruktionen

Dreieckskonstruktionen Dreieckskonstruktionen 1. Quelle: VER C 2008 Lösung: ja, nein, ja, ja, nein 2. Wähle aus den vorgegebenen Größen jeweils drei aus und überlege anhand einer Skizze, ob aus den ausgewählten Größen ein Dreieck

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q.

Winkel. Die Kreislinie k mit dem Mittelpunkt M berührt die Seiten des Dreeicks ABC in den Punkten F, P und Q. Winkel 1. k Q F ie Kreislinie k mit dem ittelpunkt berührt die Seiten des reeicks in den unkten F, und Q. (a) Zeichne die Figur mit = 8cm und = 66. Zeichne die zwei Kreisradien ein, die zu den unkten und

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 00 Runde ufgabe Schreibe jede der Zahlen,, 3,, 5 auf je eine Karteikarte Lege diese Karten so in eine Reihe, dass die Summe der Zahlen auf zwei benachbarten Karten immer eine Quadratzahl ist Wie viele

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

19. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2016/2017

19. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2016/2017 19. Landeswettbewerb Mathematik ayern Lösungsbeispiele für die ufgaben der 2. Runde 2016/2017 ufgabe 1 Paul soll fünf positive ganze Zahlen nebeneinander schreiben. Dabei muss er Folgendes beachten: Die

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2012/2013

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2012/2013 Landeswettbewerb Mathematik aden-württemberg Musterlösungen. Runde 0/0 ufgabe n der Tafel stehen die Zahlen 0 und. Paul will eine weitere natürliche Zahl hinzufügen, so dass jede dieser drei Zahlen das

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Landeswettbewerb Mathematik Baden-Württemberg

Landeswettbewerb Mathematik Baden-Württemberg Landeswettbewerb Mathematik aden-württemberg ufgabe 1 Flrian schreibt unter die Zahlen 1,, 3, 4, 5, 6, 7, 8, 9 dieselben Zahlen nchmals in irgend einer anderen Reihenflge. Nun subtrahiert er jeweils die

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

Die Ellipse, Zusammenhänge und Konstruktionen

Die Ellipse, Zusammenhänge und Konstruktionen ie Ellipse, Zusammenhänge und Konstruktionen ie Ellipse hat eine große chse und eine kleine chse. Es lassen sich zwei Kreise bilden, einer mit dem großen urchmesser und einer dem kleinen urchmesser. In

Mehr

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren

Für den fitten Denker: Teil 4 Thema Winkel in ebenen Figuren Klasse 7 - Fit in Winkeln und Eigenschaften ebener Figuren Für den fitten enker: Teil 4 Thema Winkel in ebenen Figuren 1. Ein Seil, das am linken Ende mit einem Gewicht belastet ist, wird über eine feste

Mehr

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen M 7. chsensymmetrie Eigenschaften: - [`] steht senkrecht auf der Symmetrieachse - [`] wird von der Symmetrieachse halbiert - Liegt ein unkt auf der Symmetrieachse, dann stimmt ` mit überein - Zueinander

Mehr

Geometrie I - Winkeljagd

Geometrie I - Winkeljagd Schweizer Mathematik-Olympiade smo osm Geometrie I - Winkeljagd aniel Sprecher ktualisiert: 1. ezember 2015 vers. 1.0.0 Inhaltsverzeichnis 1 Einleitung 2 2 Winkel im reieck 2 3 Winkel im Kreis 5 4 Sehnenvierecke

Mehr

Jede Fläche hat einen Inhalt aber welchen?

Jede Fläche hat einen Inhalt aber welchen? Jede Fläche hat einen Inhalt aber welchen? ufgabe 46 ürgermeister Pfiffig sitzt mit zwei auern aus seiner Gemeinde an einem Tisch. Vor sich haben sie einen Plan, in den eine trapezförmige Fläche eingezeichnet

Mehr

Die Ellipse, Zusammenhänge und Konstruktion

Die Ellipse, Zusammenhänge und Konstruktion ie Ellipse, Zusammenhänge und Konstruktion ie Ellipse hat eine große chse und eine kleine chse. Es lassen sich zwei Kreise bilden, einen mit dem großen urchmesser und einen dem kleinen urchmesser. In der

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik Kopiervorlagen zur ufgabensammlung GEOMETRIE 1 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik utoren: ownload: Michael Graf, Heinz Klemenz www.geosoft.ch/buecher Inhaltsverzeichnis

Mehr

Mathematik Aufnahmeprüfung Aufgabe Summe Punkte

Mathematik Aufnahmeprüfung Aufgabe Summe Punkte Mathematik ufnahmeprüfung 2017 Lösungen ufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Summe Punkte 4 4 4 3 4 3 4 4 4 4 3 4 45 ufgabe 1 (a) Vereinfache so weit wie möglich: ( 2) [3x ( x+ 1 2 )+x] (x 4) =? (b) Vereinfache

Mehr

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation

Methodische Hinweise und Anregungen zur Ergänzung bzw. Erweiterung der Power-Point-Präsentation Methodische Hinweise und nregungen zur rgänzung bzw. rweiterung der Power-Point-Präsentation ktivationen, die während der Präsentation angeboten werden n den nachfolgend beschriebenen Stellen wird der

Mehr

Rotation eines Punktes um eine Achse allgemeiner Lage

Rotation eines Punktes um eine Achse allgemeiner Lage Rotation eines Punktes um eine chse allgemeiner Lage Es gibt eine allgemein, in der arstellenden Geometrie übliche Methode, dieses eispiele zu lösen: 1) chse in Wahrer Größe darstellen - ein weiterer Seitenriss

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

4. Parallelität ohne Metrik

4. Parallelität ohne Metrik 4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon

Mehr

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011

13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011 13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε ϕ α o 26,57 Lösung: δ = 90 α = 45 ε = 26,86 ϕ = 63,43 ψ = 8,86 2. Gegeben ist

Mehr

Geometrische Ortslinien und Ortsbereiche

Geometrische Ortslinien und Ortsbereiche Geometrische Ortslinien und Ortsbereiche 1. Ermittle alle mit griechischen uchstaben gekennzeichneten Winkelmaße. δ o 45 E ψ ε o 6,57 Lösung: δ = 90 = 45 ε = 16,86 = 63,43 ψ = 81,86. Gegeben ist ein Kreis

Mehr

Inhalt der Lösungen zur Prüfung 2016:

Inhalt der Lösungen zur Prüfung 2016: Inhalt der Lösungen zur Prüfung 06: Pflichtteil Wahlteil ufgabe Wa 0 Wahlteil ufgabe Wb Wahlteil ufgabe Wa Wahlteil ufgabe Wb 6 Wahlteil ufgabe W3a 9 Wahlteil ufgabe W3b Wahlteil ufgabe Wa Wahlteil ufgabe

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Känguru 2016 Student Lösungen und Erklärungen

Känguru 2016 Student Lösungen und Erklärungen Känguru 016 Student Lösungen und Erklärungen 1. Lösungsweg 1: Tom und Johann sind zusammen 3 Jahre alt, Tom und le zusammen 5. a das lter von Tom in beiden Summen gleich ist, muss le also um Jahre älter

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung 015: Pflichtteil Wahlteil ufgabe W1a 1 Wahlteil ufgabe W1b 16 Wahlteil ufgabe Wa 17 Wahlteil ufgabe Wb 19 Wahlteil ufgabe Wa 1 Wahlteil ufgabe Wb Wahlteil ufgabe W4a 5 Wahlteil

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel)

Anwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) nwendungen in geometrischen Konstruktionen (Konstruktionen nur mit Zirkel) Frage,r, sind gegeben. Kann man I,r () mit Zirkel und Lineal konstruieren? ntwort Man kann I,r () sogar nur mit Zirkel konstruieren.

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Die zehn Apollonischen Probleme

Die zehn Apollonischen Probleme Die zehn pollonischen robleme Norbert Hungerbühler, Zürich 1 Einleitung Neben den klassischen Dreieckskonstruktionen bilden in der Schulgeometrie seit je her die reisberührungsprobleme ein Reservoir an

Mehr

Vorüberlegung Betrachten wir zunächst ein Beispiel:

Vorüberlegung Betrachten wir zunächst ein Beispiel: 003 Runde 1 ufgabe 1 Flrian schreibt unter die Zahlen 1,, 3, 4, 5, 6, 7, 8, 9 dieselben Zahlen nchmals in irgendeiner anderen Reihenflge. Nun subtrahiert er jeweils die untenstehenden Zahlen vn den darüber

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019 Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019 Aufgabe 1 Alina, Bilge und Celia sitzen an einem Tisch, auf dem ein gewöhnlicher Spielwürfel liegt. Jede kann drei Würfelflächen

Mehr

3. Winkelsätze und der Kongruenzsatz (WWS).

3. Winkelsätze und der Kongruenzsatz (WWS). 3. Winkelsätze und der Kongruenzsatz (WWS). Nachdem wir die beiden ersten Kongruenzsätze bewiesen haben, kommen wir zum ritten Kongruenzsatz (WWS). r ist der am schwersten zu beweisende. Um ihn zu beweisen,

Mehr

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge.

(b) Wie viele Zahlen hat die Folge für n = 6? Finde einen Term für die Anzahl A(n) der Zahlen der n-ten Zahlenfolge. Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 7, 8 ufgabe 1 (3+7+10 Punkte). Gegeben seien die Zahlenfolgen: n n-te Zahlenfolge 1 1 2 1, 2, 2, 3 3 1, 2, 2, 3, 3, 3, 4, 4, 5

Mehr

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen.

VORANSICHT. Das Geodreieck als Mess- und Prüfinstrument. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 1 as Geodreieck als Mess- und Prüfinstrument VORNSI 1. Lies die Sätze. Ordne den ildern die richtige Nummer zu. 1 Mit der langen Seite kannst du messen und gerade Linien zeichnen. 2 Mit der Mittellinie

Mehr

17. Landeswettbewerb Mathematik Bayern

17. Landeswettbewerb Mathematik Bayern 17. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 1. Runde 014/015 Aufgabe 1 Die Zahlen 1,, 3,, 1 werden auf die markierten Punkte des nebenstehenden Dreiecks verteilt. Dabei

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke 1. Von einem reieck weiß man: (a) a = 5cm, = 65 und γ = 50 (b) a = b und β = 60 reiecke und Vierecke Fertige jeweils für den Fall (a) und für den Fall (b) eine Planfigur an. egründe damit die besonderen

Mehr

Inhalt der Lösungen zur Prüfung 2017:

Inhalt der Lösungen zur Prüfung 2017: Inhalt der Lösungen zur Prüfung 017: Pflichtteil Wahlteil ufgabe W1a 10 Wahlteil ufgabe W1b 1 Wahlteil ufgabe Wa 14 Wahlteil ufgabe Wb 15 Wahlteil ufgabe W3a 18 Wahlteil ufgabe W3b 0 Wahlteil ufgabe W4a

Mehr

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen

2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1962/1963 ufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 ufgaben Hinweis: Der Lösungsweg mit egründungen

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Hilberts Drittes Problem

Hilberts Drittes Problem Hilberts rittes Problem Oliver Fortmeier Auf dem internationalen Kongress für Mathematiker 1900 in Paris formulierte Hilbert sein rittes Problem: Zwei Tetraeder mit gleicher Grundfläche und von gleicher

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s athematik ufnahmeprüfung 2013 rofile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. ufgabe

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen

25. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 25. Mathematik Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Saison 1985/1986 Aufgaben und Lösungen 1 OJM 25. Mathematik-Olympiade 3. Stufe (ezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

2. Kongruenzsätze (SWS und SSS) ohne Parallelen.

2. Kongruenzsätze (SWS und SSS) ohne Parallelen. 2. Kongruenzsätze (SWS und SSS) ohne Parallelen. In diesem Kapitel beginnen wir mit der systematischen ufstellung der Euklidischen Geometrie wie man sie in [Euklid, Elemente] findet. ls erstes Lehrstück

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Zentrische Streckung. Jan-Christoph Frühauf

Download. Mathe an Stationen. Mathe an Stationen SPEZIAL Geometrische Abbildungen. Zentrische Streckung. Jan-Christoph Frühauf ownload Jan-hristoph Frühauf Mathe an Stationen SPEIL Geometrische bbildungen entrische Streckung ownloadauszug aus dem Originaltitel: SPEIL Sekundarstufe I Jan-hristoph Frühauf Mathe an Stationen Geometrische

Mehr

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN MTHEMTIK-WETTEWER 2000/2001 ES LNES HESSEN UFGEN ER GRUPPE PFLIHTUFGEN P1. Von 11000 Schülern sind 070 Mitglied in einem Verein. Wie viel Prozent sind das? P2. Ein -Player kostete bisher 80 M. ei einem

Mehr