1 Einführung Aussagenlogik
|
|
|
- Carin Berger
- vor 9 Jahren
- Abrufe
Transkript
1 1 Einführung Aussagenlogik Denition 1. Eine Aussage ist ein Aussagesatz, der entweder wahr oder falsch ist. Welche der folgenden Sätze ist eine Aussage? 3+4=7 2*3=9 Angela Merkel ist Kanzlerin Stillgestanden! Wer möchte noch ein Bier? Ich liebe Dich. Ich habe Schmerzen Das Sonnensystem hat 8 Planeten Heino singt gut. 3+4=7 und 2*3=9 Wenn es regnet, werden die Straÿen nass. Wenn Hamburg Paris wäre, wäre der Michel die Notre Dame. Morgen scheint die Sonne den ganzen Tag. Die Lottozahlen am sind 3, 9, 14, 17, 39, 41 mit Superzahl 7 Dieser Satz ist falsch. Die Welt ist vor 5 Minuten entstanden. (Bertrand Russel) Paradoxie des Todesurteils. Wir beschäftigen uns hier nur mit der klassischen zweiwertigen Logik. Es gibt auch Logiken mit 3, 4 oder mehr Wahrheitswerten. Der dritte Wahrheitswert kann z.b. als unbestimmt interpretiert werden. Elementare Aussagen werden durch Aussagensymbole oder Variablen dargestellt, zusammengesetzte Aussagen durch Aussageformen. In diesen werden alle elementaren Aussagen durch Variabeln ersetzt, aber die logischen Verknüpfungen wie oder, und, nicht usw. bleiben erhalten. Es regnet oder es ist kalt. Sei A = 'Es regnet' und B = 'Es ist kalt'. Dann hat der obige Satz die Form A oder B.
2 1 EINFÜHRUNG AUSSAGENLOGIK Formal: A B Man kann die Verknüpfung formal und exakt durch eine Wahrheitswertafel beschreiben: A B A B w w w w f w f w w f f f Disjunktion, Konjunktion, Subjunktion (Implikation) und Äquivalenz: Disjunktion Konjunktion Subjunktion Äquivalenz A B A B A B A B A B w w w w w w w f w f f f f w w f w f f f f f w w Die Negation hängt nur von einer Variablen ab: Negation A A w f f w Etwas problematisch ist die Subjunktion (Implikation). Wenn der Vordersatz (Antezedens) wahr ist, ist die Subjunktion nur richtig, wenn der Nachsatz (Konsequens) auch wahr ist. Wenn der Vordersatz aber falsch ist, dann ist die Subjunktion immer richtig. Es gilt also: 'Wenn 3=3, dann ist der Mond ein Trabant der Erde' ist wahr 'Wenn 3=3, dann gehörte Mick Jagger zu den Beatles' ist falsch 'Wenn 3=4, dann ist 10 zweistellig' ist wahr 'Wenn 3=4, dann ist 7 zweistellig' ist wahr Bei diesen Beispielen stört vielleicht auch, dass der vordere und hintere Satz oft keinen Zusammenhang aufweisen. Es handelt sich also bei dieser Implikation nicht um einen kausalen oder inhaltlichen Zusammenhang. In der Aussagenlogik hängt der Wahrheitswert der zusammengesetzten Aussage nur vom Wahrheitswert der elementaren Aussagen ab, nicht von ihrem Inhalt. Ferner kann durch 'wenn... dann' eine hinreichende, eine notwendige oder eine hinreichende und notwendige Bedingung ausgedrückt werden. 2
3 Wenn x Primzahl ist, dann ist x eine natürliche Zahl. (hinreichend) Nur wenn x ungerade ist, ist x eine Primzahl gröÿer als 3. (notwendig) Genau dann, wenn x nur durch sich und die 1 teilbar ist und gröÿer als 1, ist x eine Primzahl. (hinreichend und notwendig) Wenn eine Person John Lennon ist, dann ist sie Mitglied der Beatles gewesen. (hinreichend) Nur wenn jemand Mitglied der Beatles war, kann es sich um John Lennon handeln. (notwendig) Genau dann ist jemand Ringo Star, wenn er Drummer bei den Beatles war. (hinreichend und notwendig) Wenn etwas Wasser ist, dann ist es eine Flüssigkeit. (hinreichend) Nur wenn etwas üssig ist, kann es sich um Wasser handeln. (notwendig) Etwas ist Wasser genau dann, wenn es sich um H 2 O handelt. (hinreichend und notwendig) Man kann in vielen Fällen diese Sätze aussagenlogisch ausdrücken: Hinreichende Bedingung (Wenn A, dann B): A B Notwendige Bedingung (Nur wenn A, dann B): B A Hinreichende und notwendige Bedingung (Genau wenn A, dann B): A B Auch die Disjunktion (oder) ist missverständlich. In der Umgangssprache kann mit oder das einschlieÿende oder, aber auch das ausschlieÿende oder gemeint sein. Oft geht aus dem Zusammenhang hervor, was gemeint ist. Einschlieÿendes oder: x ist kleiner als 10 oder ungerade. Ausschlieÿendes oder: x ist gerade oder ungerade. Die Konjunktion kann ebenfalls missverständlich sein. 'Bernd und Britta sind verheiratet' kann bedeuten, dass Bernd und Britta miteinander verheiratet sind, aber auch dass beide verheiratet sind, aber mit jeweils anderen Personen. Beispiele: 1) Satz der Identität: A=A. A w f A A w w 2) Satz vom verbotenen Widerspruch: (A A). A A A A (A A) w f f w f w f w 3
4 1 EINFÜHRUNG AUSSAGENLOGIK 3) Satz vom ausgeschlossenen Dritten: (A A). A A A A) w f w f w w 4) (A B) = ( A B). A B (A B) A ( A B) (A B) = ( A B) w w w f w w w f f f f w f w w w w w f f w w w w In diesen Beweisen zeigt sich, dass der zusammengesetzte Satz immer wahr ist, egal welche Wahrheitswerte die elementaren Teilsätze annehmen. Denition 2. Eine Aussageform heiÿt allgemeingültig (oder Tautologie), wenn sie als Wahrheitswert nur wahr annimmt erfüllbar, wenn sie als Wahrheitswert wenigstens einmal wahr annimmt unerfüllbar (oder Kontradiktion), wenn sie als Wahrheitswert nur falsch annimmt Man kann auch direkt unter der Aussageform die Wahrheitswerte schreiben: A B (B (A B)) A w w w w w w w w f f f f w w f w w w w f f f f f f w w f Hier sieht man, dass die Aussageform (B (A B)) A nicht allgemeingültig ist. Das kann man auch durch ein Gegenbeispiel begründen: Aus 3=3 und (wenn 2=3 dann 3=3) folgt insgesamt, dass 2=3 gilt. Wichtige allgemeingültige Aussageformen: A A (Satz vom ausgeschlossenen Dritten) (A A) (Satz vom verbotenen Widerspruch) 4
5 A B ist äquivalent zu B A (Kommutativität der Disjunktion) A B ist äquivalent zu B A (Kommutativität der Konjunktion) A (B C) ist äquivalent zu (A B) C (Assoziativität) A (B C) ist äquivalent zu (A B) C (Assoziativität) A (B C) ist äquivalent zu (A B) (A C) (Distributivität) A (B C) ist äquivalent zu (A B) (A C) (Distributivität) (A B) ist äquivalent zu A B (Satz von de Morgan) (A B) ist äquivalent zu A B (Satz von de Morgan) A B ist äquivalent zu A B (Umformung Subsumtion) A A ist äquivalent zu A (Idempotenzgesetz) A A ist äquivalent zu A (Idempotenzgesetz) Aus A (A B) folgt B (modus ponens) Aus B (A B) folgt A (modus tollens) Beispiele aus Wirtschaftsmathematik (aus Karl Schick; Wirtschaftsmathematik im Grundstudium; Band 1; UTB Schöningh; Paderborn/München/Wien/Zürich 1982): Die Gewinne gehen nicht zurück. Wenn die Kosten steigen, gehen die Gewinne zurück. Also: Die Kosten steigen nicht. Es nähert sich ein Zug. Wenn die Schranken geschlossen sind, nähert sich ein Zug. Also: Die Schranken sind geschlossen. Die Preise steigen. Wenn die Preise steigen, dann fordern die Gewerkschaften höhere Löhne. Es werden keine höheren Löhne gefordert oder die Kosten steigen. Also: Die Kosten steigen. Tafel aller Junktoren: A B w w w w w w w w w w f f f f f f f f w f w w w w f f f f w w w w f f f f f w w w f f w w f f w w f f w w f f f f w f w f w f w f w f w f w f w f Frage: Wieviele Zeilen hat eine Wahrheitstafel mit n Aussagevariablen? Und 5
6 1 EINFÜHRUNG AUSSAGENLOGIK wieviele Junktoren für n Variablen sind möglich? Beispiel: Dame oder Tiger (aus Raymund Smullyan: Dame oder Tiger; Fischer; 1986): Raum1: Zumindest in einem dieser Räume ist eine Dame Raum2: Im anderen Raum bendet sich ein Tiger Es sind entweder beide Schilder richtig oder falsch. Deniere D1='Dame ist in Raum 1' D2='Dame ist in Raum 2' T1='Tiger ist in Raum 1' T2='Tiger ist in Raum 2' Hieraus folgt [(D1 oder D2) und T1] oder [nicht (D1 oder D2) und nicht T1] Die Aussage T1 ist äquivalent zu D1. Damit folgt: [(D1 D2) D1] [ (D1 D2) D1] D1 D2 D1 D2 D1 (D1 D2) D1 (D1 D2) (D1 D2) D1 gesamt w w w f f f f f w f w f f f f f f w w w w f f w f f f w f w f f Der Gefangene muÿ den Raum 2 wählen, denn dort bendet sich die Dame. Weiteres Rätsel: Es könnte sein, dass Tiger hinter beiden Türen oder Damen hinter beiden Türen, 6
7 oder möglicherweise auch hinter der einen Türe eine Dame und hinter der anderen ein Tiger wäre. Raum1: In diesem Raum ist eine Dame, und in dem anderen ist ein Tiger Raum2: In einem dieser Räume ist eine Dame, und in einem dieser Räume ist ein Tiger. Ein Schild ist richtig und eines falsch. Wie sollte sich der Gefangene entscheiden? 7
Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen
Logik (Teschl/Teschl 1.1 und 1.3)
Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.
Kapitel 1. Aussagenlogik
Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.
I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten
Aussagenlogik-Boolesche Algebra
Aussagenlogik-Boolesche Algebra 1 Aussagen In der Mathematik und in der Logik werden Sätze der Umgangssprache nur unter bestimmten Bedingungen Aussagen genannt. Sätze nennt man Aussagen, wenn sie etwas
Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.
2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =
Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise
ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches
Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht
Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Tilman Bauer. 4. September 2007
Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 [email protected] Zimmer 504, Einsteinstr. 62 (Hochhaus)
Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B
Junktoren der Aussagenlogik zur Verknüpfung zweier Aussagen A, B Name Zeichen Bedeutung Wahrheitstafel Bemerkung mit zugehöriger Dualzahl ---------------------------------------------------------------------------------------------------------------
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n
der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr
Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein
Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:
Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,
Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2
Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html
b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente
II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Vorlesung. Logik und Diskrete Mathematik
Vorlesung Logik und Diskrete Mathematik (Mathematik für Informatiker I) Wintersemester 2008/09 FU Berlin Institut für Informatik Klaus Kriegel 1 Literatur zur Vorlesung: C. Meinel, M. Mundhenk, Mathematische
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung
Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik
1 Sprechweisen und Symbole der Mathematik
1 Sprechweisen und Symbole der Mathematik Übersicht 1.1 Junktoren......................................................... 1 1.2 Quantoren......................................................... 4 1.3
Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10
Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige
Elemente der Mathematik - Winter 2016/2017
4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen
Mathematik-Vorkurs für Informatiker Aussagenlogik 1
Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Kategorie 1 Notieren Sie die Definitionen
Rudolf Brinkmann Seite
Rudolf Brinkmann Seite 1 30.04.2008 Aussagen und Mengentheoretische Begriffe Aussagen und Aussageformen In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob
Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch
Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann [email protected] 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei
Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1
Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Zur Semantik der Junktorenlogik
Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 3 Was Hänschen nicht lernt, lernt Hans nimmermehr Volksmund Was Hänschen nicht lernt, lernt Hans nimmermehr hat heute keine
Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik
Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Logik für Informatiker
Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:
TU9 Aussagenlogik. Daniela Andrade
TU9 Aussagenlogik Daniela Andrade [email protected] 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /
Mathematik-Vorkurs für Informatiker Aussagenlogik 1
Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der
Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:
Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Prof. Dr. Armin Iske Department Mathematik, Universität Hamburg Technische Universität Hamburg-Harburg Wintersemester 2006/2007 Analysis I TUHH, Winter
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.
Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F
Vorsemesterkurs Informatik
Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen
Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung
Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere
Aussagenlogik. Aussagen und Aussagenverknüpfungen
Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,
mathe plus Aussagenlogik Seite 1
mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel
Was bisher geschah: klassische Aussagenlogik
Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln
Beispiel Aussagenlogik nach Schöning: Logik...
Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit
Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen
Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.
Vorkurs Mathematik für Informatiker 5 Logik, Teil 1
5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.
2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.
Logik für Informatiker
Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische
Übung 4: Aussagenlogik II
Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F
Teil 7. Grundlagen Logik
Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also
Formale Grundlagen (Nachträge)
Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................
Schlussregeln aus anderen Kalkülen
Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 8.9.2016 VK1: Logik Die Kunst des Schlussfolgerns Denition 1: Eine Aussage ist ein sprachliches
Beweistechniken. Vorkurs Informatik - SoSe April 2014
Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der
Logik: aussagenlogische Formeln und Wahrheitstafeln
FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe
Logik Vorlesung 3: Äquivalenz und Normalformen
Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
3. Logik 3.1 Aussagenlogik
3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es
Einführung in die Logik
Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3
Logische Grundlagen des Mathematikunterrichts
Logische Grundlagen des Mathematikunterrichts Referat zum Hauptseminar Mathematik und Unterricht 10.11.2010 Robert Blenk Holger Götzky Einleitende Fragen Was muss man beweisen? Woraus besteht ein Beweis?
Mathematischer Vorbereitungskurs für das MINT-Studium
Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet [email protected] WS 2016/2017 Vorlesung 2 MINT Mathekurs WS 2016/2017 1 / 20 Studienlexikon: Zeitangabe an der Universität
Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Boolesche Terme und Boolesche Funktionen
Boolesche Terme und Boolesche Funktionen Aussagen Mit dem Begriff der Aussage und der logischen Verknüpfung von Aussagen beschäftigte man sich schon im alten Griechenland. Die Charakterisierung einer Aussage
Aussagen (und damit indirekt auch Aussagesätze) können wahr oder falsch sein. Wahr und falsch sind Wahrheitswerte von Aussagen.
2 Aussagenlogik (AL) 2 Aussagenlogik (AL) 2. Wahrheitsfunktionale Konnektoren [ Gamut 28-35, Partee -6 ] Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungssätze bringen das Zutreffen
1 Einführung in die Prädikatenlogik
1 Einführung in die Prädikatenlogik Die Aussagenlogik behandelt elementare Aussagen als Einheiten, die nicht weiter analysiert werden. Die Prädikatenlogik dagegen analysiert die elementaren Aussagen und
Wahrheitswertesemantik Einführung Aussagenlogik
Wahrheitsbedingungen Wahrheitswertesemantik Einführung Aussagenlogik Sie haben sich in der ersten Sitzung mit verschiedenen Aspekten von Bedeutung auseinandergesetzt. Ein Aspekt, der dabei eine Rolle spielte,
Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17
Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut [email protected] 1 / 19 Dies ist der Foliensatz zur Vorlesung
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage
Logik Die Logik ist in der Programmierung sehr wichtig. Sie hilft z.b. bei der systematischen Behandlung von Verzweigungen und Schleifen. z.b. if (X Y und Y>0) then Oder beim Beweis, dass ein Algorithmus
Logik/Beweistechniken
Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion
Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.
Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch
Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.
1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als
Brückenkurs Mathematik. Dienstag Freitag
Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln
Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann [email protected] 9. Juni 2015 Frank Heitmann [email protected] 1/36 Ersetzbarkeitstheorem
Mathematik 1 für Wirtschaftsinformatik
für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 15. Oktober 2015 Zu der Vorlesung gibt es ein Skript, welches auf meiner Homepage veröffentlicht
Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017
Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise
Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 30.
Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 30. November 2016 Süddeutsche Zeitung, 8. Januar 2010 Fehlschluss: G L (L G) vielleicht
Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??
Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen
Vorlesung 3: Logik und Mengenlehre
28102013 Erinnerung: Zeilen-Stufen-Form (ZSF) eines LGS 0 0 1 c 1 0 0 0 1 0 0 1 c r 0 0 0 c r+1 0 0 0 0 0 0 0 0 0 c m Erinnerung: Information der Zeilen-Stufen-Form Aus der ZSF liest man ab: Folgerung
