Numerik. Festpunkt-Darstellung
|
|
|
- August Kruse
- vor 9 Jahren
- Abrufe
Transkript
1 Numerik Ablauf: Festpunkt-Darstellung Gleitpunkt-Darstellung Runden Addition/Subtraktion Multiplikation Ausblick und Zusammenfassung Wolfgang Kastner, Institut für Rechnergestützte Automation, TU Wien Festpunkt-Darstellung VZ Vorkomma Nachkomma v dn+g- dn+g-2 dn dn- d d n Nachkommastellen g Vorkommastellen Vorzeichenbit ( bei negativer Zahl) Zahl x ist N = n + g + Bit breit N-2 x = (-) v 2 -n d j 2 j j= = (-) v d N-2 d n. d n- d d
2 Festpunkt-Zahlensystem N = 2 Bit, n = 3 Bit Nachkommastellen ( ) 2 (-49.75) VZ Vorkomma Nachkomma v d d 9 d 8 d 7 d 6 d 5 d 4 d 3 d 2 d d Festpunkt-Zahlensystem N = 2 Bit, n = 3 Bit Nachkommastellen (-.375) (. ) 2 VZ Vorkomma Nachkomma v d d 9 d 8 d 7 d 6 d 5 d 4 d 3 d 2 d d 2
3 Festpunkt-Zahlensystem Größte und kleinste Festpunktzahl VZ Vorkomma Nachkomma v d n+g- d n+g-2 d n d n- d d Zahlen haben gleichmäßig konstanten Abstand 2 -n VZ Vorkomma Nachkomma v dn+g- dn+g-2 dn dn- d d Problem: große ganze Zahlen: Reduktion der Nachkommastellen n kleine Zahlen: Reduktion der Vorkommastellen g Festpunkt-Zahlensystem N = 2 Bit, n = 3 Bit Nachkommastellen Größte, kleinste Zahl, Abstand? VZ Vorkomma Nachkomma v d d9 d8 d7 d6 d5 d4 d3 d2 d d Zahlengerade 3
4 Gleitpunkt-Darstellung Darstellung von Zahlen, die betragsmäßig sehr groß UND sehr klein sein können Darstellung der Form: x = ± Mantisse Basis Exponent Beispiel: (.234) = Gleitpunkt-Darstellung VZ Exponent Mantisse dn- dn-2 dn-3 dn dn- d d Basis b (vereinbart, nicht gespeichert) Mantisse (gespeichert auf p Stellen genau) Exponent e Vorzeichen v x = (-) v (Mantisse) b Exponent falls normalisiert: x = (-) v (m + m b m -(p-) p- ) b e mit m 4
5 Gleitpunkt-Darstellung Parameter Basis b 2 Mantissenlänge p 2 kleinster Exponent e min < größter Exponent e max > Normalisierungsindikator denorm = {false, true} Benachbarte Zahlen im Intervall [b e, b e+ ] haben konstanten Abstand x = b e-p+ = ulp b e IEEE 754 Gleitpunkt Zahlensystem Single Format (32 Bit) Double Format (64 Bit) F(2,24,-26,27,true) F(2,53,-22,23,true) Vorzeichenbit (MSB) Exponent Bitbreite 8 Bit Exzess 27 e min = -26, e max =27 Mantisse (23+ Bit) implizites erstes Bit denorm=true Vorzeichenbit (MSB) Exponent Bitbreite Bit Exzess 23 e min = -22, e max =23 Mantisse (52+ Bit) implizites erstes Bit denorm=true 5
6 Zahlen, Not a Number, Unendlich + - F(2,24,-26,27,true) ( ) Schritt : Konvertierung ( ) (.) 2 Schritt 2: Normalisierung (.) 2 * 2 = (.) 2 * 2 7 6
7 ( ) Schritt 3: Exponent bilden F(2,24,-26,27,true) Exponent = Exzess + Exponent der normalisierten Darstellung Exponent = = 34 Schritt 4: Vorzeichenbit positive Zahlen: MSB = negative Zahlen: MSB = F(2,24,-26,27,true) Für normalisierte Zahlen gilt: Für subnormale Zahlen gilt: z = ( ) 7
8 Gegeben Mantisse Runden Abschneiden: Aufrunden: Abrunden Gegeben Mantisse Runden (cont.) Nächstgelegener Wert: 8
9 Runden durch Abschneiden truncate(x) F(2, 3, -, 2, true) x up(x). Gerichtetes Runden F(2, 3, -, 2, true) x 9
10 Runden auf nächstgelegenen Wert rtne(x) F(2, 3, -, 2, true) x Addition/Subtraktion Schritt : Exponenten der betragsmäßig kleineren Zahl an den Exponenten der größeren Zahl angleichen Schritt 2: Die beiden Mantissen addieren Schritt 3: Die Summe normalisieren Schritt 4: Runden
11 grs Vorgangsweise xx Mantisse bleibt, wie sie ist Sticky Bit Für round-to-even Runden und falls das Ergebnis in gleichem Abstand zum oberen und unteren nächstliegenden Fließkommawert liegt, benötigt man eine zusätzliche Stelle ( sticky Bit). x Mantisse++, betragsmäßig, d.h. ohne Berücksichtigung des Vorzeichens falls LSB der Mantisse=, Mantisse bleibt LSB = rechtestes Bit (ohne grs) falls LSB der Mantisse=, Mantisse++, betragsmäßig LSB = rechtestes Bit (ohne grs) beide Summanden haben dasselbe VZ: Mantisse++, betragsmäßig Summanden haben unterschiedliche VZ: Mantisse bleibt Beispiel Gleitpunkt-Zahlensystem: Vorzeichen, 5 Stellen Exponent (Exzess 6), Stellen Mantisse (mit expliziter Darstellung der führenden ), Runden durch Abschneiden. Zahl A: (5.58), Zahl B: (62.27), Gesucht A+B Init: Gleitpunkt-Darstellung Schritt : Umrechung in Binärsystem Schritt 2: Normalisierung Schritt 3: Exponentendarstellung Schritt 4: Vorzeichen Addition (mit grs-behandlung) Schritt : Exponenten anpassen Schritt 2: A+B vor der Normalisierung Schritt 3: A+B nach der Normalisierung Schritt 4: A+B nach dem Runden round to even
12 2 Beispiel Gleitpunkt-Zahlensystem: Vorzeichen, 5 Stellen Exponent (Exzess 6!), Stellen Mantisse (mit expliziter Darstellung der führenden ), Runden durch Abschneiden (truncate) Zahl A: (5.58), Zahl B: (62.27), Gesucht A+B Init: Gleitpunkt-Darstellung (Schritt 4) A B Beispiel Addition mit grs-behandlung Schritt : Exponenten anpassen Schritt 2: Mantissen addieren (A+B vor der Normalisierung) A B A g r s A+B A B
13 Beispiel Schritt II: Addition mit grs-behandlung Schritt 3: Ergebnis Normalisierung A+B Schritt 4: Rundungsvorschriften beachten (siehe Tabelle!) A+B g r s A+B ulp + Ergebnis: A+B nach dem Runden round to even A+B Genauigkeitsbetrachtungen Fehlerfortpflanzung und Auslöschung Absoluter Rundungsfehler Relativer Rundungsfehler Für vorheriges Beispiel: Exaktes Ergebnis: x = Errechnetes Ergebnis: x = Absoluter Rundungsfehler:.25 Relativer Rundungsfehler:.37% 3
14 Schritt : Multiplikation der Mantissen Multiplikation Schritt 2: Addition der Exponenten Schritt 3: Normalisieren und Runden des Ergebnisses Schritt 4: Vorzeichenbit setzen Ausblick und Zusammenfassung D. Goldberg: What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, (23):5-48, 99. IEEE: Standard for binary floating-point arithmetic, Institute of Electrical and Electronic Engineers, 985. Google IEEE-754 Floating Point Conversion Tutorien 4
Grundzüge der Informatik Tutorium Gruppe 6
Grundzüge der Informatik Tutorium Gruppe 6 Inhalt Einführung Numerik Fest- und Termin 5 07.2.2006 Apfelthaler Kathrin Test-Beispiel [email protected] Numerik Festpunkt-Darstellung Berechnung
Wertebereiche, Overflow und Underflow
Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die
bei Unterlauf wird stattdessen Hälfte des Divisors addiert Ersparnisse einer Addition bzw. Subtraktion
6.2 Non-Restoring Division Restoring Division Divisor wird subtrahiert falls Unterlauf (Ergebnis negativ) Divisor wird wieder addiert im nächsten Durchlauf wird die Hälfte des Divisor subtrahiert (Linksshift
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik
Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt
RO-Tutorien 3 / 6 / 12
RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 3 AM 13./14.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
2.1.2 Gleitkommazahlen
.1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 2007 8. Vorlesung Inhalt Gleitkomma-Darstellung Normalisierte Darstellung Denormalisierte Darstellung Rechnerarchitekturen Von Neumann-Architektur Harvard-Architektur Rechenwerk (ALU)
Gleitkommaarithmetik. Erhöhen der Genauigkeit. Grundlagen der Rechnerarchitektur Logik und Arithmetik 124
Gleitkommaarithmetik Erhöhen der Genauigkeit Grundlagen der Rechnerarchitektur Logik und Arithmetik 124 Guard Bit, Round Bit und Sticky Bit Bei der Darstellung der Addition und Multiplikation haben wir
, 2015S Übungstermin: Mi.,
VU Grundlagen digitaler Systeme Übung 1: Zahlendarstellungen, Numerik 183.580, 2015S Übungstermin: Mi., 18.03.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen Hilfsmittel
WH: Arithmetik: Floating Point
WH: Arithmetik: Floating Point Elmar Langetepe University of Bonn Robuste Implementierungen Floating Point Arithmetik Bonn 06 1 Real RAM Robuste Implementierungen Floating Point Arithmetik Bonn 06 2 Real
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung
Computerarithmetik ( )
Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur
Rundungsfehler-Problematik bei Gleitpunktzahlen
Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b
Rechnerstrukturen. Michael Engel und Peter Marwedel SS TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik SS 2013 Hinweis: Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 25. April 2013 1 Boolesche
Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 30. Oktober 2013 1/35 1 Boolesche
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Vorlesung Programmieren
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
Rechnerstrukturen WS 2012/13
Rechnerstrukturen WS 2012/13 Boolesche Funktionen und Schaltnetze Rechner-Arithmetik Addition (Wiederholung) Multiplikation Wallace-Tree Subtraktion Addition negativer Zahlen Gleitkommazahlen-Arithmetik
6.2 Kodierung von Zahlen
6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1
Numerisches Programmieren
Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 1 Jürgen Bräckle, Christoph Riesinger 2. Mai 2013 Tutorübung 1, 2. Mai 2013 1 Einführung in die Binärzahlen Zahlendarstellung im
Grundlagen der Computertechnik
Grundlagen der Computertechnik Aufbau von Computersystemen und Grundlagen des Rechnens Walter Haas PROLOG WS22 Automation Systems Group E83- Institute of Computer Aided Automation Vienna University of
Inhalt: Binärsystem 7.Klasse - 1 -
Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:
Computergrundlagen Zahlensysteme
Computergrundlagen Zahlensysteme Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren, Widerständen und Kondensatoren
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: +/-/*
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Inhalt Motivation 2 Integer- und Festkomma-Arithmetik Zahlendarstellungen Algorithmen für Integer-Operationen Integer-Rechenwerke Rechnen bei eingeschränkter Präzision 3 Gleitkomma-Arithmetik Zahlendarstellungen
1. Rechnerzahlen, Kondition, Stabilität
1. Rechnerzahlen, Kondition, Stabilität 1 1.1. Rechnerzahlen 2 1.2. Kondition 3 1.3. Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik
Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel [email protected] Helmar Burkhart Werkzeuge der Informatik Lektion 1:
Zahlen in Binärdarstellung
Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen
Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS
Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1
Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg
Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt
Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: IEEE Format Zahlenumwandlung
1 Grundlagen der Numerik
1 Grundlagen der Numerik 1.1 Gleitpunkt-Arithmetik Es gibt nur endlich viele Zahlen auf dem Computer. Gleitpunktzahl: x = σmb E σ: Vorzeichen B: Basis (feste Zahl >1); M: Mantisse E: Exponent B = 2 : Dualzahl
in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen
Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r
Binäre Gleitkommazahlen
Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72
1. Tutorium Digitaltechnik und Entwurfsverfahren
1. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 25 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 1 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG)
5 Zahlenformate und deren Grenzen
1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4
TI II: Computer Architecture Data Representation and Computer Arithmetic
Prof. Dr.-Ing. Jochen Schiller Computer Systems & Telematics 31 30 23 22 0 Sg Characteristic Mantissa TI II: Computer Architecture Data Representation and Computer Arithmetic Systems Representations Basic
21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?
Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen
BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:
Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1
Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1
Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung
Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000
Einführung in die Systemprogrammierung
Einführung in die Systemprogrammierung Repräsentierung Rationaler Zahlen Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 19. Juni 2015 Rationale Zahlen Wie können wir Rationale
Rückblick. Addition in der b-adischen Darstellung wie gewohnt. Informatik 1 / Kapitel 2: Grundlagen
Rückblick Addition in der b-adischen Darstellung wie gewohnt 5 0 C E + D 4 2 D = 44 Rückblick Multiplikation in der b-adischen Darstellung wie gewohnt 1 0 1 0 1 0 1 = 45 Rückblick Darstellung negativer
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Binäre Division. Binäre Division (Forts.)
Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte -
Übung Programmieren - Zahlendarstellung, SSH, SCP, Shellskripte - Sebastian Ebers Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/users/ebers Zahlendarstellung 201010? 16 2010
Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner
Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer
2.5 Primitive Datentypen
2.5 Primitive Datentypen Wir unterscheiden 5 primitive Datentypen: ganze Zahlen -2, -1, -0, -1, -2,... reelle Zahlen 0.3, 0.3333..., π, 2.7 10 4 Zeichen a, b, c,... Zeichenreihen "Hello World", "TIFI",
183.580, WS2012 Übungsgruppen: Mo., 22.10.
VU Grundlagen digitaler Systeme Übung 2: Numerik, Boolesche Algebra 183.580, WS2012 Übungsgruppen: Mo., 22.10. Aufgabe 1: Binäre Gleitpunkt-Arithmetik Addition & Subtraktion Gegeben sind die Zahlen: A
4. Zahlendarstellungen
121 4. Zahlendarstellungen Wertebereich der Typen int, float und double Gemischte Ausdrücke und Konversionen; Löcher im Wertebereich; Fliesskommazahlensysteme; IEEE Standard; Grenzen der Fliesskommaarithmetik;
2 Rechnen auf einem Computer
2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (
Numerik für Ingenieure I Wintersemester 2008
1 / 34 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 7.1.2009 2 / 34 Technisches Vorlesungswebsite: http://www.am.uni-erlangen.de/am3/de/lehre/ws08/numing1/
4. Zahlendarstellungen
Bin are Zahlendarstellungen Binäre Darstellung ("Bits" aus {0, 1) 4. Zahlendarstellungen bn bn 1... b1 b0 entspricht der Zahl bn 2n + + b1 2 + b0 Wertebereich der Typen int, float und double Gemischte
Vorlesung Informatik I
Vorlesung Informatik I Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Robert Lorenz Lehrprofessur für Informatik Theorie: Zahlen- und Zeichendarstellungen 1 Inhalt Motivation Technische Beschränkung
Grundlagen der Technischen Informatik. 4. Übung
Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.
Rechnergrundlagen SS Vorlesung
Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian
Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79
Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator
GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK
1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:
2.4 Codierung von Festkommazahlen c) Wie lässt sich im Zweier-Komplement ein Überlauf feststellen? neg. pos.
24 Codierung von Festkommazahlen 115 Aufgaben a) Codieren Sie für n 8 und r 0 die folgenden Zahlen binär im Zweier Komplement EC +10 : 00001010 11110101 Dezimal Binär 10 1111 0110 + 0 ch 1111011 0 20 00000000
2 Repräsentation von elementaren Daten
2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis
Darstellung rationaler und reeller Zahlen Vorlesung vom
Darstellung rationaler und reeller Zahlen Vorlesung vom 30.10.15 Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische Brüche. Beispiele. Satz: Jede rationale
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2
Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-
1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen
1.5 Einführung und Zahlensysteme/Darstellung gebrochener Zahlen 1.5.1 Situation Manchmal möchte man in Programmen mit Kommazahlen rechnen. In der Mathematik Im der Wirtschaft, im kaufmännischen Bereich
Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen
Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt
Einführung in die Informatik
Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB
Einführung in die Informatik
Einführung in die Informatik Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik [email protected] http://www.miwilhelm.de Raum 2.202 Tel. 03943 / 659 338 FB
Lösung 2. Übungsblatt
Fakultät Informatik, Technische Informatik, Professur für Mikrorechner Lösung 2. Übungsblatt Bildung von Gleitkommazahlen nach IEEE 754 und arithmetische Operationen mit Binärzahlen ANSI/IEEE 754-1985
Die Zahl ist: (z 2, z 1, z 0 ) (z ) : 7 = 0 Rest z 2
Übungen zur Vorlesung Technische Informatik I, SS Hauck / Guenkova-Luy / Prager / Chen Übungsblatt 4 Rechnerarithmetik Aufgabe : a) Bestimmen Sie die Darstellung der Zahl 3 zur Basis 7. 3 = 7 (Sehen Sie
1 Fehleranalyse, Kondition, Stabilität
Fehleranalyse, Kondition, Stabilität Fehlerquellen: Modellierungsfehler z.b. Ohmsches Gesetz u = Ri berücksichtigt nicht die Temperaturabhängigkeit des Widerstandes Messfehler z.b. digitaler Temperatursensor
Zahlenformate. SigProc-4-Zahlenformate 1
Zahlenformate SigProc-4-Zahlenformate 1 Einfluss der Zahlendarstellung Auf Genauigkeit und Implementierungs- Aufwand (HW-Kosten) Einfache Formate einfach in HW zu implementieren aber begrenzter Zahlenbereich
Kapitel 5: Daten und Operationen
Kapitel 5: Daten und Operationen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2007 Folien nach einer Vorlage von H.-Peter
Rechnerstrukturen. Michael Engel und Peter Marwedel. Sommer TU Dortmund, Fakultät für Informatik
Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik Sommer 2014 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 10. April 2014 1/37 1 Repräsentation
2.5. Gleitkommaarithmetik
2.5. Gleitkommaarithmetik Bei vorgegebener Länge m des Kodeworts (der rechnerinternen Darstellung) lassen sich nur 2 m verschiedene Werte darstellen. In der Mehrzahl der Fälle ist das zu wenig. Ein Ausweg
Einführung in die Computerorientierte Mathematik
Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 17. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1
, 2016W Übungstermin: Fr.,
VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 15/16 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Computer-orientierte Mathematik
Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische
2 Gleitpunktarithmetik und Fehleranalyse
Numerische Mathematik 47 2 Gleitpunktarithmetik und Fehleranalyse 2.1 Ein einführendes Beispiel Berechnung von π. π = Umfang eines Kreises mit Radius r = 1 2, U n = Umfang eines einbeschriebenen regelmäßigen
Fehler in numerischen Rechnungen
Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding
3 Numerisches Rechnen
E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als
3. Datentypen, Ausdrücke und Operatoren
3. Datentypen, Ausdrücke und Operatoren Programm muß i.a. Daten zwischenspeichern Speicherplatz muß bereitgestellt werden, der ansprechbar, reserviert ist Ablegen & Wiederfinden in höheren Programmiersprachen
