20 2 Vom Bit zum Quantenregister
|
|
|
- Moritz Weiner
- vor 8 Jahren
- Abrufe
Transkript
1 0 Vom Bit zum Quantenregister zweier Zustände. Wir können aber niemals erkennen, welchen Wert diese Anteile α und β genau haben. Wollen wir die Drehrichtung bestimmen, müssen wir sie messen. Dabei wird dieser merkwürdige Quantenzustand, die Superposition, zerstört. Mit einer gewissen Wahrscheinlichkeit, die von α und β abhängt, nimmt das Teilchen eine der beiden Richtungen an; diese ist unser Messergebnis. Messen stellt eine Wechselwirkung mit der Außenwelt dar: Der Zustand von Schrödingers Katze ist nur so lange unbestimmt, wie sie in der Kiste von der Außenwelt abgeschottet ist. Wollen wir Schrödingers Katze anschauen, muss Licht in die Kiste dringen. Die splendid isolation ist beendet, die Wechselwirkung mit den Lichteilchen kann die Superposition zerstören. Einer der Zustände tot oder lebendig wird realisiert. Wir selbst gehören stets zur Außenwelt eines Quantenteilchens. Versuchen wir etwas darüber herauszufinden, beeinflussen wir es. In diesem Sinne ist die Kiste ein entscheidender Teil des Gedankenexperiments. Auf diesen Überlegungen baut die Hauptdefinition des nächsten Abschnittes auf. Ein Quantenbit kann gleichzeitig den Wert 0 und den Wert 1 annehmen. Wollen wir etwas über dieses Bit erfahren, bleibt uns nichts anderes übrig,alseszumessen. Die Eigenschaft, gleichzeitig in zwei Zuständen zu sein, geht verloren. Wir erhalten den Wert 0 mit einer Wahrscheinlichkeit p und den Wert 1 mit der Wahrscheinlichkeit 1 p.. Das Quantenbit Ein klassisches Bit ist entweder 0 oder 1. Ein Quantenbit kann beides zugleich sein. Wie das zu verstehen ist, wird in diesem Abschnitt erläutert. Dirac-Notation In der Quantenmechanik ist es üblich, Zustände in Klammern der Form zu setzen. Die Werte eines klassischen Bits werden damit zu 0 und 1. Es ist dies die ket-notation oder auch Dirac-Notation, die auf den britischen Physiker Paul Dirac ( ) zurückgeht, der 1933 zusammen mit Schrödinger den Nobelpreis erhielt. Definition Quantenbit Ein Quantenbit, kurzqubit, nimmt Zustände der folgenden Form an: α 0 + β 1. (.1) α und β heißen Amplituden und sind komplexe Zahlen mit α + β = 1.
2 . Das Quantenbit 1 Ein Quantenbit kann sich also in zwei klassischen Zuständen gleichzeitig befinden; die komplexen Zahlen drücken deren jeweiligen Anteil aus. Man spricht von Superposition oder Überlagerung der klassischen Zustände 0 und 1. Die Bedingung α + β = 1 schränkt die möglichen Werte der Amplituden ein, zulässige Beispiele sind und = 1. Trotz dieser Einschränkung sind unendlich viele verschiedene Zustände möglich. Ein klassisches Bit kann man lesen und seinen genauen Zustand feststellen. Das ist bei einem Quantenbit in dieser Form nicht möglich: Möchte man auf ein Quantenbit lesend zugreifen, muss man es messen. Das Messergebnis hängt von den Amplituden α und β ab. Messen wir ein Quantenbit im Zustand α 0 +β 1, wird die Superposition zerstört. Anschließend ist es mit Wahrscheinlichkeit α im Zustand 0 und mit Wahrscheinlichkeit β im Zustand 1. Diesen Zustand nach dem Messen können wir beobachten. Superposition, Überlagerung Messen eines Quantenbits Beispiel.1: Die Superposition eines Quantenbits. Denn es gilt 3 1 ist ein zulässiger Zustand ( 1 ) +( 3 3 ) = = 1. Messen wir ein Bit in diesem Zustand, ist das Ergebnis mit Wahrscheinlichkeit 1/3 der Zustand 0 und mit Wahrscheinlichkeit /3 1. Messen wir ein Bit im Zustand , sind die Ergebnisse 0 und 1 gleichwahrscheinlich. Dazu eine Erläuterung: Werfen wir einen sechsseitigen Würfel, ist das Ergebnis eine der Zahlen 1,,...,6. Sehen wir von Unregelmäßigkeiten des Würfels ab, erhalten wir jede Zahl mit Wahrscheinlichkeit 1/6; werfen wir den Würfel sehr oft, erwarten wir, dass wir zum Beispiel die 1 in einem Sechstel der Fälle beobachten. Aber was ist Wahrscheinlichkeit? Man kann wie folgt argumentieren: hätten wir exakte Informationen über den Würfelwurf und die Beschaffenheit der Oberfläche, auf der er auftritt, könnten wir den genauen Bewegungsablauf berechnen, wie wir die Bewegung der Planeten berechnen können. Uns fehlen nur diese exakten Informationen! Das ist in der Quantenwelt nicht so. Messen wir ein Bit im Zustand , ist der Ausgang tatsächlich unbestimmt und keine Folge unserer Unwissenheit oder der Grobheit der Messinstrumente. Gibt es auch Quantenzustände, bei denen das Ergebnis feststeht? Messen wir = 1, so erhalten wir mit Sicherheit den Wert 1 als Ergebnis. Dieser Zustand verhält sich wie ein klassisches Bit, das 1 gesetzt ist. Wir bezeichnen 0 und 1 als nicht-überlagerte Zustände, da sie den Zuständen eines klassischen Bits entsprechen.
3 Vom Bit zum Quantenregister Aufgabe.3: 100 Quantenbits befinden sich im Zustand befinden. Sie messen alle. Welches Ergebnis erwarten Sie? Phase Zustände als Vektoren Realisierung Das Ergebnis der Messung hängt nur von dem Betrag der Amplitude ab. Messungen der Zustände 1 ( ) und 1 ( 0 1 ) ergeben jeweils 0 und 1 mit Wahrscheinlichkeit 1/. Zwei reelle Zahlen haben denselben Betrag, wenn sie sich nur im Vorzeichen unterscheiden. Komplexe Zahlen z haben denselben Betrag, wenn sie sich nur bezüglich der Phase unterscheiden, siehe Seite 65. Was nun folgt ist wesentlich, um die Arbeitsweise des Quantencomputers zu verstehen. Den Zustand eines Quantenbits werden wir ab jetzt als Vektor in einem zweidimensionalen Vektorraum über den komplexen Zahlen betrachten; Vektorräume sind immer dann nützlich, wenn eine Beschreibung von mehreren unabhängigen Komponenten abhängt. Auf die folgenden Überlegungen geht auch Abschnitt A. im Anhang über Vektorräume ein. In unserem Fall sind die Komponenten die Amplituden, und die Superposition α 0 + β 1 wird zu dem Vektor aus Abbildung.11. Der zugehörige Zustandsvektor ist ( ) α. β Diesen Vektor können wir als Linearkombination der zweidimensionalen Standardbasisvektoren angeben: ( α β ) ( 1 = α 0 ) ( 0 + β 1 ) = α 0 + β 1. Die Basis unseres Vektorraumes besteht damit aus den beiden nicht überlagerten Zuständen { 0, 1 }. Die Superposition α 0 + β 1 wird zu einer Linearkombination dieser Basiselemente. Natürlich sind nicht alle Vektoren unseres zweidimensionalen Vektorraums mögliche Zustände eines Quantenbits. Wegen der Bedingung α + β = 1 sind es gerade diejenigen der Länge 1. Aus Abbildung.11 kann man nicht ersehen, dass α und β komplexe Zahlen sind. Wir stellen uns den Vektorraum einfach so vor, als wäre er über den reellen Zahlen definiert, und rechnen gemäß den Regeln für komplexe Zahlen. Wie kann man ein Quantenbit bauen, um damit konkret zu rechnen? Dazu muss ein Teilchen von seiner Umwelt strikt abgeschottet werden. Wir erinnern uns an die Kiste, in der Schrödingers Katze steckte. Ohne diese Abschottung würde die Umwelt mit dem Teilchen wechselwirken, und die Superposition würde zerstört werden; ähnlich wie durch eine Messung. Das Stichwort hierzu lautet Dekohärenz, siehe Abschnitt 9.. Nun nimmt man eine messbare und beeinflussbare Eigenschaft des abgeschotteten Teilchens her, zum Beispiel die Drehrichtung um eine festgelegte Achse oder zwei Energieniveaus. Wir wählen zwei Zustände dieser Eigenschaft, die sich in der klassischen Welt ausschließen: diese bezeichnen wir
4 .3 Rechenschritte auf einem Quantenbit β α 0 + β 1-1 α Abbildung.11: Die Superposition als Vektor mit 0 und 1. Fertig. Dieser Zugang ist aus praktischer Sicht unverantwortlich hemdsärmelig. Wir sollten uns jedoch auf genau diesen Standpunkt stellen. Quantenbits sind realisierbar; das haben Experimentalphysiker bewiesen. Wir stellen uns im weiteren die Frage, was sich damit anfangen lässt. Unsere aktuelle Frage lautet: Wie können wir mit Quantenbits rechnen? Oder anders ausgedrückt, was für Rechenschritte können wir ausführen, wie gehen zwei Zustände eines Quantenbits ineinander über?.3 Rechenschritte auf einem Quantenbit Wir wissen bereits, was ein Quantenbit ist, aber noch nicht, was man damit machen kann. In Abschnitt.1 haben wir festgestellt, dass eine Berechnung eine Folge von Zuständen des Rechners ist. Ein Rechenschritt überführt dabei den aktuellen Zustand in den Folgezustand. Bei klassischen Rechnern gibt es keine weiteren Einschränkungen. Hat das Bit etwa den Wert 0, kann es im nächsten Rechenschritt 1 gesetzt werden oder den Wert 0 behalten. Ein Quantenbit hingegen kann unendlich viele verschiedene Zustände annehmen. Der Übergang zwischen den Zuständen unterliegt dabei besonderen Bedingungen. Die möglichen Rechenschritte auf einem Quantenbit werden durch quadratische Matrizen beschrieben, genauer durch -Matrizen, die unitär sind. Unitäre Matrizen beschreiben mathematisch, wie sich ein abgeschottetes Quantensystem ändert. Matrizen beschreiben Abbildungen, siehe dazu den Anhang. Aus einer unitären Matrix lässt sich besonders einfach die inverse Matrix beziehungsweise die Umkehrabbildung ableiten.
5 4 Vom Bit zum Quantenregister Dazu bennotigen wir folgenden Begriff: Hat eine Matrix A =(a ij ) komplexe Einträge, kommen wir zu A,derkomplex konjugierten von A, indem wir a ij durch a ij ersetzen (zu komplexen Zahlen siehe Abschnitt A.1 und zu Matrizen und der verwendeten Notation Abschnitt A.3 im Anhang). Mit A bezeichnen wir die komplex konjugierte und transponierte Matrix (A ) T. A heißt zu A adjungierte Matrix und entsteht aus A, indem a ij durch a ji ersetzt wird. Leider gibt es keine einheitliche Notation: in der deutschsprachigen Literatur wird die komplex konjugierte Matrix meistens mit A bezeichnet und die adjungierte mit A. Unsere Schreibweise hat den Vorteil, den Einstieg in die Originalliteratur zu erleichtern. Definition unitäre Matrix Sei A eine n n-matrix, deren Einträge komplexe Zahlen sind. A heißt unitär, falls A zu A invers ist: A = A 1. Eine unitäre Matrix beschreibt eine unitäre Transformation. Eine Matrix A mit rellen Einträgen ist genau dann unitär, wenn wir durch Transposition zur Inversen gelangen: A 1 = A T. Die beiden folgenden Matrizen sind unitär: Beispiel.: Die zweidimensionale Einheitsmatrix ( ) 1 0 I = 0 1 ist unitär. Denn es gilt I = I = I 1. Hadamard- Matrix Die Matrix H = ( ) = 1 ( ) ist unitär. Sie heißt Hadamard-Matrix und wird eine wichtige Rolle für uns spielen. Benannt ist die Matrix H nach dem französischen Mathematiker Jacques Hadamard ( ). Aufgabe.4: Beweisen Sie, dass die Matrix H unitär ist. Entwicklung eines Qubits Nun beschreiben wir, wie eine solche Matrix eine Zustandsveränderung eines Quantenbits bewirkt. Auf einem Quantenbit im Zustand α 0 + β 1 soll ein Rechenschritt ausgeführt werden, der durch eine zweidimensionale
6 .3 Rechenschritte auf einem Quantenbit 5 (unitäre) Matrix ( a b A = c d beschrieben wird. Wir erhalten den Folgezustand α 0 + β 1, indem wir den Zustandsvektor mit der Matrix multiplizieren. ( ) ( α α β = A β ) ) ( a α + b β = c α + d β Man nennt die zu einer unitären Matrix gehörende Abbildung zwischen Vektoren eine unitäre Transformation. In der Folge unterscheiden wir jedoch nicht allzu streng zwischen diesen Begriffen. Wir wenden die Matrix H aus Beispiel. auf die Basis- Beispiel.3: zustände an: ). 0 H = 1 ( ). 1 H 1 ( 0 1 ). Wenden wir H nun noch einmal an, ergibt sich: 1 ( ) H 0 und 1 ( 0 1 ) H 1. H ist zu sich selbst invers: H 1 = H oder HH = I. Da außerdem H = H gilt, folgt daraus, dass H unitär ist, siehe Aufgabe.4. Aufgabe.5: Konstruieren Sie alle unitären Transformationen eines Bits, die den Zustand 0 auf abbilden. Seit Ende des letzten Abschnitts stellen wir uns ein Quantenbit als von seiner Umwelt abgeschottetes Teilchen vor. Den Zustand gewisser Teilchenarten lässt sich mit Hilfe von Laserstrahlen oder Magnetfeldern ändern. Mit diesen oder ähnlichen Verfahren könnte man beispielsweise eine Superposition zweier Energieniveaus in eine andere Superposition übergehen lassen und so eine unitäre Transformation auf dem Quantenbit realisieren. Eine wichtige Möglichkeit, Quantenbits zu konstruieren, stellen polarisierte Photonen oder Lichtquanten dar. Der Zustand so konstruierter Quantenbits lässt sich mit optischen Geräten wie lichtbrechenden Kristallen manipulieren mehr dazu findet sich in Kapitel 9.3. Realisierung Zusammenfassung Der Zustand eines Quantenbits wird durch einen Vektor der Länge 1 in einem zweidimensionalen komplexen Vektorraum beschrieben. Wir führen einen Rechenschritt aus, ändern den Zustand des Quantenbits, indem wir eine
7 6 Vom Bit zum Quantenregister unitäre Transformation anwenden beziehungsweise den Zustandsvektor mit einer unitären Matrix multiplizieren. Messen wir ein Quantenbit im Zustand α 0 + β 1, beobachten wir 0 mit Wahrscheinlichkeit α und 1 mit Wahrscheinlichkeit 1 α = β. Nach der Messung ist die vorhergehende Superposition zerstört. Insbesondere kann man nie feststellen, welchen Wert die Amplituden α und β haben..4 Der erste Algorithmus: Ein Zufallsgenerator Bisher stehen uns nur sehr bescheidene Mittel zur Verfügung. Wir können ein Quantenbit manipulieren und messen. Dies genügt jedoch, um einen Quantenalgorithmus für ein Problem zu beschreiben, das für einen klassischen Rechner unmöglich ist: das Erzeugen von Zufallszahlen. Zufallszahlen sind für viele Anwendungen nötig, wovon zwei in diesem Buch behandelt werden. In Abschnitt 4. geht es um randomisierte Algorithmen, ein sehr mächtiges Werkzeug. Eine Anwendung aus der Kryptographie lernen wir in Abschnitt 7.1 kennen. Weiter spielen Zufallszahlen für die Vorhersage von Börsenkursen oder anderen wirtschaftlichen Indizes eine große Rolle. Auch für Simulationen, etwa der Klimaentwicklung oder anderer Naturprozesse, werden Zufallszahlen benötigt. Solche Prozesse sind so komplex, dass sie nicht absolut korrekt berechnet werden können. Man kann die Prozesse aber annähern, sie approximieren; dabei kommt der Zufall ins Spiel. Klassische Computer erzeugen für jede Eingabe eine exakt festgelegte Ausgabe. Mehr noch, jeder Rechenschritt ist durch den aktuellen Zustand determiniert, wie wir an den Berechnungsmodellen in Abschnitt.1 gesehen haben. Das Beste, was solche Rechner herstellen können, sind sogenannte Pseudozufallszahlen. Das sind Folgen von Zahlen, die mit Mitteln der Statistik nicht von tatsächlichen Zufallszahlen zu unterscheiden sind. Aber der Statistik sind bei solchen Fragen Grenzen gesetzt. Es sind keine echten Zufallszahlen und für Anwendungen äußerst problematisch. Der folgende Algorithmus erzeugt ein zufälliges Bit. Da die möglichen Ergebnisse beide mit derselben Wahrscheinlichkeit erzeugt werden, verhält er sich wie ein Münzwurf. Die Notation wird in der anschließenden Analyse erklärt. Algorithmus Münzwurf Spezifikation: Wir verwenden ein Quantenbit x. Nach Ablauf des Algorithmus ist es mit Wahrscheinlichkeit 1/ auf 0 gesetzt und mit Wahrscheinlichkeit 1/ auf 1.
8 .4 Der erste Algorithmus: Ein Zufallsgenerator 7 0 H M Abbildung.1: Schaltkreis für den Algorithmus Münzwurf 1. x 0. x H x 3. Messe x Die verwendete Notation wird durch die Analyse erklärt. Analyse: In Schritt 1 wird das Quantenbit x in den Anfangszustand 0 versetzt. In Schritt wird die Hadamard-Transformation auf dieses Bit angewendet, danach ist es also im Zustand 1 ( ). Messenwires,soerhaltenwir das in der Spezifikation beschriebene Ergebnis. Aufgabe.6: Was ist das Ergebnis des Algorithmus, wenn wir im ersten Schritt das Bit x auf 1 setzen? Aufgabe.7: Was ist das Ergebnis des Algorithmus, wenn wir x im ersten Schritt in einen beliebigen Ausgangszustand α 0 +β 1, α + β = 1, versetzen? Alle unsere Algorithmen werden von ungefähr dieser Form sein. Man versetzt zunächst einige Quantenbits in einen Ausgangszustand. Dann wendet man eine Reihe von unitären Transformationen an und misst am Ende. Wie angekündigt, ist das grundlegende Berechnungsmodell dieses Buches der Quantenschaltkreis. Ein Gatter eines solchen Schaltkreises führt eine unitäre Transformation aus. Im Abschnitt 3.3 werden wir Quantenschaltkreise näher untersuchen. Der Begriff ist aber so anschaulich, dass wir in Abbildung.1 den Schaltkreis angeben, der unserem Algorithmus für den Münzwurf entspricht. Wir haben bereits eine gewisse Vorstellung davon, was eine Quantenberechnung ist. Folgendermaßen ließe sich der Zufallsgenerator realisieren: man isoliert ein Teilchen, überführt dieses bezüglich seiner Drehrichtung in die Superposition 1 ( ) und misst anschließend die Drehrichtung. Das ist alles. Zufälligkeit ist schließlich eines der Charakteristika der Quantenmechanik. Realisierung
9 8 Vom Bit zum Quantenregister.5 Quantenregister Quantenregister aus zwei Bits Nun setzen wir mehrere Quantenbits zusammen: Für uns ist ein Register nichts anderes als eine Folge von Bits. Ein klassisches Bit kann die Werte 0 und 1 annehmen, die möglichen Zustände eines klassischen Registers mit zum Beispiel drei Bits sind gerade 000, 001, 010 und so weiter bis 111. Mit Hilfe der Binärdarstellung ganzer Zahlen kann ein Register aus n Bits die Zahlen 0,..., n 1 darstellen. Wie nicht anders zu erwarten, ist der Zustand eines Quantenregisters aus n Quantenbits eine Superposition der n klassischen Zustände. Bevor wir Quantenregister formal definieren und eine handliche Notation einführen, untersuchen wir am Beispiel eines Registers aus zwei Quantenbits die folgende Frage: Wie hängt der Zustand eines Quantenregisters mit dem Zustand der einzelnen Bits zusammen? Unser Register besteht aus den Quantenbits x 0 und x 1 : R = x 1 x 0. Diese Schreibweise erinnert nicht ohne Grund an ein Produkt. Sei das erste Quantenbit im Zustand und das zweite im Zustand x 0 = γ γ 1 1 x 1 = β β 1 1. Dann erhalten wir den Zustand des Quantenregisters durch Ausmultiplizieren; im Abschnitt.7 werden wir dieses Vorgehen mathematisch fundieren. R = x 1 x 0 = (β β 1 1 ) (γ γ 1 1 ) = β 0 γ β 0 γ β 1 γ β 1 γ Das ist unübersichtlich: Wir bezeichnen die Amplituden der Zustände des Quantenregisters mit α ij = β i γ j und erhalten: R = α α α α Aus γ 0 + γ 1 = 1 und β 0 + β 1 = 1 folgt α 00 + α 01 + α 10 + α 11 = 1. Der Einfachheit halber werden wir statt R = x 1 x 0 meistens R = x 1 x 0 schreiben. Danach sieht der Zustand des Registers folgendermaßen aus: R = α α α α Außerdem ist es oft übersichtlicher, anstelle der einzelnen Bits, die in der Binärdarstellung repräsentierten Zahlen anzugeben. Wir erhalten: R = α α α + α 3 3.
Quantum Computing. Seminar: Informatikanwendungen in Nanotechnologien. Wladislaw Debus
Seminar: Informatikanwendungen in Nanotechnologien 20.06.2006 Inhalt 1 Einführung 2 Aufbau eines Quantencomputers Qubits Quantenregister Schaltkreise 3 Komplexitätsklassen 4 Quantenalgorithmen Faktorisierung
Einführung in Quantencomputer
Einführung in Quantencomputer Literatur M. Homeister, (jetzt FB Informatik und Medien an der Fachhochschule Brandenburg) Quantum Computing verstehen, Springer Vieweg Verlag (25) E. Rieffel und W. Polak,
Quantencomputer: Einführung
Quantencomputer: Einführung Martin Lange Institut für Informatik Ludwig-Maximilians-Universität München Quantencomputer: Einführung p.1/29 Einleitung Quantencomputer: Einführung p.2/29 Geschichte Computer
Quanteninformation/ Quantencomputer
Quanteninformation/ Quantencomputer Jonas Heinze Proseminar SS 2013 Jonas Heinze (University of Bielefeld) Quanteninformation/ Quantencomputer 2013 1 / 20 Übersicht 1 Kurzer Einstieg in die Informatik
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
Quantum Computing verstehen
Computational Intelligence Quantum Computing verstehen Grundlagen - Anwendungen - Perspektiven Bearbeitet von Matthias Homeister 4. Auflage 2015. Buch. XI, 311 S. Kartoniert ISBN 978 3 658 10454 2 Format
Proseminar CiS November Quantencomputer. Tom Petersen
Proseminar CiS November 2011 Quantencomputer Tom Petersen Die Idee des Quantencomputers - Fortschreitende Miniaturisierung - Es existieren technische Grenzen, auch wenn sie durch neue Verfahren immer weiter
Quantencomputer. Tobias Tyborski HU Berlin
Quantencomputer Tobias Tyborski HU Berlin Quantencomputer Vortragsübersicht 1. allgemeine Informationen - Stand der Technik, Definitionen 2. Wie rechnet der QC? - single-qubit-gate, two-qubit-gate 3. physikalische
Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist
127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte
Algorithmen für Quantencomputer I
1. Institut für Theoretische Physik Universität Stuttgart 19. Juli 2011 1 Grundlagen (Wiederholung) QuBit Register Gatter 2 3 Bit-Flip-Fehler Phasen-Flip-Fehler 4 Prinzip eines Quantenalgorithmus QuBit
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Simulation eines Quantencomputers
Simulation eines Quantencomputers J. Metzner, M. Schmittfull Simulation eines Quantencomputers p.1/34 Ziele des Projekts Entwicklung einer leistungsfähigen und effizienten Simulation eines Quantencomputers
Schrödingers Katze -oder- Wo ist der Übergang?
Schrödingers Katze -oder- Wo ist der Übergang? Themen Vergleich Quantenmechanik klassische Mechanik Das Gedankenexperiment Interpretationen des Messprozesses (Kopenhagener Deutung, Viele-Welten-Theorie,
Qubits Interferenz Verschränkung Messung
Vortrag Nr. Qubits Interferenz Verschränkung Messung 4. November 00 Referent: Christoph Mühlich ([email protected]) Betreuer: Hanjo Täubig ([email protected]) Christoph Mühlich 4. November 00 Folie Einführung
Dekohärenz und Grundprinzip der Quantenfehlerkorrektur
Dekohärenz und Grundprinzip der Quantenfehlerkorrektur Bachelorarbeit Gregor Wurm, Betreuer: Prof. E. Arrigoni Institut für Theoretische Physik der Technischen Universiät Graz 24. Sept. 2010 Übersicht
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Quanteninformatik MATHEMATISCHE. Seminararbeit. Alexander Hentschel
Quanteninformatik MATHEMATISCHE GRUNDLAGEN UND Q-BITS Seminararbeit Alexander Hentschel [email protected] Institut für Informatik, Humboldt Universität Berlin Wintersemester 2004 p. 1/60
Quantenschaltkreise. Seminar: Quantenrechner ~ Sommersemester Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff
Quantenschaltkreise Seminar: Quantenrechner ~ Sommersemester 24 Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Vortrag: Jens Kleine ~ [email protected] Vortag vom 12.5.24 ~ Humboldt
WAHRSCHEINLICHKEITSRECHNUNG
WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse
Grundlagen des Quantencomputers
Grundlagen des Quantencomputers KIT Karlsruher Institut für Technologie Christian Tesch Gliederung 1. Qubit und Quantenregister 2. Quantengatter 3. Mögliche Anwendungen für Quantencomputer 4. Praktische
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren
Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren
Inhalt. Quantenbits, -gatter, -register. Einleitung. Seminar über Quantencomputer. Klassische Betrachtungsweise. Klassisches Modell
Quantenbits -gatter -register Seminar über Quantencomputer Jörg Meltzer & Axel Steinacker Inhalt Klassisches Modell Vektorielle Zustandsbeschreibung klassischer Register Einfache Gatter Was sind Qubits
Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n
Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine
Einführung in Quantenalgorithmen
Einführung in Quantenalgorithmen Inhalt: 1. Einleitung 2. Einteilung der Quantenalgorithmen 3. Vorteile von Quantenalgorithmen 4. Funktionsweise bzw. Aufbau von Quantenalgorithmen 5. Erste Beispiele: a.
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
Universelle Quantengatter
Universelle Quantengatter Physik des Quantencomputers Alexander Jakub Kwiatkowski Fakultät für Physik, KIT 24. April 2012 A.J.Kwiatkowski (Fakultät für Physik, KIT) Universelle Quantengatter 24.04.12 1
5 Lineare Algebra (Teil 3): Skalarprodukt
5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale
Vortrag über QUANTENCOMPUTER. gehalten von Marcus HARRINGER, Gregor KÖNIG, Michael POBER, Klaus WERDENICH
Vortrag über QUANTENCOMPUTER gehalten von Marcus HARRINGER, Gregor KÖNIG, Michael POBER, Klaus WERDENICH 24.01.2002 Einleitung massive Parallelrechner und absolut sichere Kodierungssyteme Erweiterung der
Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung
Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele
LINEARE ALGEBRA II. FÜR PHYSIKER
LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders
$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $
Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit
Fakultät für Mathematik, Physik und Informatik Mathematisches Institut. Prinzipien des Quantencomputers und der Algorithmus von Shor
Fakultät für Mathematik, Physik und Informatik Mathematisches Institut Prinzipien des Quantencomputers und der Algorithmus von Shor Diplomarbeit von Wolfgang Riedl Neusorg, den 29. März 2011 Aufgabenstellung:
Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren
3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)
Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik
Dekohärenz und die Entstehung klassischer Eigenschaften aus der Quantenmechanik G. Mahler Spezialvorlesung SS 006 7. 4. 006 Einführung und Übersicht Warum und in welchem Sinn ist Kohärenz»untypisch«? 04.
2. Symmetrische Gruppen
14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen
Eine Einführung zum Thema Quantencomputer
quantencomputer.de Eine Einführung zum Thema Quantencomputer Matthias Bezold. 6. Februar 2007 Vorwort 2 Einführung in die Quantenphysik 2 Anwendungen der Quantenmechanik 3 Ein Computer 5 Quantenalgorithmen
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
4 Lineare Abbildungen und Matrizen
Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt
Der Kern einer Matrix
Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis
Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24
Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)
3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten
Das Meßproblem in der Kopenhagener Deutung
Das Meßproblem in der Kopenhagener Deutung Angenommen, ein quantenmechanisches System kann nur zwei Werte annehmen, z.b. Spin oben oder Spin unten... Dieses Teilchen wird in Bezug auf den Spin durch eine
7 Matrizen über R und C
Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit
Lösbarkeit linearer Gleichungssysteme
Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn
Basiswissen Matrizen
Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)
Kapitel 2: Mathematische Grundlagen
[ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel [email protected] Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
Projektarbeit Quantenmechanik II
Projektarbeit Quantenmechanik II Konzepte der Quantenmechanik Kets, Bras und Operatoren Gruppe Born Stefan Brünner, Corinna Gressl, Barbara Krebl Stefan Sattler, Hans-Peter Zach Sommersemester 2008 Abstract
5 Eigenwerte und die Jordansche Normalform
Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung
5.2 Rechnen mit Matrizen
52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
Algebraische und arithmetische Algorithmen
Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche
Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen
Lineare Algebra I 4 Tutorium Lineare Abbildungen und Matrizen Fachbereich Mathematik WS / Prof Dr Kollross 7 Februar Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Bewegungen im ) Als Bewegung
4. Morphismen. 30 Andreas Gathmann
30 Andreas Gathmann 4. Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen. Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung
Matrizen und Drehungen
Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand
Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise
Kohärenz, Verschränkung und Verschränkungsmaße I
Kohärenz, Verschränkung und Verschränkungsmaße I Bernd Kübler Bernd Kübler Kohärenz, Verschränkung und Verschränkungsmaße 1 Motivation Theoretische Werkzeuge zur Handhabung von Qubits sind unerlässlich
6.2 Rechnen mit Matrizen
62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
1 Fraktale Eigenschaften der Koch-Kurve
Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
2.3 Basis und Dimension
Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit
Lineare Algebra. 1 Lineare Abbildungen
Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe
Kapitel 16. Invertierbare Matrizen
Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,
B Grundbegriffe zu Mengen und Abbildungen
B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch
Abhörsichere Kommunikation über Quanten-Repeater
Abhörsichere Kommunikation über Quanten-Repeater Christian Deppe November 2017 C. Deppe (Universität Bielefeld) Quantenkommunikation Bielefeld 1 / 25 Outline 1 Historischer Überblick C. Deppe (Universität
Vektoren und Matrizen
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein
X. Quantisierung des elektromagnetischen Feldes
Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen
Würfelspiele und Zufall
Würfelspiele und Zufall Patrik L. Ferrari 29. August 2010 1 Random horse die Irrfahrt des Pferdchens Betrachte ein Schachbrett mit einem Pferd (Springer), welches sich nach den üblichen Springer-Regeln
A wird in diesem Fall invertierbar oder regulär genannt. Beispiel
Inverse Matrizen Definition Sei A eine quadratische Matrix vom yp (n,n) Existiert zu A eine Matrix X gleichen yps mit AX = XA = E (E: (n,n) Einheitsmatrix), so nennt man X die zu A inverse Matrix, oder
5.2 Rechnen mit Matrizen
52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
2.5 Gauß-Jordan-Verfahren
2.5 Gauß-Jordan-Verfahren Definition 2.5.1 Sei A K (m,n). Dann heißt A in zeilenreduzierter Normalform, wenn gilt: [Z1] Der erste Eintrag 0 in jeder Zeile 0 ist 1. [Z2] Jede Spalte, die eine 1 nach [Z1]
Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und
7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ
Inhaltsverzeichnis. Einleitung 1
Inhaltsverzeichnis Einleitung 1 1 Licht und Materie 7 Was ist eigentlich Licht? 8 Aber was schwingt da wie? 9 Was sind Frequenz und Wellenlänge des Lichts? 11 Was ist eigentlich Materie? 12 Woraus besteht
1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen
1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen
44 Orthogonale Matrizen
44 Orthogonale Matrizen 44.1 Motivation Im euklidischen Raum IR n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen. Wir wollen das Konzept der Orthonormalität
Grundlegende Definitionen aus HM I
Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen
In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.
Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:
9 Lineare Gleichungssysteme
9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
