Dynamisches Routing in der Logistik
|
|
|
- Herta Kuntz
- vor 8 Jahren
- Abrufe
Transkript
1 Informatik, Angewandte Informatik, Technische Informationssysteme Dynamisches Routing in der Logistik Tobias Dimmel Dresden,
2 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 2 von 25
3 1. Begriffe Logistik Planung, Organisation, Steuerung, Abwicklung und Kontrolle von Material-, Waren- und Informationsflüssen TU Dresden, Dynamisches Routing in der Logistik Folie 3 von 25
4 1. Begriffe Die 6 R der Logistik Richtige Menge Richtigen Objekte Richtiger Ort Richtiger Zeitpunkt Richtige Qualität Richtige Kosten TU Dresden, Dynamisches Routing in der Logistik Folie 4 von 25
5 1. Begriffe Routing Wegewahl Schwieriger als in Datennetzen Oft statisch Bestrebungen zur Dynamik TU Dresden, Dynamisches Routing in der Logistik Folie 5 von 25
6 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 6 von 25
7 2. Traveling Salesman Problem Problembeschreibung Rundreiseproblem Math.: Hamiltonkreis Kürzeste Strecke Beliebt zum Testen von neuen Algorithmen Anwendungsfelder: Tourenplanung Mikrochipdesign Genom-Sequenzierung TU Dresden, Dynamisches Routing in der Logistik Folie 7 von 25
8 2. Traveling Salesman Problem Darstellung als gewichteter Graph Menge von Knoten C Menge von Kanten L L={l ij i, j C ' C C} Kostenfunktion J J : L N TU Dresden, Dynamisches Routing in der Logistik Folie 8 von 25
9 2. Traveling Salesman Problem Exakte Lösungsverfahren Naiv: n 1! Möglichkeiten 2 Branch-and-Cut: Ganzzahlige lineare Optimierung Langsam Schnelles Finden von unteren Schranken TU Dresden, Dynamisches Routing in der Logistik Folie 9 von 25
10 2. Traveling Salesman Problem Heuristiken Eröffnungsverfahren: Nearest-Neighbor-Heuristik Nearest-Insertion-Heuristik Christofides-Heuristik Verbesserungsverfahren: k-opt-heuristik Lin-Kernighan-Heuristik Metaheuristiken: Kombination lokaler und globaler Suchverfahren Simulated Annealing Evolutionäre Algorithmen Ameisenalgorithmus TU Dresden, Dynamisches Routing in der Logistik Folie 10 von 25
11 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 11 von 25
12 3. Ameisenalgorithmus Ameisenverhalten TU Dresden, Dynamisches Routing in der Logistik Folie 12 von 25
13 3. Ameisenalgorithmus Einer für alle... Gedächtnis M k Ant-Routing-Tabelle A i Lösung j 3 Rückverfolgung des Pfades Anpassen der Pheromonenmenge ij Sterben der Ameise j 2 i j 1 TU Dresden, Dynamisches Routing in der Logistik Folie 13 von 25
14 3. Ameisenalgorithmus und alle für einen m Ameisen in einer Generation Viele Generationen Indirekte Beeinflussung der Nachfolgegenerationen Dazwischen Pheromonenverdunstung TU Dresden, Dynamisches Routing in der Logistik Folie 14 von 25
15 3. Ameisenalgorithmus Berechnungen (1) Ant-Routing-Tabelle A i =[a ij t ] a ij = [ ij t ] [ ij ] j N [ il t ] [ il ] i mit = ij l N i 1 J ij Wahrscheinlichkeitsregel p ij k t = l N i k a ij t a il t TU Dresden, Dynamisches Routing in der Logistik Folie 15 von 25
16 3. Ameisenalgorithmus Berechnungen (2) Pheromonenmenge k t = 1 J k t Parameter α 1 β 5 ρ 0,5 Pheromonenzuweisung ij t ij t k t, l ij k t, k=1,,m Pheromonenverdunstung ij t 1 ij t TU Dresden, Dynamisches Routing in der Logistik Folie 16 von 25
17 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 17 von 25
18 4. Dynamisches TSP Neues Problem Entfernen und Hinzufügen von Städten Nutzen von bisheriger Lösung Aber wie? Lösung: Anpassen der Pheromonenmengen 1 ij 1 i ij i n 1 mit i [0,1] TU Dresden, Dynamisches Routing in der Logistik Folie 18 von 25
19 4. Dynamisches TSP Drei Strategien Restart-Strategie i = R mit R [0,1] τ-strategie d ij =max P ik x, y P ik xy max η-strategie i =min {1, T d ij } mit T 0 d ij =1 avg E ij mit E 0 i =max{0, d ij } TU Dresden, Dynamisches Routing in der Logistik Folie 19 von 25
20 4. Dynamisches TSP Performance TU Dresden, Dynamisches Routing in der Logistik Folie 20 von 25
21 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 21 von 25
22 Zusammenfassung Viele komplexe Probleme in Logistik TSP als Referenzproblem Ameisenalgorithmus Anwendungsbeispiel: Produktionslogistik bei Fujitsu TU Dresden, Dynamisches Routing in der Logistik Folie 22 von 25
23 Quellen abgerufen am abgerufen am Dorigo, M.; Di Caro, G.; "Ant colony optimization: a new metaheuristic" Evolutionary Computation, CEC 99. Proceedings of the 1999 Congress on, vol.2, no., pp.3 vol. (xxxvii+2348), 1999 Guntsch, M.; Middendorf, M.; Schmeck, H.; An Ant Colony Optimization Approach to Dynamic TSP Online-Ressource. [ abgerufen am ] TU Dresden, Dynamisches Routing in der Logistik Folie 23 von 25
24 Quellen Runkler, T.; Grothmann, R.; Bamberger, J.; Optimierung industrieller Logistikprozesse mit Verfahren der Schwarmintelligenz und rekurrenten neuronalen Netzen. Springer-Verlag Online-Ressource. [ abgerufen am ] TU Dresden, Dynamisches Routing in der Logistik Folie 24 von 25
25 TU Dresden, Dynamisches Routing in der Logistik Folie 25 von 25
11. Übung zu Algorithmen I 6. Juli 2016
11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl [email protected] mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus
Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents
Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents Betreut von: ao.univ.-prof. Dr. Günther R. Raidl ao.univ.-prof. Dr. Ulrich Pferschy 25. Jänner 2010
Dynamische Programmierung. Problemlösungsstrategie der Informatik
als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung
Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger
Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger Inhalt Allgemeine Problembeschreibung Historie Mathematische Beschreibung Algorithmische Komplexität Beispiel Symmetrisches
Verbesserungsheuristiken
Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.
Ameisenalgorithmen in der Verkehrssimulation
Ameisenalgorithmen in der Verkehrssimulation Johannes Renfordt johannes.renfordt@[alumni.]uni-ulm.de Institut für Stochastik, Universität Ulm Johannes Renfordt, 26. Juni 2007: Präsentation Diplomarbeit,
Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen
Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren
5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus
5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,
Approximationsalgorithmen. Approximation im Sinne der Analysis:
Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem
Einführung in Heuristische Suche
Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?
Approximation im Sinne der Analysis:
1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische
Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger
Toleranzbasierte Algorithmen für das Travelling Salesman Problem Gerold Jäger (Zusammenarbeit mit Jop Sibeyn, Boris Goldengorin) Institut für Informatik Martin-Luther-Universität Halle-Wittenberg [email protected]
Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP
Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick
Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien
Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009
Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1
Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung
Optimierung und Simulation
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optimierung und Simulation Von Dr. Jörg Biethahn O. Professor für
Genetische Algorithmen von der Evolution lernen
Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998 Ansatz Bisher: Problemlösung
Das Multi Traveling Salesman Problem
Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling
Praktikum Algorithmische Anwendungen WS 2006/2007
Praktikum Algorithmische Anwendungen WS 2006/2007 Traveling Salesman Problem Team A_gelb_Ala0607 Roman Pyro 11042289 [email protected] Markus A. Müller 11043150 [email protected] René Hilger 11043210
Klausur zur Vorlesung Logistik im Sommersemester 2015
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Florian Sahling Sitzplatznr.: Klausur zur Vorlesung Logistik im Sommersemester 2015 Hinweise:
Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen
www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
6. Übung zur Linearen Optimierung SS08
6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl
Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen
Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung
Logistik: Rundreisen und Touren
Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang
Verfahren zur Berechnung von Routen zur Gewährleistung von Ende-zu-Ende QoS
Verfahren zur Berechnung von Routen zur Gewährleistung von Ende-zu-Ende QoS Dezember 007 Dipl.-Ing. Stefan Abu Salah Dipl.-Ing. Achim Marikar QoS (Quality of Service): Sicherstellung der Qualität Zeitkritische
Modellbasiertes Logistikmanagement mit Excel
A 3^6 093 Heinz-Michael Winkels Modellbasiertes Logistikmanagement mit Excel Lösungen von Problemen in der Logistik unter Verwendung der Tabellenkalkulation @ Mit direkt anwendbaren Online-Arbeitshilfen:
Optimierungsprobleme in der Industrie
Dipl.-Inf. 2006-01-20, TU Darmstadt Gliederung Einleitung Anwendungen, Modelle, Verfahren Einführung, Komplexität, Algorithmen Vorstellung Fazit, Literatur Beteiligte Institutionen www.mrupp.info Diplomarbeit
3 Klassifikation wichtiger Optimierungsprobleme
3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i
Sequenzierung mit Ant-Colony-Systemen am Beispiel Querverteil-Wagen
Sequenzierung mit Ant-Colony-Systemen am Beispiel Querverteil-Wagen CLARA MARIA NOVOA, M.E. INDUSTRIAL AND SYSTEMS ENGINEERING DEPARTMENT (ISE), LEHIGH UNIVERSITY DIPL.-ING. HUBERT BÜCHTER FRAUNHOFER INSTITUT
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus
Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess
Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken
3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung
32KAPITEL 3. NP-SCHWIERIGE KOMBINATORISCHE OPTIMIERUNGSPROBLEME n Anzahl der Ungleichungen 3 8 4 20 5 40 6 910 7 87.472 8 >488.602.996 Tabelle 3.1: Anzahl der Ungleichungen des LOP-Polytops für n 8 3.4
Routing Algorithmen. Begriffe, Definitionen
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden
Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden 1. März 2005 Neurosymbolische Integration versucht künstliche neuronale Netze und Logikprogrammierung zu vereinen
Survival of the Fittest Optimierung mittels Genetischer Algorithmen
Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg [email protected]
Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO) Daniel Blum PG Meta-Heuristiken Universität Dortmund 6. Mai 2003 Inhaltsverzeichnis 1 Biologischer Hintergrund 2 2 Von der Natur zum Algorithmus 2 3 Allgemeines Konzept für
2. Optimierungsprobleme 6
6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Produktionsplanung. Wolfgang Domschke Armin Scholl Stefan Voß. Ablauforganisatorische Aspekte. Springer. Zweite, überarbeitete und erweiterte Auflage
Wolfgang Domschke Armin Scholl Stefan Voß Produktionsplanung Ablauforganisatorische Aspekte Zweite, überarbeitete und erweiterte Auflage Mit 134 Abbildungen und 48 Tabellen Springer Inhaltsverzeichnis
Probabilistische Untersuchungen von Schaufeln moderner Hochdruckverdichter auf Grundlage gemessener Produktionsstreuungen
Probabilistische Untersuchungen von Schaufeln moderner Hochdruckverdichter auf Grundlage gemessener Produktionsstreuungen Weimarer Optimierungs- und Stochastiktage 6.0, 15.-16. Oktober 2009 K. Heinze,
Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann
Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch
Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering
Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme
Partikelschwarmoptimierung für diskrete Probleme
Partikelschwarmoptimierung für diskrete Probleme Yushan Liu Fakultät für Mathematik TU München 26. Oktober 2014 Ferienakademie im Sarntal - Kurs 1 Moderne Suchmethoden der Informatik: Trends und Potenzial
Lösung und graphische Darstellung des Traveling Salesman Problems in einer Webapplikation Bachelorarbeit von Sebastian Lotz
Fakultät für Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Lösung und graphische Darstellung des Traveling Salesman Problems in einer Webapplikation Bachelorarbeit von Sebastian
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische
5.4 Das Rucksackproblem
Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen
Vortrag zum Hauptseminar Hardware/Software Co-Design
Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zum Hauptseminar Hardware/Software Co-Design Robert Mißbach Dresden, 02.07.2008
Fortgeschrittene Routenplanung. Transportnetzen. Advanced Route Planning in Transportation Networks
Fortgeschrittene Routenplanung in Transportnetzen Advanced Route Planning in Transportation Networks Dissertationsvortrag von Dipl.-Inform. Robert Geisberger 1 KIT Robert Universität Geisberger: des Landes
Approximations-Algorithmen
Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge
Massive Parallelität : Neuronale Netze
Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen
Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011
Rechnernetze Übung 10 rank Weinhold Professur VSR akultät für Informatik TU hemnitz Juni 2011 Das Weiterleiten (Routing) erfüllt die wichtige ufgabe, einzelne Teilstrecken des Kommunikationsnetzes so zu
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Neuronale Netze. Seminar aus Algorithmik Stefan Craß,
Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze
Exkurs Modelle und Algorithmen
Exkurs Modelle und Algorithmen Ansatz künstlich neuronaler Netze (KNN) Versuch, die Wirkungsweise menschlicher Gehirnzellen nachzubilden dabei wird auf formale mathematische Beschreibungen und Algorithmen
Lokale Suche in variabler Tiefe
Fachbereich Informatik und Mathematik Institut für Informatik Diplomarbeit Lokale Suche in variabler Tiefe Dennis Luxen 19. Juli 2007 eingereicht bei Prof. Dr. Georg Schnitger Professur Theoretische Informatik
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Wdhlg.: Dijkstra-Algorithmus I Bestimmung der
Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation
Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Ist MuPAD die neue Art zu rechnen?
Fakultät Informatik Institut für Angewandte Informatik, Professur Technische Informationssysteme Ist MuPAD die neue Art zu rechnen? Dresden, 13.12.2010 Gliederung I. Was ist MuPAD? a) Überblick b) Was
»La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a
MOTTO GALILEO GALILEI: DIE GOLDWAAGE (IL SAGGIATORE) VON 623»La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli occhi (io dico l universo), ma non si può intendere
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08
Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele
Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
Wissensbasierte Systeme
WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?
12.4 Traveling Salesman Problem
96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten
Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C SS 2010, 07.07.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)
Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling
Schwarmintelligenz am Beispiel der Ameisen Ameisenalgorithmen und Anwendungen
Wolfgang Weller Schwarmintelligenz am Beispiel der Ameisen Ameisenalgorithmen und Anwendungen Motivation In den Fachjournalen und sogar periodischen Medien trifft man seit einiger Zeit auf den Begriff
Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis
Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
Einführung in Approximative Algorithmen und Parametrisierte Komplexität
Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Planung und Optimierung von Auslieferungsstandorten in komplexen Distributionsnetzwerken
Planung und Optimierung von Auslieferungsstandorten in komplexen Distributionsnetzwerken Von der Fakultät für Wirtschaftswissenschaften der Rheinisch-Westfälischen Technisdien Hochschule Aadien zur Erlangung
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst
Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache
Ameisenkolonien und evolutionäre Algorithmen zur Lösung logistischer Probleme
Ameisenkolonien und evolutionäre Algorithmen zur Lösung logistischer Probleme Prof. Dr. Thomas Bousonville Hochschule für Technik und Wirtschaft des Saarlandes - Saarland University of Applied Sciences
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
Probleme aus NP und die polynomielle Reduktion
Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung
Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
Rainer Lasch. Strategisches und operatives Logistikmanagement: Distribution. Springer Gabler
Rainer Lasch Strategisches und operatives Logistikmanagement: Distribution Springer Gabler Vorwort V Abbildungsverzeichnis XIII Tabellenverzeichnis XV Symbolverzeichnis XVII Abkürzungsverzeichnis XXI 1
Optimierungsverfahren in der Transportlogistik
Optimierungsverfahren in der Transportlogistik Jakob Puchinger 1 1 Dynamic Transportation Systems, arsenal research Jakob Puchinger (arsenal research) Optimierungsverfahren in der Transportlogistik 1 /
abgeschlossen unter,,,, R,
Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen
Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung
Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman
Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg
Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
Heuristiken im Kontext von Scheduling
Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35
Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003
Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung
