Dynamisches Routing in der Logistik

Größe: px
Ab Seite anzeigen:

Download "Dynamisches Routing in der Logistik"

Transkript

1 Informatik, Angewandte Informatik, Technische Informationssysteme Dynamisches Routing in der Logistik Tobias Dimmel Dresden,

2 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 2 von 25

3 1. Begriffe Logistik Planung, Organisation, Steuerung, Abwicklung und Kontrolle von Material-, Waren- und Informationsflüssen TU Dresden, Dynamisches Routing in der Logistik Folie 3 von 25

4 1. Begriffe Die 6 R der Logistik Richtige Menge Richtigen Objekte Richtiger Ort Richtiger Zeitpunkt Richtige Qualität Richtige Kosten TU Dresden, Dynamisches Routing in der Logistik Folie 4 von 25

5 1. Begriffe Routing Wegewahl Schwieriger als in Datennetzen Oft statisch Bestrebungen zur Dynamik TU Dresden, Dynamisches Routing in der Logistik Folie 5 von 25

6 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 6 von 25

7 2. Traveling Salesman Problem Problembeschreibung Rundreiseproblem Math.: Hamiltonkreis Kürzeste Strecke Beliebt zum Testen von neuen Algorithmen Anwendungsfelder: Tourenplanung Mikrochipdesign Genom-Sequenzierung TU Dresden, Dynamisches Routing in der Logistik Folie 7 von 25

8 2. Traveling Salesman Problem Darstellung als gewichteter Graph Menge von Knoten C Menge von Kanten L L={l ij i, j C ' C C} Kostenfunktion J J : L N TU Dresden, Dynamisches Routing in der Logistik Folie 8 von 25

9 2. Traveling Salesman Problem Exakte Lösungsverfahren Naiv: n 1! Möglichkeiten 2 Branch-and-Cut: Ganzzahlige lineare Optimierung Langsam Schnelles Finden von unteren Schranken TU Dresden, Dynamisches Routing in der Logistik Folie 9 von 25

10 2. Traveling Salesman Problem Heuristiken Eröffnungsverfahren: Nearest-Neighbor-Heuristik Nearest-Insertion-Heuristik Christofides-Heuristik Verbesserungsverfahren: k-opt-heuristik Lin-Kernighan-Heuristik Metaheuristiken: Kombination lokaler und globaler Suchverfahren Simulated Annealing Evolutionäre Algorithmen Ameisenalgorithmus TU Dresden, Dynamisches Routing in der Logistik Folie 10 von 25

11 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 11 von 25

12 3. Ameisenalgorithmus Ameisenverhalten TU Dresden, Dynamisches Routing in der Logistik Folie 12 von 25

13 3. Ameisenalgorithmus Einer für alle... Gedächtnis M k Ant-Routing-Tabelle A i Lösung j 3 Rückverfolgung des Pfades Anpassen der Pheromonenmenge ij Sterben der Ameise j 2 i j 1 TU Dresden, Dynamisches Routing in der Logistik Folie 13 von 25

14 3. Ameisenalgorithmus und alle für einen m Ameisen in einer Generation Viele Generationen Indirekte Beeinflussung der Nachfolgegenerationen Dazwischen Pheromonenverdunstung TU Dresden, Dynamisches Routing in der Logistik Folie 14 von 25

15 3. Ameisenalgorithmus Berechnungen (1) Ant-Routing-Tabelle A i =[a ij t ] a ij = [ ij t ] [ ij ] j N [ il t ] [ il ] i mit = ij l N i 1 J ij Wahrscheinlichkeitsregel p ij k t = l N i k a ij t a il t TU Dresden, Dynamisches Routing in der Logistik Folie 15 von 25

16 3. Ameisenalgorithmus Berechnungen (2) Pheromonenmenge k t = 1 J k t Parameter α 1 β 5 ρ 0,5 Pheromonenzuweisung ij t ij t k t, l ij k t, k=1,,m Pheromonenverdunstung ij t 1 ij t TU Dresden, Dynamisches Routing in der Logistik Folie 16 von 25

17 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 17 von 25

18 4. Dynamisches TSP Neues Problem Entfernen und Hinzufügen von Städten Nutzen von bisheriger Lösung Aber wie? Lösung: Anpassen der Pheromonenmengen 1 ij 1 i ij i n 1 mit i [0,1] TU Dresden, Dynamisches Routing in der Logistik Folie 18 von 25

19 4. Dynamisches TSP Drei Strategien Restart-Strategie i = R mit R [0,1] τ-strategie d ij =max P ik x, y P ik xy max η-strategie i =min {1, T d ij } mit T 0 d ij =1 avg E ij mit E 0 i =max{0, d ij } TU Dresden, Dynamisches Routing in der Logistik Folie 19 von 25

20 4. Dynamisches TSP Performance TU Dresden, Dynamisches Routing in der Logistik Folie 20 von 25

21 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus 4. Dynamisches TSP 5. Zusammenfassung und Quellen TU Dresden, Dynamisches Routing in der Logistik Folie 21 von 25

22 Zusammenfassung Viele komplexe Probleme in Logistik TSP als Referenzproblem Ameisenalgorithmus Anwendungsbeispiel: Produktionslogistik bei Fujitsu TU Dresden, Dynamisches Routing in der Logistik Folie 22 von 25

23 Quellen abgerufen am abgerufen am Dorigo, M.; Di Caro, G.; "Ant colony optimization: a new metaheuristic" Evolutionary Computation, CEC 99. Proceedings of the 1999 Congress on, vol.2, no., pp.3 vol. (xxxvii+2348), 1999 Guntsch, M.; Middendorf, M.; Schmeck, H.; An Ant Colony Optimization Approach to Dynamic TSP Online-Ressource. [ abgerufen am ] TU Dresden, Dynamisches Routing in der Logistik Folie 23 von 25

24 Quellen Runkler, T.; Grothmann, R.; Bamberger, J.; Optimierung industrieller Logistikprozesse mit Verfahren der Schwarmintelligenz und rekurrenten neuronalen Netzen. Springer-Verlag Online-Ressource. [ abgerufen am ] TU Dresden, Dynamisches Routing in der Logistik Folie 24 von 25

25 TU Dresden, Dynamisches Routing in der Logistik Folie 25 von 25

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl [email protected] mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents

Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents Hybrid Optimization Methods for Warehouse Logistics and the Reconstruction of Destroyed Paper Documents Betreut von: ao.univ.-prof. Dr. Günther R. Raidl ao.univ.-prof. Dr. Ulrich Pferschy 25. Jänner 2010

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger

Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger Inhalt Allgemeine Problembeschreibung Historie Mathematische Beschreibung Algorithmische Komplexität Beispiel Symmetrisches

Mehr

Verbesserungsheuristiken

Verbesserungsheuristiken Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.

Mehr

Ameisenalgorithmen in der Verkehrssimulation

Ameisenalgorithmen in der Verkehrssimulation Ameisenalgorithmen in der Verkehrssimulation Johannes Renfordt johannes.renfordt@[alumni.]uni-ulm.de Institut für Stochastik, Universität Ulm Johannes Renfordt, 26. Juni 2007: Präsentation Diplomarbeit,

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus 5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,

Mehr

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Approximation im Sinne der Analysis:

Approximation im Sinne der Analysis: 1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische

Mehr

Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger

Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger Toleranzbasierte Algorithmen für das Travelling Salesman Problem Gerold Jäger (Zusammenarbeit mit Jop Sibeyn, Boris Goldengorin) Institut für Informatik Martin-Luther-Universität Halle-Wittenberg [email protected]

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1

Aufgabe 1: Berechnen Sie für den in Abbildung 1 gegebenen Graphen den. Abbildung 1: Graph für Flussproblem in Übungsaufgabe 1 Lösungen zu den Übungsaufgaben im Kapitel 4 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe 1: Berechnen Sie für den in Abbildung

Mehr

Optimierung und Simulation

Optimierung und Simulation 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optimierung und Simulation Von Dr. Jörg Biethahn O. Professor für

Mehr

Genetische Algorithmen von der Evolution lernen

Genetische Algorithmen von der Evolution lernen Genetische Algorithmen von der Evolution lernen (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Nils J. Nilsson Artificial Intelligence Morgan Kaufmann, 1998 Ansatz Bisher: Problemlösung

Mehr

Das Multi Traveling Salesman Problem

Das Multi Traveling Salesman Problem Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling

Mehr

Praktikum Algorithmische Anwendungen WS 2006/2007

Praktikum Algorithmische Anwendungen WS 2006/2007 Praktikum Algorithmische Anwendungen WS 2006/2007 Traveling Salesman Problem Team A_gelb_Ala0607 Roman Pyro 11042289 [email protected] Markus A. Müller 11043150 [email protected] René Hilger 11043210

Mehr

Klausur zur Vorlesung Logistik im Sommersemester 2015

Klausur zur Vorlesung Logistik im Sommersemester 2015 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Florian Sahling Sitzplatznr.: Klausur zur Vorlesung Logistik im Sommersemester 2015 Hinweise:

Mehr

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen www.dlr.de Folie 1 > STAB Workshop, 12.11.2013 > Marcel Wallraff, Tobias Leicht 12.11.2013 Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Verfahren zur Berechnung von Routen zur Gewährleistung von Ende-zu-Ende QoS

Verfahren zur Berechnung von Routen zur Gewährleistung von Ende-zu-Ende QoS Verfahren zur Berechnung von Routen zur Gewährleistung von Ende-zu-Ende QoS Dezember 007 Dipl.-Ing. Stefan Abu Salah Dipl.-Ing. Achim Marikar QoS (Quality of Service): Sicherstellung der Qualität Zeitkritische

Mehr

Modellbasiertes Logistikmanagement mit Excel

Modellbasiertes Logistikmanagement mit Excel A 3^6 093 Heinz-Michael Winkels Modellbasiertes Logistikmanagement mit Excel Lösungen von Problemen in der Logistik unter Verwendung der Tabellenkalkulation @ Mit direkt anwendbaren Online-Arbeitshilfen:

Mehr

Optimierungsprobleme in der Industrie

Optimierungsprobleme in der Industrie Dipl.-Inf. 2006-01-20, TU Darmstadt Gliederung Einleitung Anwendungen, Modelle, Verfahren Einführung, Komplexität, Algorithmen Vorstellung Fazit, Literatur Beteiligte Institutionen www.mrupp.info Diplomarbeit

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Sequenzierung mit Ant-Colony-Systemen am Beispiel Querverteil-Wagen

Sequenzierung mit Ant-Colony-Systemen am Beispiel Querverteil-Wagen Sequenzierung mit Ant-Colony-Systemen am Beispiel Querverteil-Wagen CLARA MARIA NOVOA, M.E. INDUSTRIAL AND SYSTEMS ENGINEERING DEPARTMENT (ISE), LEHIGH UNIVERSITY DIPL.-ING. HUBERT BÜCHTER FRAUNHOFER INSTITUT

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung 32KAPITEL 3. NP-SCHWIERIGE KOMBINATORISCHE OPTIMIERUNGSPROBLEME n Anzahl der Ungleichungen 3 8 4 20 5 40 6 910 7 87.472 8 >488.602.996 Tabelle 3.1: Anzahl der Ungleichungen des LOP-Polytops für n 8 3.4

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden 1. März 2005 Neurosymbolische Integration versucht künstliche neuronale Netze und Logikprogrammierung zu vereinen

Mehr

Survival of the Fittest Optimierung mittels Genetischer Algorithmen

Survival of the Fittest Optimierung mittels Genetischer Algorithmen Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg [email protected]

Mehr

Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) Ant Colony Optimization (ACO) Daniel Blum PG Meta-Heuristiken Universität Dortmund 6. Mai 2003 Inhaltsverzeichnis 1 Biologischer Hintergrund 2 2 Von der Natur zum Algorithmus 2 3 Allgemeines Konzept für

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Produktionsplanung. Wolfgang Domschke Armin Scholl Stefan Voß. Ablauforganisatorische Aspekte. Springer. Zweite, überarbeitete und erweiterte Auflage

Produktionsplanung. Wolfgang Domschke Armin Scholl Stefan Voß. Ablauforganisatorische Aspekte. Springer. Zweite, überarbeitete und erweiterte Auflage Wolfgang Domschke Armin Scholl Stefan Voß Produktionsplanung Ablauforganisatorische Aspekte Zweite, überarbeitete und erweiterte Auflage Mit 134 Abbildungen und 48 Tabellen Springer Inhaltsverzeichnis

Mehr

Probabilistische Untersuchungen von Schaufeln moderner Hochdruckverdichter auf Grundlage gemessener Produktionsstreuungen

Probabilistische Untersuchungen von Schaufeln moderner Hochdruckverdichter auf Grundlage gemessener Produktionsstreuungen Probabilistische Untersuchungen von Schaufeln moderner Hochdruckverdichter auf Grundlage gemessener Produktionsstreuungen Weimarer Optimierungs- und Stochastiktage 6.0, 15.-16. Oktober 2009 K. Heinze,

Mehr

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann

Grundlagen der Informatik Kapitel 20. Harald Krottmaier Sven Havemann Grundlagen der Informatik Kapitel 20 Harald Krottmaier Sven Havemann Agenda Klassen von Problemen Einige Probleme... Approximationsalgorithmen WS2007 2 Klassen P NP NP-vollständig WS2007 3 Klasse P praktisch

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Partikelschwarmoptimierung für diskrete Probleme

Partikelschwarmoptimierung für diskrete Probleme Partikelschwarmoptimierung für diskrete Probleme Yushan Liu Fakultät für Mathematik TU München 26. Oktober 2014 Ferienakademie im Sarntal - Kurs 1 Moderne Suchmethoden der Informatik: Trends und Potenzial

Mehr

Lösung und graphische Darstellung des Traveling Salesman Problems in einer Webapplikation Bachelorarbeit von Sebastian Lotz

Lösung und graphische Darstellung des Traveling Salesman Problems in einer Webapplikation Bachelorarbeit von Sebastian Lotz Fakultät für Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Lösung und graphische Darstellung des Traveling Salesman Problems in einer Webapplikation Bachelorarbeit von Sebastian

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung

Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

5.4 Das Rucksackproblem

5.4 Das Rucksackproblem Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen

Mehr

Vortrag zum Hauptseminar Hardware/Software Co-Design

Vortrag zum Hauptseminar Hardware/Software Co-Design Fakultät Informatik Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zum Hauptseminar Hardware/Software Co-Design Robert Mißbach Dresden, 02.07.2008

Mehr

Fortgeschrittene Routenplanung. Transportnetzen. Advanced Route Planning in Transportation Networks

Fortgeschrittene Routenplanung. Transportnetzen. Advanced Route Planning in Transportation Networks Fortgeschrittene Routenplanung in Transportnetzen Advanced Route Planning in Transportation Networks Dissertationsvortrag von Dipl.-Inform. Robert Geisberger 1 KIT Robert Universität Geisberger: des Landes

Mehr

Approximations-Algorithmen

Approximations-Algorithmen Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

Massive Parallelität : Neuronale Netze

Massive Parallelität : Neuronale Netze Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011

Rechnernetze Übung 10. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2011 Rechnernetze Übung 10 rank Weinhold Professur VSR akultät für Informatik TU hemnitz Juni 2011 Das Weiterleiten (Routing) erfüllt die wichtige ufgabe, einzelne Teilstrecken des Kommunikationsnetzes so zu

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Neuronale Netze. Seminar aus Algorithmik Stefan Craß,

Neuronale Netze. Seminar aus Algorithmik Stefan Craß, Neuronale Netze Seminar aus Algorithmik Stefan Craß, 325656 Inhalt Theoretisches Modell Grundlagen Lernansätze Hopfield-Netze Kohonen-Netze Zusammenfassung 2 Inhalt Theoretisches Modell Grundlagen Lernansätze

Mehr

Exkurs Modelle und Algorithmen

Exkurs Modelle und Algorithmen Exkurs Modelle und Algorithmen Ansatz künstlich neuronaler Netze (KNN) Versuch, die Wirkungsweise menschlicher Gehirnzellen nachzubilden dabei wird auf formale mathematische Beschreibungen und Algorithmen

Mehr

Lokale Suche in variabler Tiefe

Lokale Suche in variabler Tiefe Fachbereich Informatik und Mathematik Institut für Informatik Diplomarbeit Lokale Suche in variabler Tiefe Dennis Luxen 19. Juli 2007 eingereicht bei Prof. Dr. Georg Schnitger Professur Theoretische Informatik

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Ist MuPAD die neue Art zu rechnen?

Ist MuPAD die neue Art zu rechnen? Fakultät Informatik Institut für Angewandte Informatik, Professur Technische Informationssysteme Ist MuPAD die neue Art zu rechnen? Dresden, 13.12.2010 Gliederung I. Was ist MuPAD? a) Überblick b) Was

Mehr

»La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a

»La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a MOTTO GALILEO GALILEI: DIE GOLDWAAGE (IL SAGGIATORE) VON 623»La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli occhi (io dico l universo), ma non si può intendere

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?

Mehr

12.4 Traveling Salesman Problem

12.4 Traveling Salesman Problem 96 KOMBINATORISCHE SUCHE.4 Traveling Salesman Problem Definition.3(TSP, Problem des Handlungsreisenden): Wir betrachten einen gerichteten, gewichteten Graphen G = (V,E) mit K : V R. K({u,v}) sind die Kosten

Mehr

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C SS 2010, 07.07.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)

Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling

Mehr

Schwarmintelligenz am Beispiel der Ameisen Ameisenalgorithmen und Anwendungen

Schwarmintelligenz am Beispiel der Ameisen Ameisenalgorithmen und Anwendungen Wolfgang Weller Schwarmintelligenz am Beispiel der Ameisen Ameisenalgorithmen und Anwendungen Motivation In den Fachjournalen und sogar periodischen Medien trifft man seit einiger Zeit auf den Begriff

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Einführung in Approximative Algorithmen und Parametrisierte Komplexität

Einführung in Approximative Algorithmen und Parametrisierte Komplexität Einführung in Approximative Algorithmen und Parametrisierte Komplexität Tobias Lieber 10. Dezember 2010 1 / 16 Grundlegendes Approximationsalgorithmen Parametrisierte Komplexität 2 / 16 Grundlegendes Definition

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Planung und Optimierung von Auslieferungsstandorten in komplexen Distributionsnetzwerken

Planung und Optimierung von Auslieferungsstandorten in komplexen Distributionsnetzwerken Planung und Optimierung von Auslieferungsstandorten in komplexen Distributionsnetzwerken Von der Fakultät für Wirtschaftswissenschaften der Rheinisch-Westfälischen Technisdien Hochschule Aadien zur Erlangung

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Ameisenkolonien und evolutionäre Algorithmen zur Lösung logistischer Probleme

Ameisenkolonien und evolutionäre Algorithmen zur Lösung logistischer Probleme Ameisenkolonien und evolutionäre Algorithmen zur Lösung logistischer Probleme Prof. Dr. Thomas Bousonville Hochschule für Technik und Wirtschaft des Saarlandes - Saarland University of Applied Sciences

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Rainer Lasch. Strategisches und operatives Logistikmanagement: Distribution. Springer Gabler

Rainer Lasch. Strategisches und operatives Logistikmanagement: Distribution. Springer Gabler Rainer Lasch Strategisches und operatives Logistikmanagement: Distribution Springer Gabler Vorwort V Abbildungsverzeichnis XIII Tabellenverzeichnis XV Symbolverzeichnis XVII Abkürzungsverzeichnis XXI 1

Mehr

Optimierungsverfahren in der Transportlogistik

Optimierungsverfahren in der Transportlogistik Optimierungsverfahren in der Transportlogistik Jakob Puchinger 1 1 Dynamic Transportation Systems, arsenal research Jakob Puchinger (arsenal research) Optimierungsverfahren in der Transportlogistik 1 /

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr