Statistisches Testen
|
|
|
- Gerrit Schuster
- vor 8 Jahren
- Abrufe
Transkript
1 Statistisches Testen Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 7. Juni 2007
2 Statistisches Testen Inhaltsverzeichnis Schätzverfahren und Testverfahren sind Anwendungen der Stichprobentheorie. Bei den Testverfahren wird die mit der Stichprobe gewonnene Information dazu verwendet, eine Entscheidung über eine Hypothese zu treffen. Hypothesen sind Annahmen hier über die Verteilung oder einzelne Parameter der Verteilung eines Merkmals in einer Grundgesamtheit.
3 Einstichproben-t-Test (I) t-tests beruhen auf der Annahme, dass die Daten aus der Normalverteilung N(µ, σ 2 ) stammen. Wir wollen die Nullhypothese µ = µ 0 testen. Wir können die Parameter µ, σ und den Standardfehler des Mittelwertes (SEM = σ/ n) durch den empirischen Mittelwert x, die Standardabweichung s und den empirischen SEM = s/ n schätzen. Es wird t = x µ 0 SEM berechnet und überprüft ob dieser t-wert innerhalb eines Annahmebereiches liegt, außerhalb dessen t mit einer Wahrscheinlichkeit fällt, die einem spezifizierten Signifikanzniveau α (z.b. 5%) entspricht.
4 Einstichproben-t-Test (II) Wenn t aus dem Annahmbereich herausfällt, dann wird die Nullhypothese verworfen (auf dem gewählten Signifikanzniveau). Alternativ (und gleichbedeutend damit) kann man den p-wert berechnen, der die Wahrscheinlichkeit beschreibt, mit der ein t-wert erhalten wird, der so groß oder größer wie der beobachtete t-wert ist. Man verwirft die Nullhypothese wenn der p-wert kleiner als das Signifikanzniveau α ist. Der Annahmebereich entspricht einem zweiseitigen (oder einseitigen) Konfidenzintervall um µ 0.
5 Einstichproben-t-Test (III) Tägliche Energieaufnahme in kj von 11 Frauen > daily.intake <- c(5260,5470,5640,6180,6390,6515, ,7515,7515,8230,8770) Untersuchen Sie ob die Energieaufnahme von 11 Frauen von einem empfohlenen Wert von 7725 kj systematisch abweicht! Wenn man davon ausgeht, dass die Daten von einer Normalverteilung stammen, geht es darum zu testen, ob die Verteilung möglicherweise einen Mittelwert von µ = 7725 besitzt.
6 Einstichproben-t-Test (IV) Tägliche Energieaufnahme in kj von 11 Frauen > t.test(daily.intake,mu=7725) One Sample t-test data: daily.intake t = , df = 10, p-value = alternative hypothesis: true mean is not equal to percent confidence interval: sample estimates: mean of x
7 f Einstichproben-t-Test (V) Tägliche Energieaufnahme in kj von 11 Frauen Vertrauensbereich und Irrtumswahrscheinlichkeit α x µ 0 α 2 α x
8 f Einstichproben-t-Test (VI) Tägliche Energieaufnahme in kj von 11 Frauen Annahmebereich und Signifikanzniveau α, Fehler 1. Art x µ 0 α 2 α x
9 f Einstichproben-t-Test (VII) Tägliche Energieaufnahme in kj von 11 Frauen p-wert x µ 0 p 2 p x
10 f Einstichproben-t-Test (VIII) Tägliche Energieaufnahme in kj von 11 Frauen Fehler 2. Art β, Macht=1-β β Die Wahrscheinlichkeit, dass man eine falsche Nullhypothese ablehnt, nennt man die Macht (power) des Tests. µ β µ 0 α 2 α x
11 f Einstichproben-t-Test (IX) Tägliche Energieaufnahme in kj von 11 Frauen Fehler 2. Art β, Macht=1-β β µ β µ 0 α 2 α x >power.t.test(delta=mean1-mean, sd=sd(daily.intake), type="one.sample",n=n) One-sample t test power calc. n = 11 delta = sd = sig.level = 0.05 power = alternative = two.sided
12 Zweistichproben-t-Test (I) Die Daten stammen aus zwei Gruppen x 11,..., x 1n1 und x 21,..., x 2n2, bei denen wir davon ausgehen, dass sie aus den Normalverteilungen N(µ 1, σ 2 ) und N(µ 2, σ 2 ) gezogen wurden und man möchte die Nullhypothese µ 1 = µ 2 testen. Man kann dann t = x 2 x 1 berechnen, wobei der Standardfehler der SEDM Differenz der Mittelwerte SEDM = SEM1 2 + SEM 2 2 ist.
13 Zweistichproben-t-Test (II) Vergleich des Energieverbrauchs zwischen schlanken und adipösen Frauen > data(energy) > attach(energy) > energy expend stature obese lean lean lean lean
14 Zweistichproben-t-Test (III) Vergleich des Energieverbrauchs zwischen schlanken und adipösen Frauen > t.test(expend~stature,var.equal=t) Two Sample t-test data: expend explained by stature t = , df = 20, p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean in group lean mean in group obese
15 Zweistichproben-t-Test (IV) Vergleich des Energieverbrauchs zwischen schlanken und adipösen Frauen Das Konfidenzintervall [ ] bezieht sich auf die Differenz der Mittelwerte und enthält nicht 0, was in Übereinstimmung mit dem p-wert= ist und einen signifikanten Unterschied auf dem 5% Signifikanzniveau anzeigt.
16 Der gepaarte t-test (I) Gepaarte t-tests werden durchgeführt, wenn man zwei Messreihen mit der gleichen experimentellen Einheit durchführt. Die Theorie beruht im Wesentlichen auf der Bildung von Differenzen, wodurch man das Problem auf einen Einstichproben-t-Test reduziert. Beachten Sie jedoch, dass implizit davon ausgegangen wird, dass solche Differenzen eine Verteilung haben, die unabhängig vom Ausprägungsgrad der untersuchten Eigenschaft ist.
17 Der gepaarte t-test (II) Vergleich der prä- and postmenstruellen Energieaufnahme einer Gruppe von Frauen > data(intake);attach(intake) > intake pre post > post-pre [1]
18 Der gepaarte t-test (III) Vergleich der prä- and postmenstruellen Energieaufnahme einer Gruppe von Frauen: Bland-Altmann Plot difference Bland Altmann Plot > average <- (pre + post)/2 > difference <- post-pre > plot(average,difference, ylim=c(-3000,3000),col=2, cex=2,lwd=2) > text(6000,2000, labels="bland-altmann Plot",cex=2) average
19 Der gepaarte t-test (IV) Vergleich der prä- and postmenstruellen Energieaufnahme einer Gruppe von Frauen > t.test(pre, post, paired=true) Paired t-test data: pre and post t = , df = 10, p-value = 3.059e-07 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of the differences
Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung
Beurteilung von Analysenwerten im Hinblick auf eine Grenzwertüberschreitung K. Molt Universität Duisburg-Essen, Fak. 4, FG Instrumentelle Analytik 3. Juni 2007 K. Molt (Fachgeb. IAC) 3. Juni 2007 1 / 41
Vergleich zweier Stichproben
zurück zum Inhaltsverzeichnis Die Werte sind verbunden, abhängig oder korreliert. Beispiel: Eine Probe wird mit zwei Messgeräten bestimmt. Es gibt eine paarweise Zuordnung. Die Werte sind unabhängig also
Güteanalyse. Nochmal zur Erinnerung: Hypothesentest. Binominalverteilung für n=20 und p=0,5. Münzwurf-Beispiel genauer
Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Güteanalyse Prof. Walter F. Tichy Fakultät für Informatik 1 Fakultät für Informatik 2 Nochmal zur Erinnerung: Hypothesentest Am Beispiel
Teil VIII Hypothesentests für zwei Stichproben
Woche 9: Hypothesentests für zwei Stichproben Teil VIII Hypothesentests für zwei Stichproben WBL 15/17, 22.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner
Übung zur Vorlesung Statistik I WS Übungsblatt 9
Übung zur Vorlesung Statistik I WS 2012-2013 Übungsblatt 9 17. Dezember 2012 Aufgabe 26 (4 Punkte): In einer Studie mit n = 10 Patienten soll die Wirksamkeit eines Medikaments gegen Bluthochdruck geprüft
3. Das Prüfen von Hypothesen. Hypothese?! Stichprobe Signifikanztests in der Wirtschaft
3. Das Prüfen von Hypothesen Hypothese?! Stichprobe 3.1. Signifikanztests in der Wirtschaft Prüfung, ob eine (theoretische) Hypothese über die Verteilung eines Merkmals X und ihre Parameter mit einer (empirischen)
Teil X. Hypothesentests für eine Stichprobe. Woche 8: Hypothesentests für eine Stichprobe. Lernziele. Statistische Hypothesentests
Woche 8: Hypothesentests für eine Stichprobe Teil X Patric Müller Hypothesentests für eine Stichprobe ETHZ WBL 17/19, 19.06.2017 Wahrscheinlichkeit und Statistik Patric
das Kleingedruckte...
Gepaarte t-tests das Kleingedruckte... Datenverteilung ~ Normalverteilung QQ-plot statistischer Test (Shapiro-Wilk, Kolmogorov-Smirnov) wenn nicht : nicht-parametrische Tests gleiche Varianz (2-Proben
t-tests Lösung: b) und c)
t-tests 2015 Assessmentmodul 1 - Frage B10: Ein Team von Gesundheitspsychologinnen hat ein Programm entwickelt, das die Studierenden der Universität Zürich dazu anregen soll, mehr Sport zu treiben. In
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Biostatistik. Lösung
Prof. Dr. Achim Klenke Fridolin Kielisch 13. Übung zur Vorlesung Biostatistik im Sommersemester 2015 Lösung Aufgabe 1: a) Ich führe einen zweiseitigen Welch-Test durch, weil ich annehme, dass die Daten
Teil VII Hypothesentests für eine Stichprobe
Woche 7: Hypothesentests für eine Stichprobe Teil VII Hypothesentests für eine Stichprobe WBL 15/17, 15.06.2015 Alain Hauser Berner Fachhochschule, Technik und Informatik Berner Fachhochschule
Vergleich von Gruppen I
Vergleich von Gruppen I t-test und einfache Varianzanalyse (One Way ANOVA) Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Der unverbundene t-test mit homogener Varianz Beispiel Modell Teststatistik
Dipl.-Volksw. Markus Pullen Wintersemester 2012/13
Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel
Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test
1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
4.1. Nullhypothese, Gegenhypothese und Entscheidung
rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals
Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test
Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung bei Trauerschnäppern..........................
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/
Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1
Hypothesentests mit R Ashkan Taassob Andreas Reisch 21.04.09 1 Inhalt Programmiersprache R Syntax Umgang mit Dateien Tests t Test F Test Wilcoxon Test 2 Test Zusammenfassung 2 Programmiersprache R Programmiersprache
5. Seminar Statistik
Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation
Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test
Wahrscheinlichkeitsrechnung und Statistik für Biologen 4. Der t-test Martin Hutzenthaler & Dirk Metzler 6./18. Mai 2010 Inhaltsverzeichnis 1 t-test für gepaarte Stichproben 1 1.1 Beispiel: Orientierung
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen
Anhang: Statistische Tafeln und Funktionen
A1 Anhang: Statistische Tafeln und Funktionen Verteilungsfunktion Φ(z) der Standardnormalverteilung Die Tabelle gibt die Werte Φ(z) der Verteilungsfunktion zu vorgegebenem Wert z 0 an; ferner gilt Φ( z)
e) Beim klassischen Signifikanztest muß die Verteilung der Prüfgröße unter der Nullhypothese
9 Hypothesentests 1 Kapitel 9: Hypothesentests A: Übungsaufgaben: [ 1 ] Bei Entscheidungen über das Ablehnen oder Nichtablehnen von Hypothesen kann es zu Irrtümern kommen. Mit α bezeichnet man dabei die
Methodenlehre II, SoSe 2015
Ruhr-Universität Bochum 4. Juni 2015 1 / 282 Methodenlehre II Prof. Dr. NA 3/73 Telefon: 0234 322 8284 Email: [email protected] Internet: http://www.ruhr-uni-bochum.de/mathematik3/ http://www.ruhr-uni-bochum.de/mathematik3/dette.html
# Befehl für den Lilliefors-Test
1/5 Matthias Rudolf & Diana Vogel R-Kurs Graduiertenakademie September 2017 Loesungsskript: Tests 1a library(nortest) 1b lillie.test Befehl für den Lilliefors-Test 2a, Datensatz "Schachbeispiel einlesen"
Jost Reinecke. 7. Juni 2005
Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung
Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09
Analytische Statistik: Varianzanpassungstest, Varianzhomogenitätstest Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Varianzanpassungstest Untersuchung der Streuung einer bzw.
Statistische Tests (Signifikanztests)
Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)
3 Grundlagen statistischer Tests (Kap. 8 IS)
3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung
Statistik II. IV. Hypothesentests. Martin Huber
Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 007/008 Aufgabe 1 (I) Herr
Metrische und kategoriale Merkmale
Kapitel 6 Metrische und kategoriale Merkmale 6.1 Wie kann man metrische und kategoriale Merkmale numerisch beschreiben? Typischerweise will man geeignete Maßzahlen (beispielsweise Lage- oder Streuungsmaße)
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
I N F E R E N Z S T A T I S T I K Terminologie
Seite 1 von 70 I N F E R E N Z S T A T I S T I K Terminologie i.i.d. independent and identically distributed bedeutet, unabhängig und in gleicher Weise verteilt, d.h., der gleichen Verteilung unterworfen.
Prüfgröße: Ist die durch eine Schätzfunktion zugeordnete reelle Zahl (etwa Mittelwert 7 C).
Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Aus praktischen Gründen
Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests
Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung
Wiederholungsklausur Wirtschaftsmathematik Lösungshinweise
Wiederholungsklausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 9. September 205 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 5 Punkte Karl möchte heute, am..205, ein Auto
Statistiktutorium (Kurs Frau Jacobsen)
Statistiktutorium (Kurs Frau Jacobsen) von Timo Beddig 1 Grundbegriffe p = Punktschätzer, d.h. der Mittelwert aus der Stichprobe, auf Basis dessen ein angenäherter Wert für den unbekannten Parameter der
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests
Statistik II. Weitere Statistische Tests. Statistik II
Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei
Statistik im Labor. BFB-tech Workshop Eugen Lounkine
Statistik im Labor BFB-tech Workshop 9.11.07 Eugen Lounkine Übersicht Darstellung und Charakterisierung von Daten Datentransformationen Lineare Korrelation Wahrscheinlichkeitsverteilung(en) Schätzer Konfidenzintervalle
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Statistik II für Betriebswirte Vorlesung 1
Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:
Statistische Auswertung der Daten von Blatt 13
Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Tests für Erwartungswert & Median
Mathematik II für Biologen 26. Juni 2015 Prolog Varianz des Mittelwerts Beispiel: Waage z-test t-test Vorzeichentest Wilcoxon-Rangsummentest Varianz des Mittelwerts Beispiel: Waage Zufallsvariable X 1,...,X
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Grundlagen der Statistik
Grundlagen der Statistik Übung 15 009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2009/2010 Aufgabe 1 Die Porzellanmanufaktur
30. März Ruhr-Universität Bochum. Methodenlehre II, SS Prof. Dr. Holger Dette
Ruhr-Universität Bochum 30. März 2011 1 / 46 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: [email protected] Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30 10.00
Hypothesentests für Erwartungswert und Median. Statistik (Biol./Pharm./HST) FS 2015
Hypothesentests für Erwartungswert und Median Statistik (Biol./Pharm./HST) FS 2015 Normalverteilung X N μ, σ 2 X ist normalverteilt mit Erwartungswert μ und Varianz σ 2 pdf: pdf cdf:??? cdf 1 Zentraler
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
Lösungen zu den Übungsaufgaben in Kapitel 10
Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Hypothesen über die Grundgesamtheit. Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder
Hypothesen über die Grundgesamtheit Aufgabenstellung der Testtheorie Hypothesen (Annahmen, Vermutungen oder Behauptungen) über die unbekannte Grundgesamtheit anhand einer Stichprobe als richtig oder falsch
Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren
Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei
6. Übung (Hypothesenprüfung und einfache Tests)
6. Übung (Hypothesenprüfung und einfache Tests) Es wird eine H0 Hypothese und eine Gegen- oder Arbeitshypothese aufgestellt. Sie schließen sich aus. Es wird von den betreffenden Populationen eine repräsentative
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik
Kapitel 15 Statistische Testverfahren 15.1. Arten statistischer Test Klassifikation von Stichproben-Tests Einstichproben-Test Zweistichproben-Test - nach der Anzahl der Stichproben - in Abhängigkeit von
Konkretes Durchführen einer Inferenzstatistik
Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf
Pflichtlektüre: Kapitel 12 - Signifikanztest Wie funktioniert ein Signifikanztest? Vorgehensweise nach R. A. Fisher.
Pflichtlektüre: Kapitel 12 - Signifikanztest Überblick Signifikanztest Populationsparameter Ein Verfahren zur Überprüfung von Hypothesen, Grundlage bilden auch hier Stichprobenverteilungen, das Ergebnis
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2009 Aufgabe 1 Nach dem von
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments
73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind
Bereiche der Statistik
Bereiche der Statistik Deskriptive / Exploratorische Statistik Schließende Statistik Schließende Statistik Inferenz-Statistik (analytische, schließende oder konfirmatorische Statistik) baut auf der beschreibenden
Allgemeines zu Tests. Statistische Hypothesentests
Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen
Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung
Lösungen zum Aufgabenblatt 14
Lösungen zum Aufgabenblatt 14 61. Das Gewicht von Brötchen (gemessen in g) sei zufallsabhängig und werde durch eine normalverteilte Zufallsgröße X N(µ, 2 ) beschrieben, deren Varianz 2 = 49 g 2 bekannt
Unterschiedshypothesen Vergleiche von Häufigkeiten bzw. Mittelwerten zwischen (mindestens) zwei Gruppen Zusammenhangshypothesen Korrelationsanalysen
Statistische Überprüfung von Hypothesen Hypothesen sind allgemeine Aussagen über Zusammenhänge zwischen empirischen und logischen Sachverhalten.Allgemein bezeichnet man diejenigen Aussagen als Hypothesen,
Statistische Tests Übersicht
Statistische Tests Übersicht Diskrete Stetige 1. Einführung und Übersicht 2. Das Einstichprobenproblem 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben) 4. Vergleich zweier abhängiger
GRUNDPRINZIPIEN statistischen Testens
Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?
Kapitel 5: Einfaktorielle Varianzanalyse
Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung
1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.
Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden
Auswertung und Lösung
Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden
Testen von Hypothesen:
Testen von Hypothesen: Ein Beispiel: Eine Firma produziert Reifen. In der Entwicklungsabteilung wurde ein neues Modell entwickelt, das wesentlich ruhiger läuft. Vor der Markteinführung muss aber auch noch
Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test
Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =
Kapitel III: Einführung in die schließende Statistik
Kapitel III: Einführung in die schließende Statistik Das zweite Kapitel beschäftigte sich mit den Methoden der beschreibenden Statistik. Im Mittelpunkt der kommenden Kapitel stehen Verfahren der schließenden
9 Prinzipien der statistischen Hypothesenprüfung
9 Prinzipien der statistischen Hypothesenprüfung Prinzipien der statistischen Hypothesenprüfung Bei der Schätzung eines Populationsparamters soll dessen Wert aus Stichprobendaten erschlossen werden. Wenn
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-06) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Kapitel 5: Einfaktorielle Varianzanalyse
Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung
Schriftliche Prüfung (90 Minuten)
Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!
