Die Lemniskate als Beziehungsbahn

Größe: px
Ab Seite anzeigen:

Download "Die Lemniskate als Beziehungsbahn"

Transkript

1 Die Lemniskate als Beziehungsbahn Hermann Bauer Eine Astronomie, die das Wesenhafte der Sterne ernst nimmt, wird von den Beziehungen der Gestirne zueinander ausgehen, und sie wird nicht nur phsische, sondern auch seelisch-geistige Wirkungen zwischen ihnen anerkennen. Äußerlich finden diese Beziehungen in den erscheinenden Bahnen und Stellungen ihren Ausdruck. So drückt sich das, was die Planeten für die Erde bedeuten, wesentlich in ihren Erscheinungen am Sternhimmel aus. Im Schauspiel auf dem Theater kann man ein Bild dafür sehen. Beim griechischen Schauspiel war die reinigende Wirkung auf die Zuschauerseelen noch voll im Bewusstsein. Aber auch heute dient alles, was auf der Bühne und was hinter den Kulissen spielt, der Wirkung auf den Zuschauer. Die moderne Astronomie erforscht nur das, was sich an Kräftewirkungen gleichsam hinter den Kulissen des großen Himmelsschauspiels vollzieht. Das ist sicher wichtig und kann auch in die folgenden Betrachtungen wieder einbezogen werden (s.u.), erfasst aber nicht die wesenhafte Bedeutung des Ganzen. Ein besonderer Fall von Bewegungsbeziehung ergibt sich, wenn man eine Bewegung mit einer anderen vergleicht, die gar nicht real stattfindet, die aber für die wirkliche Bewegung Bedeutung hat. Wenn sich ein Wanderer verirrt, also vom rechten Weg abkommt, so hat der richtige Weg ständig Bedeutung für ihn, und es ist ihm wichtig, in welcher Weise er von ihm abweicht. Ein astronomisches Beispiel ist die Störungsrechnung, wo man z.b. eine Planetoidenbahn zunächst ohne die Einwirkung eines großen Planeten berechnet und dann die von diesem bewirkte Abweichung als Störung dazurechnet. Ganz allgemein kann man so die Beziehung einer realen Bewegung zu einer Bewegung ermitteln, die nur gedacht oder auch von etwas anderem durchlaufen wird. Man hat dann einerseits die Bewegung auf der realen Bahn, zum anderen die gedachte Bewegung auf der Grundbahn und dazu eine Beziehungsbahn, welche ständig von der gedachten zu der realen Bahn führt. Man kann dann die reale Bahn als ein gleichzeitiges Durchlaufen der Grundbahn und der Beziehungsbahn auffassen. Beispiele dafür sind sphärische Bewegungen. Man kann eine Bewegung auf einem Großkreis der Himmelssphäre auf eine gleichartige Bewegung auf einem anderem Großkreis beziehen und die Abweichung als Beziehungsbahn ermitteln. Sie ist eine Lemniskate. Das soll hier untersucht werden, wobei durch die Figur im Zentrum der Bilder angedeutet wird, dass die Bahnen von innen beobachtet werden. In Bild 1a (bzw. 1c) soll sich ein Punkt vom O (hinten auf der Kugel) beginnend in Pfeilrichtung nach links oben auf der realen Kreisbahn K herumbewegen. Gleichzeitig startet ein gedachter Punkt ebenfalls bei O in Pfeilrichtung nach links und läuft stets mit der gleichen Geschwindigkeit wie der erste auf dem waagrechten Grundkreis G, so dass beide nach einer Runde wieder gleichzeitig in O ankommen. Wenn der erste Punkt bis E gelaufen ist, erreicht der zweite A. Beide Punkte haben dann einen Bogen der Länge w durchmessen, der zugleich den Winkel (im Bogenmaß) vom Kugelmittelpunkt zu den Bogenenden angibt, wenn wir mit der Einheitskugel rechnen. Die Beziehungsbahn ist eine Lemniskate. Wir erhalten ihren Punkt L, wenn wir die Kugel um den senkrechten Durchmesser so drehen, dass A wieder nach dem (nicht mitgedrehten) O kommt. Dann kommt E nach L. Der geometrische Beweis von Locher-Ernst ist sehr schön (s. [], S ), aber etwas mühsam zu verfolgen. Ich skizziere einen trigonometrischen Beweis 1 : Um O ist ein räumliches kartesisches Koordinatensstem angedeutet, dessen z Achse (unsichtbar) nach vorne, dessen x-achse nach rechts und dessen -Achse nach oben geht. Für den -Wert von L erhält man sofort (siehe Bild 1b) mit Hilfe des sphärischen Dreiecks OET: (1) = sin h = sin sin w. 1 Die Betrachtung der Phänomene ohne Mathematik geht nach den Formeln (4) weiter. 1

2 Für die Strecke OT = u ergibt sich aus demselben Dreieck () tan u = cos tan w, also u = atan (cos tan w) B K A E T u w O L B G E h 1 T M Bild 1b. Zur Beziehung von und h G K Bild 1a. Reale Kreisbahn und Grundkreis K A E h T 90 w u L O O x B x z L L O M Bild 1d. Übergang zu Cassinischen Lemniskaten Bild 1c. Ausschnitt von Bild 1a

3 Um den Winkel u ist auch E auf seinem Breitenkreis B gegenüber O nach links gedreht. Es muss nun um den Winkel w nach L zurückgedreht werden, wodurch für L eine Winkeldrehung der Größe w u (von = 0 aus gerechnet) positiv nach rechts resultiert. Der x- Wert von L ist dann entsprechend: x = sin (w u ) cos h, weil die Breitenkreise entsprechend verkürzt sind. So erhält man insgesamt für x (mit cos²h = 1 sin²h, sin h aus (1) und u aus ()): w a tan(cos tan w) 1 (sin sin w) x sin, was nach einigen Umformungen mit Hilfe trigonometrischer Identitäten zum Resultat führt (dem ich die -Gleichung (1) nochmals und die Gleichung für z ohne Beweis anfüge): (3) sin x sin(w) ; sin sin w ; sin z 1 cos(w). Die entstehende sphärische Lemniskate hat z.b. Locher-Ernst ([], S. 86f) beschrieben. Jede Lemniskatenschleife hat im Bogenmaß auf der Einheitskugel die Länge. Die Lemniskate erscheint von vorne, also in die x--ebenen projiziert, als Lissajousche Schwinglemniskate mit dem Kreuzungswinkel, von oben (x-z-ebene) ist sie ein doppelt durchlaufener Kreis mit dem Radius sin, von der Seite (-z-ebene) ein Parabelbogen. Sie vereinigt also drei grundlegende Kurvenformen. Wenn man jeden Punkt der sphärischen Lemniskate durch einen Kreisbogen parallel zur -z-ebenen mit Mittelpunkt auf der x-achse in die x--ebene dreht (s. Weg von L Zu L in Bild 1d, der parallel zur Zeichenebene hinter bzw. vor ihr liegt), so erhält man Cassinische Lemniskaten (für = 90 die mit rechwinkliger Kreuzung, s. [1], S.41f und S.13). Ihre Gleichungen sind: (4) sin x sin(w) ; cos sin w sin cos sin w ; z = 0. Bild gibt einen Überblick über die entstehenden schönen Schwingformen. Die Kreuzungen liegen wieder hinten auf der Kugel. Wenn eine Lemniskate in der Zeichnung den Kreis berührt hat, geht sie auf deren Vorderseite über. Die Extremformen sind ein Punkt ( = 0 ) und der doppelt durchlaufene Grundkreis G ( = 180 ). Bild. Sphärischen Lemniskaten 3

4 Solche Bahnen kann ein künstlicher Satellit zeigen, der die Erde in einem Sterntag umkreist, wenn man ihn von der Erde aus verfolgt. Wenn der Satellit um 1 Uhr wahrer Ortszeit den Himmelsäquator quert, so verwandelt sich seine Bahn durch die tägliche Drehung des Himmelsgewölbes zu einer der gezeichneten Lemniskaten. Wenn er sich auf dem Himmelsäquator nach Osten bewegt ( = 0 ), so erscheint er stationär als Punkt, wenn er sich entsprechend nach Westen bewegt ( = 180 ), so durchläuft er (immer für den ruhenden Beobachter auf der Erde) den Äquator in einem Sterntag zweimal. Am besten einsehbar ist das bei Beobachtung vom Nordpol aus (wo allerdings die untere Hälfte der Lemniskaten unter dem Horizont liegt). Bild 3 zeigt nun, wie sich aus Grundkreisbewegung und Lemniskatenbahn die reale Bahn wieder zusammensetzt: Die Lemniskatenkreuzung durchläuft den waagrechten Kreis von hintersten Punkt der Kugel ausgehend nach links beginnend entsprechend dem Sonnenlauf.. Gleichzeitig durchwandert der Himmelskörper die Lemniskate (wobei das w aus den Gleichungen (3) der jeweils zurückgelegte Weg der Kreuzung ist ). Als Resultierende dieses lebendigen Schwingens und Kreisens, das auch als Eurthmiebewegung vorkommen könnte, ergibt sich der schräg liegende Kreis, den man insofern als Rotationslemniskate bezeichnen kann. Diesen Ausdruck verwendet Rudolf Steiner ja auch für die Planetenbahnen. (S. [3], Kap.15 bis 17.) Bild 3. Die reale Kreisbahn entsteht durch Rotation der Lemniskate Als reale Kreise kommen alle Planetenbahnen in Frage. Als Grundkreise die Bahn jeweils eines anderen Planeten oder der Himmelsäquator der Erde oder auch eines anderen Planeten, wenn man von ihm aus beobachtet. Das wichtigste Beispiel für die zweite Art ist die uns erscheinende jährliche Sonnenbewegung durch den Tierkreis bezogen auf den Himmelsäquator. Bild 3 ist dafür maßstäblich nicht richtig (der Kreuzungswinkel müsste etwa 3,5 sein), zeigt aber das Prinzip. Der schräge Kreis entspricht der Ekliptik (Tierkreis), der waagrechte dem Himmelsäquator. Die Lemniskatenkreuzung läuft genau in der Art, wie die Sonne durch den Tierkreis zieht, auf dem Himmelsäquator, und gleichzeitig wandert die Sonne in der angegebenen Weise durch die Die Umlaufszeit ist also. 4

5 Lemniskate. Als Resultierende ersteht die Ekliptik. Die Lemniskate ist ein Bild für den Jahreslauf, der ja auch durch die Abweichung der Ekliptik vom Äquator zu verstehen ist. 3 Ganz entsprechend kann man (als Beispiel für die erste Art) die Bahn eines Planeten, zum Beispiel Saturns auf die Ekliptik beziehen. Hier ist die Ekliptik der Grundkreis, die Lemniskate hat nur einen Öffnungswinkel von,5, und die Saturnbahn weicht auch maximal nur um diesen Winkel von der Ekliptik ab. Genau auf diese Weise hat Eudoxos von Knidos die Abweichungen der Planetenbahnen erklärt. So schreibt Locher-Ernst über dessen Sstem, bei dem sich die Planeten gleichzeitig auf vier Sphären bewegen ([], S. 87): Durch die Bewegung der zwei innersten Sphären eines Planeten wurde eine Achterschleife erzeugt. Die zweitäußerste Bewegung zieht die Bewegung in dieser Schleife auf den Tierkreisgürtel auseinander. Die äußerste Sphäre gibt noch die tägliche Bewegung 4 Ich möchte hier genauer auf die Mondbewegung eingehen, wodurch alles bisherige verdeutlichen werden kann. Für die Mondbewegung ist ihre Abweichung von der Ekliptik charakteristisch. Es ist also sinnvoll, sie entsprechend aufzufassen, wie es bei der Saturnbahn geschildert wurde. Ihre Bahn ist also eine Lemniskate mit einem Kreuzungswinkel von etwa 5 und der sphärischen Gesamtlänge von 10, wobei die Kreuzung dieser Lemniskate in einem siderischen Monat die Ekliptik durchläuft. aufsteigender Mondknoten Ekliptik absteigender Mondknoten Bild 4. Mondbahn In Bild 4 stellt die große durchgezogene Ellipse die Mondbahn, wie sie gewöhnlich aufgefasst wird, dar, die Ekliptik ist punktiert eingezeichnet. Die Lemniskate ist so schmal, dass sie im Bild nur als Strecke erscheint. Rudolf Steiner führt über die Bahnen von Sonne und Mond folgendes aus ([3], S, 5): Es hilft uns nichts, eine bloß komparative Morphologie zu treiben, sondern wird müssen dasjenige, was wir in der Morphologie finden, dem ganzen Weltenall zuteilen, so daß wir also durchaus auch eine Andeutung bekommen werden darüber, wie Sonnenbahn und Mondbahn zueinander gelegen sein müssen, wenigstens zunächst perspektivisch gelegen sein müssen.... Sie müssen so gelegen sein, daß approximativ die eine Bahn auf der anderen senkrecht steht. 3 Einzelheiten und den Zusammenhang mit der Zeitgleichungslemniskate (Analemma) siehe [1], Kap. 3 und 5. 4 Merkwürdigerweise hat Locher -Ernst darin nicht den Schlüssel zum lemniskatischen Weltsstem Rudolf Steiners gesehen, sondern ein anderes Modell entwickelt (s. [4] S. 3). Der Grund dafür ist wohl, dass die Achsen der Drehbewegungen nicht überliefert sind, und wohl meist angenommen wurde, dass die Hauptachse der Lemniskate (Hippopede) in der Ekliptik liegt und nicht, wie ich hier dargestellt habe, rechtwinklig zu ihr. (s. z.b. Klaus Mainzer, Smmetrien der Natur, S. 55 bis 57) 5

6 Dies kann sich nicht auf die gewöhnliche Mondbahn beziehen, sondern nur auf die schmale Lemniskate, die Steiner offenbar als die individuelle Mondbahn betrachtet, und es wird perspektivisch, also von der Erde aus, beobachtet. Wenn der Mond die Ekliptik kreuzt, also einen seiner beiden Knoten durchläuft, so zieht er zugleich durch die Kreuzung der Lemniskate, was dem Wesen eines Knotens entspricht. Dann können auch Finsternisse stattfinden, die eine besondere Auseinandersetzung des Mondes mit der Sonne in bezug auf die Erde bedeuteten. Wenn sich der Mond in der oberen Lemniskatenschleife bewegt, so ist er z.b. bei Vollmond länger über dem Horizont, als wenn er die untere durchläuft. Man kann das so deuten, dass uns der erscheinende Mond im Verhältnis zur Sonne stärker oder schwächer ins Bewusstsein tritt. 5 Es ist unbefriedigend, dass Rotationszeit und Lemniskatendurchlaufung exakt gleichlang dauern. Man muss das man aber auch gar nicht annehmen. Die Mondknoten laufen ja in der Zeit von 18,6 Jahren rückläufig durch den Tierkreis. Man kann dies so deuten, dass die Lemniskatendurchlaufung (drakonitischer Monat) etwa ½ Stunden früher fertig ist als die Rotationszeit (siderischer Monat), wodurch die Kreuzung allmählich zurückläuft. Man erkennt daraus, dass man auch eine selbständige Bedeutung für die Lemniskatenschwingung finden kann. Die heutige Astronomie erklärt den Knotenumlauf durch eine zusätzliche Präzessionsbewegung der Mondbahn gegenüber der Ekliptik, die 18,6 Jahre dauert. Würde sie nur 5 Tage dauern, so würde uns eine fortlaufend Acht mit auseinandergezogenen Schleifen am Himmel erscheinen. Die räumlichen Entfernungen wurden bisher nicht berücksichtigt. Man kann sie wieder einführen. Sie zeigen in der Größe und den Phasen des Mondes Die elliptischen Bahn kann man als ein Atmen der Mondsphäre deuten. 6 Literatur [1] Bauer, Hermann Über die lemniskatischen Planetenbewegungen, Elemente einer Himmelsorganik, Stuttgart [] Locher-Ernst, Louis Mathematik als Vorschule zur Geisterkenntnis, Dornach 1973 [3] Steiner, Rudolf Das Verhältnis der verschiedenen naturwissenschaftlichen Gebiete zur Astronomie, Dornach 1983 [4] Mathematisch-Phsikalische Korrespondenz Nr. 11, Dornach Das gilt auch für die Südhalbkugel, allerdings nicht zur gleichen Zeit. Der Ort des Beobachters ist in diesem Weltbild eben ganz wesentlich. 6 Für die entsprechende Betrachtung der Planeten und die Auffassung der Planetenschleifen als metamorphosierte Lemniskaten siehe. [1], Kap. 7.1 und

Perigäum und Apogäum

Perigäum und Apogäum Perigäum und Apogäum Perigäum: Erdnächster Punkt einer elliptischen Planetenoder Kometenbahn. Apogäum Erdfernster Punkt einer elliptischen Planetenoder Kometenbahn. Perihel und Aphel Perihel ist der Punkt

Mehr

Doppelplanet Erde Mond: Wechselwirkungen

Doppelplanet Erde Mond: Wechselwirkungen Doppelplanet Erde Mond: Wechselwirkungen Die Gezeiten Sonne und Mond modifizieren die Gravitationsbeschleunigung an einem gegebenen Punkt der Erdoberfläche auf ein bestimmte periodische Art und Weise.

Mehr

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010

Beobachtungen am Himmel. Manuel Erdin Gymnasium Liestal, 2010 Beobachtungen am Himmel Manuel Erdin Gymnasium Liestal, 2010 Grundsätze Alle am Himmel beobachtbaren Objekte befinden sich auf der Innenseite einer Kugel. Wir als Beobachter sind in Ruhe. Die Himmelskugel

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

SIS Vortragsreihe. Astronomische Koordinatensysteme

SIS Vortragsreihe. Astronomische Koordinatensysteme SIS Vortragsreihe Astronomische Koordinatensysteme Das Himmelsgewölbe Zur Vereinfachung stellen wir uns das Himmelsgewölbe als hohle Kugel vor. Die Fix-Sterne sind an dieser Kugel befestigt oder einfach

Mehr

Die tatsächlichen Größen- und Abstandsverhältnisse von Sonne, Erde und Mond bildet das Tellurium aus Platzgründen nicht ab.

Die tatsächlichen Größen- und Abstandsverhältnisse von Sonne, Erde und Mond bildet das Tellurium aus Platzgründen nicht ab. Tellurium Me08/17 Tellus (lateinisch Erde ) ist in der römischen Mythologie die Gottheit der mütterlichen Erde, daher auch oft Terra Mater genannt, und entspricht der griechischen Gaia. (Wikipedia) Das

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel

Die Zeitgleichung. Joachim Gripp, Lindau bei Kiel Die Zeitgleichung Joachim Gripp, Lindau bei Kiel Einleitung Den meisten Sonnenuhr- Freunden ist die Zeitgleichung gut bekannt. Sie ist als Unterschied zwischen der von einer Sonnenuhr angezeigten Sonnenzeit

Mehr

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 - Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

Sonne, Mond und Sterne Bekanntes selbst entdeckt!

Sonne, Mond und Sterne Bekanntes selbst entdeckt! Sonne, Mond und Sterne Bekanntes selbst entdeckt! Teil IV: Mondbeobachtung Markus Schlager Das Himmelzelt offenbart uns nicht nur das unendliche Weltall, sondern macht im Besonderen unser Raumschiff Erde

Mehr

Mittel- und Oberstufe - MITTEL:

Mittel- und Oberstufe - MITTEL: Praktisches Arbeiten - 3 nrotationsgeschwindigkeit ( 2 ) Mittel- und Oberstufe - MITTEL: Ein Solarscope, Eine genau gehende Uhr, Ein Messschirm, Dieses Experiment kann in einem Raum in Südrichtung oder

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 III.1 Exzentrizität der Erdumlaufbahn

Mehr

3. Koordinatensysteme, Zeit und Kalender

3. Koordinatensysteme, Zeit und Kalender 3.1 Erdumlaufbahn steininger@astro.univie.ac.at Folie 1 Ellipsen: a, b sind die großen, bzw. kleinen Halbachsen Exzentrizität e = f/a A = Aphel P = Perihel Folie 2 Exzentrizität der Erdumlaufbahn = 0,0167

Mehr

Das geozentrischen Weltbild

Das geozentrischen Weltbild Das geozentrischen Weltbild Hier Firmenlogo hinzufügen von Alexander Erlich Physik LK 11/2 März 2005 Altes Gymnasium 1 Claudio Ptolemäus * ca. 100 n. Chr., ca. 160 n.chr. wahrscheinlich griechischer Herkunft

Mehr

Die Regiomontanus-Sonnenuhr

Die Regiomontanus-Sonnenuhr Die Regiomontanus-Sonnenuhr Von Günther Zivny Die Regiomontanus-Sonnenuhr gehört zur Gruppe der Höhensonnenuhren. Die Sonnenhöhe, also der Winkel zwischen Horizont und Sonne, ändert sich im aufe des Tages.

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

4.05 Vom Planetarium zur Ansicht am Himmel

4.05 Vom Planetarium zur Ansicht am Himmel 4.03 Leere Kärtchen und Tabellen als Grundlage 4.04 Planetarien selber zeichnen 4.05 Vom Planetarium zur Ansicht am Himmel Inhalt 2 Der ungewohnte Weg was ist das Ziel? 4 Planetarium A 7 Planetarium B

Mehr

1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus,

1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus, 1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus, Neptun (Kleinplanet Pluto fehlt) Von den Arbeiten Hipparchs

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten

Mehr

Wissenswertes über die Zeitgleichung

Wissenswertes über die Zeitgleichung Wissenswertes über die Zeitgleichung Wechsel von Helligkeit und Dunkelheit prägte von alters her in unseren Breiten den kürzestesten natürlichen Zeitrhythmus: den Tagesrhythmus Verantwortlich dafür: die

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr.

Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. Rekonstruktion eines teilweise entschlüsselten babylonischen Keilschrifttextes aus der Zeit um 2000 v. Chr. 16 9 25 4 3 5 144 25 169 12 13 49 625 24 7 25 9 25 3 64 100 8 225 64 289 15 144 225 15 1296 225

Mehr

Durchmesser und Tiefe eines Mondkraters

Durchmesser und Tiefe eines Mondkraters 1 Durchmesser und Tiefe eines Mondkraters Mit Hilfe eines Fotos sollen Durchmesser und Tiefe des Kraters Albategnius (φ = -11,6, = +3,8 ) bestimmt werden. Das Foto entstand am 6.12.2016 bei Halbmond gegen

Mehr

Erklärungen zum Tierkreis und zu den Sonnenpositionen

Erklärungen zum Tierkreis und zu den Sonnenpositionen Die Sternenkuppel Zusätzliche Informationen Wozu eine Sternenkuppel? Die Sternenkuppel enthält auf der Innenseite ein stark vereinfachtes Abbild des «Himmelsgewölbes». An Hand einiger markanter Sternbilder

Mehr

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März

Unser Sonnensystem. Prof. Dr. Christina Birkenhake. 8. März Unser Sonnensystem Prof. Dr. Christina Birkenhake christina@birkenhake.net http://christina.birkenhake.net 8. März 2010 Heliozentrisches Weltbild des Kopernikus Ellipsen überspringen Ellipsen und Planetenbahnen

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Marsbahn (mit Lösungen) 1 Einleitung Planeten fallen durch ihre große und veränderliche

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir wollen einer Zeichnung und nicht dem Taschenrechner mehrere Sinuswerte entnehmen und graphisch darstellen. Falls c = ist, gilt a = sinα. Die Strecken der Länge liegen auf

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

Drehbare Sternkarten

Drehbare Sternkarten Drehbare Sternkarten Ein Computerprogramm von Udo Backhaus (ASTRONOMIE+Raumfahrt 30 (1993) 17) Drehbare Sternkarten sind, insbesondere für Anfänger, ein einfaches und vielseitiges Hilfsmittel, um mit dem

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern

Eigenbewegung und Parallaxe von Barnards Pfeilstern Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern 1 Einleitung Der Parallaxeneffekt ist jedem,

Mehr

D i e T i e r k r e i s t a f e l n

D i e T i e r k r e i s t a f e l n D i e T i e r k r e i s t a f e l n Charakteristisch für diese Sonnenuhr sind die 6 auf der XII-Stundenlinie angebrachten Tafeln mit je zwei Tierkreiszeichen (s. Abb.). Was hat es damit auf sich? Welche

Mehr

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Mondentfernung. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen 1 Einleitung Die Mondentfernung (mit Lösungen) Als Aristarch versuchte, die Sonnenentfernung

Mehr

9.5 Graphen der trigonometrischen Funktionen

9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).

Mehr

ASV Astroseminar 2003

ASV Astroseminar 2003 Astronavigation nicht für Prüfungen (C-Schein, SHS) sondern zum Vergnügen. Nichts auswendig lernen, sondern Hintergründe verstehen Nur Verfahren, die auf Sportbooten anwendbar sind Keine HO-Tafeln heutzutage

Mehr

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich

Kreisberechnungen. GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe. Ronald Balestra CH Zürich Kreisberechnungen GEOMETRIE Kapitel 1 SprachProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 16. November 12 Inhaltsverzeichnis 1 Kreisberechnungen 1 1.1

Mehr

Erläuterungen zur Funktionsweise der Sonnenuhr

Erläuterungen zur Funktionsweise der Sonnenuhr Erläuterungen zur Funktionsweise der Sonnenuhr Hans Huber 28. November 2016 Lieber Besucher, nehmen Sie sich bitte fünf Minuten Zeit. Vielleicht verändert dies Ihre Sicht auf die Zeit und unser damit verbundenes

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004 Die Entwicklung des Weltbilds Manuel Erdin Gym Liestal, 2004 Frühe Kulturen Der Mensch als Teil des Kosmos Frühe Kulturen Beobachtungen von Sonnen- und Mondpositionen Himmelscheibe von Nebra (Deutschland)

Mehr

Schleifenbewegung von Planeten

Schleifenbewegung von Planeten Schleifenbewegung von Planeten Monika Maintz Beobachtet man die Position der äußeren Planeten Mars, Jupiter, Saturn, Uranus und Neptun am Nachthimmel, so stellt man fest, dass sich diese relativ zu den

Mehr

Beobachtungsort Antarktis

Beobachtungsort Antarktis Beobachtungsort Antarktis Verkehrte Welt der Sternhimmel für Beobachter auf der Südhalbkugel Beobachter auf der Südhalbkugel der Erde werden nicht nur mit einem fremdartigen Sternenhimmel, sondern auch

Mehr

Orientierung am (Nacht-)Himmel

Orientierung am (Nacht-)Himmel Orientierung am (Nacht-)Himmel Um Ordnung und Struktur in das Wirrwarr der vielen Sterne zu bekommen, wurden sie zu bestimmten Mustern, den Sternbildern zusammen gefasst. Ein Sternbild ist eine Gruppe

Mehr

Wann ist Frühlingsfest?

Wann ist Frühlingsfest? Wann ist Frühlingsfest? Erich Hartmann 22. Februar 2006 TU Darmstadt, Fachbereich Mathematik Schlossgartenstr. 7, D-64289 Darmstadt, Germany e-mail: ehartmann@mathematik.tu-darmstadt.de Das Frühlingsfest

Mehr

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5

E1 Mechanik WS 2017 / 2018 Lösungen zu Übungsblatt 5 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik WS 017 / 018 Lösungen zu Übungsblatt 5 Prof. Dr. Hermann Gaub, Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen ( i.) Sie drehen

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen)

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) 1 Einleitung Der Parallaxeneffekt

Mehr

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L.

Kugeldreieck. (a) München (λ = 11,5 ö. L., φ = 48,1 ) (b) New York (λ = 74,0 w. L., φ = 40,4 ) (c) Moskau (λ = 37,4 ö. L. Kugeldreieck 1. Berechnen Sie die Fläche des vom Äquator, vom Nullmeridian und dem Längenkreis durch den angegebenen Ort begrenzten Kugeldreiecks. Geben Sie den sphärischen Exzeß des Dreiecks im Grad-

Mehr

Prüfungsthemen im Fach Astronomie (Übung)

Prüfungsthemen im Fach Astronomie (Übung) Prüfungsthemen im Fach Astronomie (Übung) 1.1. Vergleichen Sie das Horizontsystem mit dem Äquatorialsystem mit der Sternkarte und dem vorliegenden Himmelsglobus! Erklären Sie dabei auch die Begriffe Himmelsäquator

Mehr

Kürzester Abstand. Abb.1

Kürzester Abstand. Abb.1 Kürzester Abstand Im Januar 2011 meldete die Lufthansa, dass eines ihrer Flugzeuge des Typs Boeing 747 über Grönland den Flug nach San Francisco wegen Ölverlustes in einem der vier Triebwerke abgebrochen

Mehr

Berufsmaturitätsprüfung Mathematik

Berufsmaturitätsprüfung Mathematik Berufsmaturitätsprüfung 2006 - Mathematik Bedingungen o Die Prüfungsdauer beträgt 240 Minuten (ohne Pause) o Grundsätzlich müssen alle Aufgaben von Hand gelöst werden. Der Taschenrechner darf nur für arithmetische

Mehr

KREISEL, PENDEL & PLANETEN

KREISEL, PENDEL & PLANETEN KREISEL, PENDEL & PLANETEN Unterrichtseinheit zum Astronomischen Jahr Dynamikum Exponat: Ball am Seil Stichworte: Zentrifugalkraft, Zentripetalkraft, Bahngeschwindigkeit Mit dieser Versuchsanordnung lässt

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

ϕ (im Bogenmaß) = ϕ (in ) π

ϕ (im Bogenmaß) = ϕ (in ) π 1 Kurze Einführung in die trigonometrischen Funktionen: Die trigonometrischen Funktionen gehören zum Standardstoff im Mathematik Unterricht der Gmnasien. Deshalb werde ich mich auf eine knappe Einführung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Astrophysik und astronomische Beobachtungen Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis

Mehr

deutschsprachige Planetarien gute Gründe, das Ereignis nicht zu verpassen

deutschsprachige Planetarien gute Gründe, das Ereignis nicht zu verpassen deutschsprachige Planetarien 5 gute Gründe, das Ereignis nicht zu verpassen Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 http:// Weitere Links (eine kleine

Mehr

gute Gründe, das Ereignis nicht zu verpassen

gute Gründe, das Ereignis nicht zu verpassen 5 gute Gründe, das Ereignis nicht zu verpassen 1 Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 Am Montag, den 9. Mai 2016 findet ab 13 Uhr ein Naturschauspiel

Mehr

Experimente mit trigonometrischen Funktionen

Experimente mit trigonometrischen Funktionen Mathematik und ihre Didaktik Uni Bayreuth Sinus Sachsen-Anhalt Experimente mit trigonometrischen Funktionen Eine Sammlung von interaktiven Arbeitsblättern zur vertieften Betrachtung der Funktionen sin

Mehr

Das freie mathematische Pendel

Das freie mathematische Pendel Das freie mathematische Pendel Wasilij Barsukow, Januar 0 Einleitung Das mathematische ist das einfachste Modell eines Pendels, bei dem man sich eine punktförmige Masse m an einem masselosen Faden aufgehängt

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

D i e W e l t s t ä d t e r o s e

D i e W e l t s t ä d t e r o s e D i e W e l t s t ä d t e r o s e Eine Besonderheit der APG-Sonnenuhr ist die Weltstädterose. Um den Polos sind in die Bodenplatten kreisförmig Pfeile aus Edelstahl, die Richtung und Entfernung von ausgewählten

Mehr

ASTRONOMIE IN DER ANSCHAUUNG

ASTRONOMIE IN DER ANSCHAUUNG ASTRONOMIE IN DER ANSCHAUUNG oeav Vortrag,. November 00 von Hans-Hermann Delz studierte Elektrotechnik und Informatik; 0 Jahre Systemberater, später Dozent für Programmiersprachen bei IBM. Seit 980 Beschäftigung

Mehr

8.Kreisdarstellung in Perspektive

8.Kreisdarstellung in Perspektive 8.Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel oder Hyperbel.

Mehr

1.4. Funktionen, Kurven und Parameterdarstellungen

1.4. Funktionen, Kurven und Parameterdarstellungen .4. Funktionen, Kurven und Parameterdarstellungen Reellwertige Funktionen Eine reelle Relation ist eine beliebige Teilmenge F der Ebene (also eine ebene "Fläche"). Von einer reellen Funktion spricht man,

Mehr

Geometrie-Aufgaben: Kreisberechnungen Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein.

Geometrie-Aufgaben: Kreisberechnungen Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein. Geometrie-Aufgaben: Kreisberechnungen 3 1. Berechne jeweils die Längen der folgenden Kreislinien: (a) für x = 4. (b) allgemein. 1 2 Bilder: A. Tuor 3 2. Der Umfang eines Kreises ist um 2 grösser als der

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Doppelplanet Erde - Mond

Doppelplanet Erde - Mond Doppelplanet Erde - Mond Eine Gedankenreise zur Erde Von einem Ort in der Milchstraße, der 700 Billionen Kilometer von der Sonne entfernt ist ( ungefähr 75 Lj) wollen wir gedanklich mit Lichtgeschwindigkeit

Mehr

Cassini-Kurven Lemniskate

Cassini-Kurven Lemniskate Cassini-Kurven Lemniskate Text Nr. 510 Stand 1. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 510 Cassini-Kurven und Lemniskate Vorwort Der Namen Lemniskate ist sicher bekannter

Mehr

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation

Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener

Mehr

1 AE = km = 149, km.

1 AE = km = 149, km. 1. Astronomische Entfernungsangaben Astronomische Einheit (AE) Die große Halbachse der Erdbahn um die Sonne = mittlere Entfernung Erde - Sonne, beträgt 149 597 892 ± 5 km. Sie wird als Astronomische Einheit

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

Merkur-Transit, eine Mini-Sonnenfinsternis VS4 Stiftung Jurasternwarte - Hugo Jost 1

Merkur-Transit, eine Mini-Sonnenfinsternis VS4 Stiftung Jurasternwarte - Hugo Jost 1 Merkur-Transit, eine Mini-Sonnenfinsternis 20160311-VS4 Stiftung Jurasternwarte - Hugo Jost 1 Der Planet Merkur 20160311-VS4 Stiftung Jurasternwarte - Hugo Jost 2 Steckbrief von Merkur Sonnennächster (innerer)

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Computational Astrophysics 1. Kapitel: Sonnensystem

Computational Astrophysics 1. Kapitel: Sonnensystem Computational Astrophysics 1. Kapitel: Sonnensystem Wilhelm Kley Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2011 W. Kley: Computational Astrophysics

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits

Mehr

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download)

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download) Unterrichtsmaterial (Links: auf der ersten Seite der Internet-Version) Folien: Trigonometrische Funktion (power-point) Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus

Mehr

Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?)

Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?) Astronavigation: Einführung Die Zeit: Weltzeit UT1 (früher GMT) Mittlere Ortszeit (MOZ) Zonenzeit (ZZ) Wahre Ortszeit (Wann stehen Sonne oder Mond am höchsten Punkt?) Koordinatensysteme: Erde Gestirne

Mehr

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Wilhelm Kley & Andrea Santangelo Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2013 Astronomie

Mehr

DG für Kunstpädagogik

DG für Kunstpädagogik DG für Kunstpädagogik Kreisdarstellung in Perspektive Kegelschnitte durch fünf Punkte Wie wir bereits wissen, läßt sich ein Kegel grundsätzlich nach 4 verschiedenen Kurven schneiden: Kreis, Ellipse, Parabel

Mehr

Peripheriewinkelsatz (auch Umfangswinkelsatz)

Peripheriewinkelsatz (auch Umfangswinkelsatz) Peripheriewinkelsatz (auch Umfangswinkelsatz) Für die Einführung des Peripheriewinkelsatzes (auch Umfangwinkelsatz) machen wir uns mit dem Satz des Thales vertraut. Der Satz des Thales besagt, dass Dreiecke,

Mehr

Astronomische Uhr am Ulmer Rathaus

Astronomische Uhr am Ulmer Rathaus Kurzanleitung http://astrouhr.telebus.de/ Die Zeiger Sonnenzeiger Handzeiger Mondzeiger mit Mondkugel Zifferblatt 12 Stunden Skala Sichtbaren Himmel Wendekreis des Krebses Tag und Nachtgleiche Wendekreis

Mehr

Astronomische Koordinatensysteme

Astronomische Koordinatensysteme Übung für LA Physik Astronomische Koordinatensysteme Sergei A.Klioner Lohrmann-Observatorium, Technische Universität Dresden Kartesische und sphärische Koordinaten Kartesisches Koordinatensystem und sphärische

Mehr

Bewegungen des Erde Mond Systems. Berechnungen im 2 Koordinaten System

Bewegungen des Erde Mond Systems. Berechnungen im 2 Koordinaten System 1 Einleitung Bewegungen des Erde Mond Systems Die Bewegung des Mondes um die Erde wird mit diesem MAPLE file in einigen Varianten durchgerechnet und kann untersucht werden. Die Erde wird als spärischer

Mehr

Maße des Modellmondes Radius Modellmond Abstand Modellmond-Modellsonne

Maße des Modellmondes Radius Modellmond Abstand Modellmond-Modellsonne Rechnungen zuofi-box Im Folgenden finden Sie die Herleitung und Berechnung zum Abschnitt Die SoFi-Box symbolisch aus dem Artikel Die SoFi-Box Ein Modellexperiment zum fächerverbindenden Unterricht von

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010)

Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Folienmodell zur Veranschaulichung der Bewegung von Erde und Mond um ihren gemeinsamen Schwerpunkt: (Verfasser: Werner B. Schneider, Stand 2/2010) Das mit dem Modell verfolgte Ziel besteht darin, die Bewegung

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

gute Gründe, das Ereignis nicht zu verpassen

gute Gründe, das Ereignis nicht zu verpassen 5 gute Gründe, das Ereignis nicht zu verpassen Der Merkurtransit 2016 - darum gibt es gute Gründe, dieses Ereignis nicht zu verpassen! 5 Am Montag, den 9. Mai 2016 findet ab 13 Uhr ein Naturschauspiel

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli

Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli Aus dem Seminar Ausgewählte höhere Kurven WS 016/17 Bei Prof.Dr. Duco van Straten Die Cassinischen Kurven und insbesondere die Lemniskate von Bernoulli von Marwin Wirtz 1 Cassinische Kurven Betrachten

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

Archimedische Spiralen

Archimedische Spiralen Hauptseminar: Spiralen WS 05/06 Dozent: Prof. Dr. Deißler Datum: 31.01.2006 Vorgelegt von Sascha Bürgin Archimedische Spiralen Man kann sich auf zwei Arten zeichnerisch den archimedischen Spiralen annähern.

Mehr

Wo stehen die Planeten am Himmel?

Wo stehen die Planeten am Himmel? Das Sonnensystem Wo stehen die Planeten am Himmel? Anleitungen zum Auffinden von Planeten mit verschiedenen Hilfsmitteln Wo stehen die Planeten am Himmel? Inhaltsverzeichnis Seiten Einführung, allgemeine

Mehr

Planetenbahnen in geozentrischer Sicht Erläuterungen zu den Karten Januar 2018 bis Ostern 2019

Planetenbahnen in geozentrischer Sicht Erläuterungen zu den Karten Januar 2018 bis Ostern 2019 Institut für Strömungswissenschaften Herrischried im Verein für Bewegungsforschung e.v. Planetenbahnen in geozentrischer Sicht Erläuterungen zu den Karten Januar 2018 bis Ostern 2019 Die Planetenkarten

Mehr