Relative Kontrollierbarkeit und Invarianz-Entropie

Größe: px
Ab Seite anzeigen:

Download "Relative Kontrollierbarkeit und Invarianz-Entropie"

Transkript

1 Relative Kontrollierbarkeit und Invarianz-Entropie Ralph Lettau in Zusammenarbeit mit Fritz Colonius und Christoph Kawan Institut für Mathematik Universität Augsburg 9. Elgersburg Workshop 5. März 2014 Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 1 / 23

2 1 Relative Kontrolllierbarkeit und W -Kontrollmengen W -Kontrollmengen Relativ invariante W -Kontrollmengen W -Kontrollmengen und Kontrollmengen: Ein Beispiel 2 Parameterabhängigkeit 3 Invarianz-Entropie Definition Invarianz-Entropie und W -Kontrollmengen 4 Zusammenfassung und Ausblicke Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 2 / 23

3 Relative Kontrolllierbarkeit und W -Kontrollmengen Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 3 / 23

4 Sei M eine C Riemann-Mannigfaltigkeit und X ein C 1 -Vektorfeld X : M R m TM. Wir definieren folgendes Kontrollsystem auf M mit ẋ(t) = X (x(t), u(t)) u U = {u R R m, u(t) U für alle t R, lokal integrabel}. U sei eine nicht-leere, beschränkte Teilmenge von R m. Für x M und u U sei φ(t, x, u) die eindeutige lokale Lösung des Systems mit den Anfangsbedingungen φ(0, x, u) = x. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 4 / 23

5 Problemstellung Wir betrachten die Dynamik eingeschränkt auf W, bezeichnet mit φ W (t, x, u). Für x W ist das W -Erreichbarkeitsmenge von x bis zur Zeit T O W,+ T (x) := {y W 0 t T and u U : y = φ w (t, x, u)}. Die W -Erreichbarkeitsmenge von x ist O W,+ (x) := T 0 O W,+ T (x). Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 5 / 23

6 Vorraussetzungen W M sei eine offene, zusammenhängende Menge und relativ kompakt Das System sei auf W akzessibel, also into W,± (x) T für T > 0 Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 6 / 23

7 W -Kontrollmengen Kontrollmengen wurden von Kliemann [Kliemann, 1980] eingeführt. Näheres zu Kontrollmengen findet sich bei [Colonius, Kliemann, 2000]. Definition (Kontrollmenge) Eine Menge D M ist eine Kontrollmenge, wenn D nicht-leeres Inneres hat D clo + (x) für alle x D D maximal bezüglich der obigen Eigenschaften ist. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 7 / 23

8 W -Kontrollmengen Kontrollmengen wurden von Kliemann [Kliemann, 1980] eingeführt. Näheres zu Kontrollmengen findet sich bei [Colonius, Kliemann, 2000]. Definition (W -Kontrollmenge) Eine Menge D W ist eine W -Kontrollmenge, wenn D nicht-leeres Inneres hat. D cl W O W,+ (x) für alle x D D maximal bezüglich der obigen Eigenschaften Eine W -Kontrollmenge ist somit eine Menge maximaler approximativer W -Kontrollierbarkeit. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 7 / 23

9 Eigenschaften von W -Kontrollmengen Proposition Sei D eine W -Kontrollmenge und x D, Ist φ W (T, x, u) D für u U and T > 0, dann φ W (t, x, u) D für t [0, T ] Es gibt eine Kontrolle u mit φ W (t, x, u) D für alle t > 0. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 8 / 23

10 Eigenschaften von W -Kontrollmengen Proposition Sei D eine W -Kontrollmenge und x D, Ist φ W (T, x, u) D für u U and T > 0, dann φ W (t, x, u) D für t [0, T ] Es gibt eine Kontrolle u mit φ W (t, x, u) D für alle t > 0. intd O W,+ (x) Wenn x intd, dann D = cl W O W,+ (x) O W, (x). Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 8 / 23

11 Eigenschaften von W -Kontrollmengen Proposition Sei D eine W -Kontrollmenge und x D, Ist φ W (T, x, u) D für u U and T > 0, dann φ W (t, x, u) D für t [0, T ] Es gibt eine Kontrolle u mit φ W (t, x, u) D für alle t > 0. intd O W,+ (x) Wenn x intd, dann D = cl W O W,+ (x) O W, (x). Es gibt höchstens abzählbar viele W -Kontrollmengen. Für jede W -Kontrollmenge D ist D = D oder D D =. D ist zusammenhängend und cl W (intd) = cl W D Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 8 / 23

12 Relativ invariante W -Kontrollmengen Definition Eine W -Kontrollmenge C heißt relativ invariante W -Kontrollmenge, wenn cl W C = cl W O W,+ (x) für alle x C. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 9 / 23

13 Eigenschaften Proposition Sei C eine relativ invariante W -Kontrollmenge und x C. Dann cl W (intc) = C. C ist relativ invariant in positiver Zeit, d.h. O W,+ (x) C. intc = O W,+ (x), wenn x intc. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 10 / 23

14 Eigenschaften Proposition Sei C eine relativ invariante W -Kontrollmenge und x C. Dann cl W (intc) = C. C ist relativ invariant in positiver Zeit, d.h. O W,+ (x) C. intc = O W,+ (x), wenn x intc. Proposition Eine W -Kontrollmenge D ist genau dann eine relativ invariante W -Kontrollmenge, wenn D abgeschlossen in W ist. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 10 / 23

15 Theorem (Theorem 1) Äquivalent sind: 1 Es gibt eine kompakte Menge Q W mit cl W O W,+ (x) Q für alle x W. 2 Für jedes x W gibt es eine relativ invariante W -Kontrollmenge C mit C cl W O W,+ (x). Gilt (i), so gibt es höchstens endlich viele relativ invariante W -Kontrollmengen C 1,..., C n. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 11 / 23

16 Beispiel M = R 2 \ {0} W := {(r, φ) φ π 2 } ṙ = r(1 r) + u 1 φ ( ) = sin 2 φ 2 + u 2 u 1 (t) [ 1 4, 3 ] 4 u 2 (t) ( sin 2 ( ) π 8, sin 2 ( )) π 8 Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 12 / 23

17 Beispiel ṙ = r(1 r) + u 1 ( ) φ φ = sin 2 + u 2 2 Auf W existiert eine nicht relativ invariante W -Kontrollmenge { C W := (r, φ) φ < π 2, 1 2 r 3 } 2 Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 12 / 23

18 Beispiel ṙ = r(1 r) + u 1 ( ) φ φ = sin 2 + u 2 2 Auf W existiert eine nicht relativ invariante W -Kontrollmenge { C W := (r, φ) φ < π 2, 1 2 r 3 } 2 Aber auf M ist eine invariante Kontrollmenge gegeben durch C := { (r, φ) 1 2 r 3 } 2 Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 12 / 23

19 Parameterabhängigkeit Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 13 / 23

20 Problemstellung Für α A R n betrachte ẋ(t) = X (α, x(t), u(t)) mit X : A M R m TM ein C -Vektorfeld. Die Zustandsbeschränkung W soll nicht von α abhängen. Die Lie-Rangbedingung auf W soll gelten für α 0 inta. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 14 / 23

21 Theorem Sei D α 0 eine W -Kontrollmenge. Es gibt ein δ > 0, so dass es eine Famile von W -Kontrollmengen D α für α α 0 < δ gibt mit Für alle kompakten Mengen K intd α 0 existiert ein δ K (0, δ) mit K intd α für α α 0 < δ K. Die so gegebene Abbildung α cl W D α ist in α 0 unterhalb stetig bezüglich der Hausdorff-Metrik. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 15 / 23

22 Betrachten wir nun invariante Kontrollmengen auf M. Theorem Sei C α 0 eine kompakte, invariante Kontrollmenge auf M und die Lie-Rangbedingung gelte auf M. Dann gibt es ein ε 0 > 0 und eine Umgebung N von C α 0, so dass für alle α mit α α 0 < ε 0 eine Familie von Welten W α existiert, für die gilt: N W α Es gibt relative invariante W α -Kontrollmengen C α, die unterhalb stetig von α abhängen, so dass für alle kompakten K intc α 0 ein ε K > 0 mit K intc α existiert für α α 0 < ε K Bemerkung Für α α 0 ist es i.a. nicht so, dass C α gegen die ursprüngliche invariante Kontrollmenge C α 0 konvergiert. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 16 / 23

23 Invarianz-Entropie Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 17 / 23

24 Definition Seien K intq := W Q M, K kompakt. Für alle x K gibt es eine Kontrolle u mit φ(t, x, u) W für t 0. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 18 / 23

25 Definition Seien K intq := W Q M, K kompakt. Für alle x K gibt es eine Kontrolle u mit φ(t, x, u) W für t 0. Definition Eine Menge S von Kontrollfunktionen heißt τ-aufspannend für (K, Q), wenn für jedes x K ein u S existiert, so dass φ(t, x, u) intq für t [0, τ]. r inv (τ, K, Q) ist die minimale Kardinalität einer für (K, Q) τ-aufspannenden Menge. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 18 / 23

26 Definition Seien K intq := W Q M, K kompakt. Für alle x K gibt es eine Kontrolle u mit φ(t, x, u) W für t 0. Definition Eine Menge S von Kontrollfunktionen heißt τ-aufspannend für (K, Q), wenn für jedes x K ein u S existiert, so dass φ(t, x, u) intq für t [0, τ]. r inv (τ, K, Q) ist die minimale Kardinalität einer für (K, Q) τ-aufspannenden Menge. Definition Die Invarianz-Entropie von (K, Q) ist h inv (K, Q) = lim sup τ 1 τ log r inv(τ, K, Q). Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 18 / 23

27 Lemma Sei ˆK = m i=1 K i eine Vereinigung von kompakten Mengen K i. Jedes K i liege im Inneren einer relativ invarianten W -Kontrollmenge C i. Sei ˆQ = m i=1 cl W C i. Dann max h inv (K i, C i ) = h inv ( ˆK, ˆQ) = h inv ( ˆK, Q). Für jede W -Kontrollmenge D und kompakte Teilmengen K 1, K 2 D mit nichtleerem Inneren gilt h inv (K 1, D) = h inv (K 2, D) Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 19 / 23

28 Theorem Es gelten die Vorraussetzungen aus Theorem 1 Seien K i C i kompakt mit nichtleerem Inneren. Dann h inv (K, Q) max i=1...n h inv(k i, C i ) Sei K eine kompakte Menge. Enthält für jede relative invariante W -Kontrollmenge C i der Schnitt von C i mit K eine kompakte Menge K i mit nichtleerem Inneren, dann h inv (K, Q) = max h inv (K i, C i ) Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 20 / 23

29 Zusammenfassung W -Kontrollmengen und relativ invariante W -Kontrollmengen Fortsetzung von invarianten Kontrollmengen zu relativ invarianten W -Kontrollmengen für geeignete Welten Zusammenhang zwischen Invarianz-Entropie und W -Kontrollmengen Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 21 / 23

30 Ausblick [Arnold, Kliemann, 1987] zeigte, dass die invarianten Kontrollmengen eines Kontrollsystems Träger invarianter Wahrscheinlichkeitsmaße für eine mit dem Kontrollsystem assozierten Diffusion ist. Was passiert, wenn aus invarianten Kontrollmengen relativ invariante W -Kontrollmengen werden? Das Verhalten des stcochastischen Systems beim Übergang von einer invarianten Kontrollmenge zu relativ invarianten W-Kontrollmengen wird z.zt. studiert. Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 22 / 23

31 Literatur L. Arnold, W. Kliemann. On unique ergodicity for degenerate diffusions. Stochastics, 21:41 61, F. Colonius, W. Kliemann Dynamics Of Control. Birkhäuser, C. Kawan. Invariance Entropy for Deterministic Control Systems Springer, W. Kliemann. Qualitative Theorie Nichtlinearer Stochastischer Systeme Disertation, Universität Bremen, Ralph Lettau (Augsburg) Relative Kontrollierbarkeitseigenschaften 9. Elgersburg Workshop 23 / 23

Invarianz-Entropie für Kontrollsysteme

Invarianz-Entropie für Kontrollsysteme Invarianz-Entropie für Kontrollsysteme Christoph Kawan Institut für Mathematik, Universität Augsburg in Zusammenarbeit mit Fritz Colonius, Institut für Mathematik, Universität Augsburg im Rahmen des DFG-Schwerpunktprogramms

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8 Prof. Roland Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 8 Aufgabe 1: Sei (X, d) ein kompakter metrischer Raum. Die Hausdorff-Metrik

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Schwartz-Raum (Teil 1)

Schwartz-Raum (Teil 1) Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Michael Schönlein, Fabian Wirth Im Rahmen des Forschungsprojekts: Stabilität, Robustheit und Approximation großskaliger

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Aufgabensammlung Grundbegriffe der Topologie

Aufgabensammlung Grundbegriffe der Topologie Aufgabensammlung Grundbegriffe der Topologie Günther Hörmann, Roland Steinbauer Die vorliegende Aufgabensammlung dient als Grundlage für die Übungen zu Grundbegriffe der Topologie, das die gleichnamige

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r

x x 2 + y + 2y 2 y x 2 + y = 2 (x 2 + y 2 ) 2 = 0, (x,y) =r Funktionentheorie, Woche 8 Harmonische Funktionen 8. Folgen der Holomorphie Im letzten Kapitel sahen wir, dass der Realteil einer holomorphen Funktion harmonisch ist, und dass es zu jeder harmonischen

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

Funktionentheorie auf Riemannschen Flächen

Funktionentheorie auf Riemannschen Flächen Funktionentheorie auf Riemannschen Flächen Universität Regensburg Sommersemester 2014 Daniel Heiß: 5: Maximale analytische Fortsetzung 20.05.2014 Abstract Zunächst werden Garben und weitere benötigte Begriffe

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Hawkes Prozesse Grundlagen

Hawkes Prozesse Grundlagen Hawkes Prozesse Grundlagen Im Folgenden sei (Ω, F, F, P) eine stochastische Basis. Das heißt F = (F t ) t ist eine rechtsstetige Filtration mit F t F für alle t und P ein Wahrscheinlichkeitsmaß auf dem

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

! # %& (! ) # +,.. # / #. + /

! # %& (! ) # +,.. # / #. + / ! # %& (! ) # +,.. # / #. + / Inhaltsverzeichnis Einführung 2 2 Die τ-topologie 2 3 Der Kullback-Leibler-Abstand 2 4 Empirische Maße 3 5 Der Satz von Sanov 3 6 Anmerkungen 3 7 Lemma 4 8 Beweis Satz von

Mehr

Blockseminar Ergodentheorie und Dynamische Systeme

Blockseminar Ergodentheorie und Dynamische Systeme Blockseminar Ergodentheorie und Dynamische Systeme Partielle Hyperbolizität und 8.09.-12.09.08 1 Partielle Hyperbolizität 2 von Anosov-Diffeomorphismen Klassifikation dynamischer Systeme Wie verhält sich

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Topologie - Übungsblatt 1

Topologie - Übungsblatt 1 1 Topologie - Übungsblatt 1 1. Sei τ die cofinite Topologie auf einer Menge X. Man zeige: i) Ist X abzählbar, dann ist (X, τ) ein A 2 -Raum. ii) Ist X überabzählbar, dann ist (X, τ) kein A 1 -Raum. 2.

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer 1 Überdeckungskompaktheit Einleitung P T Q A R S U B (a) (b) Abbildung 1: Beispiele verschiedener Überdeckungen (1.1) Definition (Überdeckung)

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 )

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 ) 01.10.2012 Grundbegriffe der Topologie V. Bangert (zur Vorlesung Differentialgeometrie, WS 12/13 ) Def. 0.1 Ein topologischer Raum ist eine Menge X zusammen mit einem System O von Teilmengen von X, das

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Mathematik für Physiker I

Mathematik für Physiker I Vorlesungsmitschrift bei Herrn Dr. Lars Schäfer Mathematik für Physiker I erstellt von: Daniel Edler, Oleg Heinrich II Inhaltsverzeichnis Inhaltsverzeichnis 1 Mannigfaltigkeiten 1 1.1 Topologische und

Mehr

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Abschnitt 2 Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Zusammenhang 2.1 Definition. Ein Raum X heißt zusammenhängend, wenn er außer X und Ø keine Teilmengen hat, die zugleich offen

Mehr

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs)

Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Anfangswertprobleme bei differential-algebraischen Gleichungen (DAEs) Elgersburg, 13. Februar 2006 Gliederung 1 Differential-algebraische Gleichungen 2 Distributionen 3 Anfangswertprobleme 4 Zusammenfassung

Mehr

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Gregor Bethlen 1 Intervallaustauschtransformationen Stets sei in diesem Abschnitt I := [a, b] ein Intervall und a = a 0 < a 1

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Konvergenz. Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X.

Konvergenz. Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X. Konvergenz I. Folgen Definition. Sei (X, τ) ein topologischer Raum, (x n ) eine Folge in X und x X. (i) (x n ) konvergiert gegen x, wenn in jeder Umgebung von x fast alle Folgenglieder liegen, (ii) x ist

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth Hybride Systeme Wolfgang Kleier Universität Bayreuth 27. Juni 2008 Inhalt 1 Einleitung Was ist ein hybrides System? Hybrider Automat 2 Beispiele Wasserstandskontrollsystem Hüpfender Ball Gehemmtes Pendel

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

Topologische Grundbegriffe in metrischen und topologischen

Topologische Grundbegriffe in metrischen und topologischen KAPITEL 1 Topologische Grundbegriffe in metrischen und topologischen Räumen Die topologischen Grundbegriffe offene Mengen, abgeschlossene Mengen, Inneres einer Menge und Abschließung einer Menge, Stetigkeit

Mehr

Serie 1 Lösungsvorschläge

Serie 1 Lösungsvorschläge D-Math Mass und Integral FS 2014 Prof. Dr. D. A. Salamon Serie 1 Lösungsvorschläge 1. a) Seien A, B X zwei Mengen, so dass keine der Mengen A \ B, B \ A, A B und X \ (A B) leer ist. Bestimmen Sie die Kardinalität

Mehr

Hindman s Theorem. Sommercamp Karsten Evers. 1 Topologische Räume 2. 2 Filter und Ultrafilter 4. 3 Ein Raum von Ultrafiltern 5

Hindman s Theorem. Sommercamp Karsten Evers. 1 Topologische Räume 2. 2 Filter und Ultrafilter 4. 3 Ein Raum von Ultrafiltern 5 Hindman s Theorem Sommercamp 2008 Karsten Evers Stellen wir uns einmal vor, dass die Menge der natürlichen Zahlen N mit endlich vielen Farben eingefährbt ist, dass jede natürliche Zahl also eine von endlich

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

Technische Universität München. Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten

Technische Universität München. Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Vorlesung Mittwoch SS 2012 Thema des heutigen Tages ist im Wesentlichen Topologie und ein kleiner Abschnitt zu Mannigfaltigkeiten

Mehr

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching March 5, 07 Erinnerung (Euler Formel). e iϕ = cos ϕ + i sin ϕ. Die Polarform von z = x + iy C sei Euler Formel z

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

3 Das n-dimensionale Integral

3 Das n-dimensionale Integral 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 2 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Der Fundamentalsatz der Algebra

Der Fundamentalsatz der Algebra Der Fundamentalsatz der Algebra Vortragsausarbeitung im Rahmen des Proseminars Differentialtopologie Benjamin Lehning 17. Februar 2014 Für den hier dargelegten Beweis des Fundamentalsatzes der Algebra

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

6 Flächen. ein Homöomorphismus, und daher ist dann auch die Komposition ψ 1. 0,ε ϕ x ein Homömorphismus.

6 Flächen. ein Homöomorphismus, und daher ist dann auch die Komposition ψ 1. 0,ε ϕ x ein Homömorphismus. 6 Flächen Definition. Es sei n 0 eine natürliche Zhal. Ein topologischer Raum X heißt lokal homöomorph zu R n, falls es zu jedem Punkt x X eine offene Umgebung U x mit einem Homöomorphismus ϕ x U x R n

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

1 Topologische und metrische Räume

1 Topologische und metrische Räume 1 Topologische und metrische Räume 1.1 Topologische Räume und stetige Abbildungen Eine Topologie τ auf einer Menge X ist ein System von Teilmengen von X, die offene Mengen genannt werden, mit: (a) und

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Kapitel 3 Sätze der offenen Abbildung

Kapitel 3 Sätze der offenen Abbildung Kapitel 3 Sätze der offenen Abbildung Wir werden in diesem Abschnitt uns folgender Frage zuwenden: Wann ist ein Morphismus f: G H von topologischen Gruppen offen, d.h. wann gilt für eine offene Menge U

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

n A n = A ist nun folgendermaßen:

n A n = A ist nun folgendermaßen: Aufgabe 3. Sei (X, d) ein beschränkter metrischer Raum, d.h. es gibt ein c > 0 mit d(x, y) c für alle x, y X. Bezeichne T (X) die Menge aller abgeschlossenen nichtleeren Teilmengen von X. Für A, B T (X)

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Hauptseminar Fraktale: Andere Begriffe der Dimension

Hauptseminar Fraktale: Andere Begriffe der Dimension Hauptseminar Fraktale: Andere Begriffe der Dimension 21. November 2006 Überblick 1 Einleitung 2 Fraktale Dimension Begriffsklärung Gewünschte Eigenschaften Beispiel: Teilerdimension 3 Boxdimension Definition

Mehr

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}.

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. 1 Das Lebesgue-Maß 1.1 Etwas Maßtheorie Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. Definition 1.1. Ein nichtleeres Mengensystem A P(X) heißt σ-algebra, wenn: (A1) X A (A2) Wenn

Mehr

Vergleich und Erzeugung von Topologien und topologischen

Vergleich und Erzeugung von Topologien und topologischen KAPITEL 3 Vergleich und Erzeugung von Topologien und topologischen Räumen 3.1. Definition. Auf einer Menge X seien zwei Topologien τ und σ gegeben. Ist jede bezüglich σ offene Menge auch bezüglich τ offen,

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Das Wazewski Prinzip. Annika Schall. August 2007

Das Wazewski Prinzip. Annika Schall. August 2007 August 2007 Notation Im Folgenden sei X ein topologischer Raum, ϕ : R X X ein Fluß, I := [0, 1], W X eine Teilmenge, und W 0 := {x W t > 0 : ϕ(t, x) / W } die Menge aller Austrittspunkte von W unter ϕ,

Mehr

Topologische Grundbegriffe II. 1 Begriffe auf Mengen

Topologische Grundbegriffe II. 1 Begriffe auf Mengen Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten der Vorlesung Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Math. C. Zwilling Fakultät für Mathematik TU Dortmund Musterlösung der. Klausur zur Vorlesung Analysis II 6.7.6) Sommersemester 6 Aufgabe. i) Die Folge f n ) n N konvergiert genau

Mehr