1. Lineare Gleichungen
|
|
|
- Margarethe Seidel
- vor 8 Jahren
- Abrufe
Transkript
1 Gleichungen und Ungleichungen 1. Lineare Gleichungen 1. 15xx [5 (12xx + 6) + 13xx] = 7xx Lösen Sie die folgende Gleichung und geben Sie die Lösungsmenge, in dem Sie nach den die Gleichung nach den gesuchten Größen umstellen, an PP = 1, 73 UU II 0,7 ; UU =? II =? Stellen Sie nach tt mm um: Kaltes Wasser mit der Temperatur t 1 wird mit heißem Alkohol mit der Temperatur t 2 gemischt. QQ aaaaaa = mm 1 cc ww (tt mm tt 1 ) QQ aaaa = mm 2 cc AAAAAA (tt 2 tt mm ) QQ aaaaaa = QQ aaaa 4. Stellen Sie nach VV mm um: Auftrieb im Wasser bei einem Menschen mit einer Rettungsweste, wenn 7/8 des Volumens des Menschen aus dem Wasser ragt. Mit MMMMMMMMMM = DDDDDDhtttt VVVVVVVVVVVVVV (mm = ρ VV). 7 8 VV MM + VV RRRR ρρ FFFF gg = mm gg + mm RRRR gg 5. Stellen Sie die folgende Gleichung nach TT um. TT 2 = TT 1 (1 + β TT) AufgabenID: 198 4( xx + 1) + xx + 2(5 + xx) = 4 AufgabenID: 2270 Löse die folgende Gleichung nach yy auf. yy yy 1 xx xx 1 = yy 2 yy 1 xx 2 xx 1 IQ Technikum von 5
2 AufgabenID: 2271 Löse die folgende Gleichung nach nn auf. ss = aa 0 + (nn 1)dd 2. Bruchgleichungen 1. Stellen Sie nach x 0 um. 2. Lösen Sie die Gleichung nach R 2 auf. 11 xx xx 00 = gg UU II = RR RR 2 AufgabenID: xx 36 = 1 9 AufgabenID: 52 Löse die folgende Gleichung. Beachte dabei den Definitionsbereich für x. (Menge der Zahlen, für die die Gleichung definiert ist) 3 2xx + 2 3xx = xx IQ Technikum von 5
3 3. Gleichungssysteme 1. Lösen Sie das folgende Gleichungssystem mit dem TR 4xx + 6yy = 36 3xx + 2yy = 17 AufgabenID: 247 Tipp: Terme erst sortieren AufgabenID: 249 Tipp: Klammern auflösen und dann sortieren II 6xx 5 = 8yy IIII 2xx 4yy = 3 II 14xx 2yy = 3(xx 1) IIII 22xx 6 = 2xx 4. Quadratische Gleichungen Lösen Sie mit der Lösungsformel oder dem TR 24xx 2 4xx = 4 AufgabenID: 2281 Lösen Sie mit der Lösungsformel oder dem TR xx 2 + xx 12 = 0 5. Wurzelgleichungen: Tipp: Probe nicht vergessen! Bestimmen Sie die Lösungsmengen der Wurzelgleichungen mit Γ =Ρ xx 1 = xx IQ Technikum von 5
4 AufgabenID: 224 xx = 0 AufgabenID: 2298 Tipp: Binome beachten und p, q Formel benutzen! 2xx + 5 = 5 xx AufgabenID: 2300 Tipp: Binome beachten oder Substituieren! 6. Ungleichungen xx xx 2 = 0 AufgabenID: 2322 xx + 1 > 2xx 3 AufgabenID: xx < 1 4 AufgabenID: 2323 xx 2 6 IQ Technikum von 5
5 7. Textaufgaben 1. Für ein Schulfest müssen Tische und Stühle aufgebaut werden. 24 Schüler benötigen für den Umbau 45 Minuten. a. Wie lange dauert der Aufbau, wenn nur 20 Schüler zur Verfügung stehen? b. Wie viel müssten eingesetzt werden, wenn der Umbau in 60 Minuten abgeschlossen sein soll? 2. Lösen Sie mit Wolfram Alpha! Drei Städte bilden die Eckpunkte eines Dreiecks. Von A über B nach C beträgt die Entfernung 246km, von B über C nach A 291km und von C über A nach B 267km. Wie weit sind die Städte voneinander entfernt? 3. Ein Karton enthält drei Packungsarten. Die größte Verpackung wiegt 20g mehr als die mittlere Verpackung. Die mittlere Verpackung wiegt 10g mehr als die kleinste Verpackung. Wie schwer sind die Packungsgrößen, wenn der Karton insgesamt 160g schwer ist? AufgabenID: 2386 Prozentaufgaben Ein Gartengrundstück wird so unter drei Familien aufgeteilt, dass Familie Blau ein Drittel und Familie Rot 20 % der Fläche erhält. Die restlichen 315 m 2 bekommt Familie Weiß. Wie groß ist der Garten? AufgabenID: 2340 Indirekte Proportion Um Erdreich wegzufahren wird ein großer LKW eingesetzt, der die Arbeit in 24 Tagen erledigen könnte. Nach 3 Tagen steht zusätzlich ein kleinerer LKW zur Verfügung, der 3/4 des Fassungsvermögens des großen LKW besitzt. Wie viele Tage fahren die beiden LKW zusammen Erdreich weg? AufgabenID: 235 Gleichung aufstellen Ein Vater ist 46 Jahre alt und sein Sohn ist 14. In wie vielen Jahren ist der Vater doppelt so alt wie sein Sohn? 8. Exponentialgleichungen 1. Bestimmen Sie die Lösungsmenge L: 4xx 1 3 = 5 2. Bestimmen Sie x NN = 20 ee 2xx für N= Exponentielles Wachstum wird häufig stark unterschätzt, was zu großen Katastrophen führen kann. Die Anzahl bestimmter, schnell wachsender Bakterien verdoppelt sich innerhalb zwei Wochen. Bei einem Anfangsbestand von rund 1000 Bakterien können sie nachgewiesen werden. Wann muss spätestens eingegriffen werden, wenn der Bestand keinesfalls auf mehr als Bakterien wachsen soll? IQ Technikum von 5
Gleichungsarten. Quadratische Gleichungen
Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner
Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen
Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1
Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra
6,5 34,5 24,375 46,75
Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6
Schritte plus Alpha 1: Transkriptionen der Hörtexte. Lektion: Guten Tag. Track 2 Lektion 1 A/a, Ananas, Apfel, Ampel
Schritte plus Alpha : Transkriptionen der Hörtexte Lektion: Guten Tag Track Lektion A/a, Ananas, Apfel, Ampel Track Lektion N/n, Nase, Nudeln, Nuss Track Lektion E/e, Ente, Erdbeere, Essen Track 5 Lektion
Arbeitsblatt Mathematik
Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2
Inhalt. 1 Algebra-Wiederholung Funktionen Lineare Gleichungen, Ungleichungen und Gleichungssysteme... 23
Inhalt Algebra-Wiederholung...................................... 5. Termumformungen: Rechengesetze... 6.2 Termumformungen: Ausmultiplizieren, binomische Formeln............ 8 Abschlusstest............................................
So arbeitest du mit der Rechtschreibkartei
So arbeitest du mit der Rechtschreibkartei Die Kartei besteht aus verschiedenen Übungsbereichen: Mitsprechen: Nachdenken: Merken: Wortbausteine: Mitsprechwörter kannst du richtig schreiben, wenn du alle
Es ist kalt. Warme Kleidung
17. Thema: Kleidung 1 Es ist kalt Ich ziehe einen Mantel an. Ich ziehe eine Jacke an. Ich ziehe einen Pullover an. Ich ziehe Stiefel an. Warme Kleidung 2 Ich ziehe Handschuhe an. Ich setze eine Haube auf.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Von Hieroglyphen, Pyramiden, Schreibern und Grabräubern Das komplette Material finden Sie hier: Download bei School-Scout.de Inhalt
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung
Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial
Sekundarschulabschluss für Erwachsene. Arithmetik und Algebra A 2015
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Arithmetik und Algebra A 2015 Totalzeit: 90 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl:
Aa Bb Cc Dd Ff. Gg Hh Ii Jj Kk. Mm Nn Oo Pp. Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz
Aa Bb Cc Dd Ff Ee Die Deutschschweizer Basisschrift sicher einüben mit den SCHUBI-Heften Gg Hh Ii Jj Kk Ll Mm Nn Oo Pp Qq Rr Ss Tt Uu Vv Ww Xx Yy Zz Ää Öö Neubearbeitung für die Deutschschweizer Üü Basisschrift
Anhang C - Lösungen. Übung 1 Vektoren. Aufg. 1: Aufg. 2: Aufg. 3: -C1-
Anhang C - Lösungen Übung 1 Vektoren Aufg. 1: aa = 4ee xx 1ee yy bb = 3ee xx + 4ee yy aa + bb = 7ee xx + 3ee yy aa bb = 1ee xx 5ee yy Aufg. 2: aa = 3ee xx + 4ee yy bb = 3ee xx + 1ee yy aa bb = bb aa =
Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik
Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4
Kapitel 7: Gleichungen
1. Allgemeines Gleichungen Setzt man zwischen zwei Terme T 1 und T 2 ein Gleichheitszeichen (=), so entsteht eine Gleichung! Ungleichung Setzt man zwischen zwei Terme T 1 und T 2 ein Ungleichheitszeichen
2. Mathematikschulaufgabe
. Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang
3e 1. Schularbeit/ A
3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere
31 = 8 g) 4 3x 7 = 13 2x x 1 x = 6x3 4x x. x x 5. + = x + 3 = 9 5
Lineare Gleichungen und Ungleichungen mit einer Variablen 1. Bestimmen Sie die Lösungsmenge! a) (3x+5)(3x 5) (3x 1) 2 = 10 b) (5y+2) 2 = (3y+1) 2 +(4y 1) 2 c) (x 1) 3 (x 2) 3 = 3x 2 11 d) (x 1)(x 2)(x
WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen
Die WURZEL Werkstatt Mathematik Polynome Teil III oder Probleme lösen mit Quadratfunktionen Es passiert im Alltagsgeschehen oft, dass mit Kanonen auf Spatzen geschossen wird. Auch in der Mathematik vor
Verkaufspreisliste Oktober 2015
Verkaufspreisliste Oktober 2015 Kollektion Cassina imaestri 006 LC6 Le Corbusier, Pierre Jeanneret, Charlotte Perriand 635 Red and Blue 637 Utrecht errit T Rietveld Kollektion Cassina icontemporanei 111
Lineare Gleichungssysteme
Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig
1. Schularbeit R
1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:
Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen)
40 cm Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 1. Zahlenarten und Rechnen b) ( ) 5 ( 2 8 ) ( 1,25) 25 1,8 5,2 ( ) Wie viel sind 20% von? 2. Kenntnisse der Elementargeometrie
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra)
2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra) Inhaltsverzeichnis 1 Definition der Gleichung 2.Grades mit einer Unbekannten 2 2 1.Spezialfall: Die Gleichung lässt sich faktorisieren
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 3. Semester ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN
ARBEITSBLATT 9 TEXTAUFGABEN ZU LINEAREN GLEICHUNGSSYSTEMEN LEISTUNGSAUFGABEN Beispiel: Wenn zwei Röhren gleichzeitig geöffnet sind, kann ein Wasserbecken in 40 Minuten gefüllt werden. Fließt das Wasser
1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:
1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen
Seiten 6 / 7 Gleichungen und Ungleichungen. Lösungen Mathematik 3 Dossier 7 Gleichungen. 1 a) x a) (x + 5) ( x 12) = 0 HN (12)
Seiten / 7 Gleichungen und Ungleichungen Lösungen Mathematik Dossier 7 Gleichungen 1 a) x 4 1 - x = 4 x 1 2 2x = 48 x 1 = 48 x = x = 7 b) x - 19 1 c) x 18 = x - 12 10 18x 114 x = 9x 108 1x - 114 = 9x -
1. Schularbeit 5.B Gruppe A
1. Schularbeit 5.B Gruppe A 20.10.1998 Name: 1. Führe mit dem TI-92 die folgenden Berechnungen durch und trage dein Protokoll in die vorgesehenen Zeilen ein. Mit EZ ist dabei die Eingabezeile, mit AZ die
Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.
Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer
6 Gleichungen und Gleichungssysteme
03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion
r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:
Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck
1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75)
Lineare Gleichungs und Ungleichungssysteme 1 1. Welche Zahlenpaare sind Lösungen der Gleichung 7x 4y = 3? a) (1/1) b) (3/4) c) ( 2/ 4) d) (0/ 0.75) 2. Ergänzen Sie die fehlende Zahl, sodass sich eine Lösung
Grundwissen. 8. Jahrgangsstufe. Mathematik
Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche
Welche Nullstellen hat der Graph der Funktion a)
Aufgabe 1 Welche Nullstellen hat der Graph der Funktion a) f (x)= (x 7)² (x+3)² Die Nullstellen sind 7 und -3. Beide Nullstellen sind doppelt, d.h. der Graph wechselt nicht die Seite der x-achse. b) Multipliziere
Linearen Gleichungssysteme Anwendungsaufgaben
Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
x x
Gleichungen und Ungleichungen 10 10 15 10 10 x x 0 10 5 10 10 5,5,5 55 60 10 + 10 + 15 + 10 + 10 + x + x = 0 + 10 + 5 + 10 + 10 + 5 Gleichung, die sich im Gleichgewicht befin det! 55 + x = 60 55 + x =
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind
Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren
1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte
Quadratische Gleichungen
Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl
F u n k t i o n e n Gleichungssysteme
F u n k t i o n e n Gleichungssysteme Diese Skizze ist aus Leonardo da Vincis Tagebuch aus dem Jahre 149 und zeigt wie sehr sich Leonardo für Proportionen am Menschen interessierte. Ob er den Text von
Thema aus dem Bereich Algebra Gleichungen III
Thema aus dem Bereich Algebra - 2.3 Gleichungen III Inhaltsverzeichnis 1 Quadrierte Gleichungen mit einer Unbekannten 2 2 Wurzelgleichungen 3 2.1 Definition einer Wurzelgleichung................................
Rechtsprobleme der Zusammenarbeit im Netzwerk der Wettbewerbsbehörden nach der Verordnung (EG) Nr. 1/2003
Anders Leopold Rechtsprobleme der Zusammenarbeit im Netzwerk der Wettbewerbsbehörden nach der Verordnung (EG) Nr. 1/2003 Nomos Inhaltsverzeichnis Abkürzungsverzeichnis 13 A. Einleitung 17 I. Problemstellung
- G1 - Grundlagen der Mathematik - Bruchrechnen - MSS Böblingen. Einstiegsaufgaben: Merke: a) Addieren von Brüchen. b) Subtrahieren von Brüchen.
MSS Böblingen - Bruchrechnen - - G - Einstiegsaufgaben: a a a) + = 6x 4x a + a b) = 6x x a a c) = 6x 4x a a d) : = 6x 4x e) 7 = Merke: a) Addieren von Brüchen b) Subtrahieren von Brüchen c) Multiplizieren
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1
Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:
Thema aus dem Bereich Algebra lineare Gleichungen und Ungleichungen
Thema aus dem Bereich Algebra - 1.1 lineare Gleichungen und Ungleichungen Inhaltsverzeichnis 1 allgemeine Gleichungen 2 2 lineare Gleichungen mit einer Variabeln 2 3 allgemeingültige und nichterfüllbare
Direkte Proportionalität
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor
Mathematik-Übungssammlung für die Studienrichtung Facility Management
Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird
Mathematik -Intensivierung * Jahrgangsstufe 7. Lösung von Gleichungen durch Äquivalenzumformungen
Mathematik -Intensivierung * Jahrgangsstufe Lösung von Gleichungen durch Äquivalenzumformungen Musterbeispiel: 5 ( x - ) + x = ( 5 - x ) (Vereinfachen!) 5 x - 0 + x = 0-6 x (Vereinfachen!) 8 x - 0 = 0-6
M 8.1. Direkte Proportionalität. Wann heißen zwei Größen (direkt) proportional? Ananas kosten. Bestimme den Proportionalitätsfaktor.
M 8.1 Direkte Proportionalität Wann heißen zwei Größen (direkt) proportional? Ananas kosten Wie viel kosten Ananas? Bestimme den Proportionalitätsfaktor. Zeichne den Graphen der Zuordnung. M 8.2 Indirekte
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Materialienpaket für Deutsch in der 5. Klasse GI Georgien&GDV/September Das ABC Das ABC-Lied
Thema: Das deutsche Alphabet Inhalt: Das ABC Das ABC-Lied http://www.youtube.com/watch?v=zxqxeymmc0eö http://www.youtube.com/watch?v=uxsslcayfrk Buchstabenkärtchen Laufdiktat Wortgitter Deutsche Namen
Klapptest Lineare Gleichungen I
Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen
3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen
Taschenrechner TI 30, Formelsammlung Fundamentum
Ergänzungsprüfung Pädagogik - Lösungen Mathematik Bemerkungen Alle Berechnungen müssen in nachvollziehbaren Einzelschritten aufgeführt sein. Ungültiges ist durchzustreichen. Lösen Sie jede Aufgabe direkt
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Repetitionsaufgaben: Bruchtermgleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Bruchtermgleichungen Zusammengestellt von Caroline Schaepman, KSR Lernziele: - Eine Bruchgleichung erkennen und durch Multiplikation mit dem Hauptnenner
Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen
6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
6. Gleichungen und Ungleichungen
6. Gleichungen und Ungleichungen 6.Z Zusammenfassung Eine Gleichung entsteht, wenn zwei Terme unter Verwendung des Gleichheitszeichens " = " gleichgesetzt werden: T 1 = T 2. Eine Gleichung ohne Variablen
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b
D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt
das neue corporate design der Stadt aalen
inhalt das neue corporate design der Stadt aalen Das neue Corporate Design der Stadt Aalen Seite 1 inhalt 1 wort-bild-marke 2 typografie 3 farbklima 4 Stilelement band 5 Anwendungen Das neue Corporate
MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8.
MSA Probearbeit www.mathementor.de Stand 22.5.09 1. Fassen Sie die Terme zusammen soweit es geht: x + 10 (4 2x) = (3x + 4)² (x² + 2x + 15) = 4a²b³ : 2a³bz = 5bz 25z² 2. Berechnen Sie: Ein Viertel des Doppelten
Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn
M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit
Die am Goethe-Gymnasium eingeführten Mathematikbücher der Klassen 8, 9 10
Goethe-Gymnasium Bensheim Fachschaft Mathematik Hilde Zirkler Bensheim, im Juli 006 Übergang Klasse 10 / Klasse 11 Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik 1. Lineare Funktionen
Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am
Vorbereitungsaufgaben für den Teil 1 der 3. Klausur am 24.2.15 1 NT 2013: Quadratische und lineare Funktionen Die abgebildete Parabel gehört zur Funktion f mit f(x) = x 2 5 x + 4. a) Zeige durch eine Rechnung,
Berufliches Gymnasium Gelnhausen
Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten
Einige grundsätzliche Überlegungen:
Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen
Rechnen mit Potenzen und Termen
Sieglinde Fürst Rechnen mit Potenzen und Termen Themenbereich Algebra Inhalte Rechnen mit Potenzen - Rechenregeln Gleitkommadarstellung Auflösen von Klammern Multiplizieren von Termen Ziele Rechenregeln
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Teil I.2 Lösen von Bestimmungsgleichungen
Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Lösungen zu Differentialrechnung IV-Extremalprobleme
Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:
Inhaltsverzeichnis Mathematik
1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)
QUALITY-APPs Applikationen für das Qualitätsmanagement. Probieren und Studieren
QUALITY-APPs Applikationen für das Qualitätsmanagement Probieren und Studieren Der Netzplan (Activity Network Diagram AND) Planung und Steuerung erfolgreicher Projekte Autor: Jürgen P. Bläsing (nach einer
Quadratische Gleichungen
Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:
Lineare Gleichungssysteme
Lineare Gleichungssysteme Aufgabe: Gesucht sind Zahlen mit folgenden Eigenschaften:.) Subtrahiert man vom Dreifachen der ersten Zahl 8, so erhält man die zweite Zahl..) Subtrahiert man von der zweiten
Schritte plus Alpha 2: Transkriptionen der Hörtexte. Lektion 9: Berufe. Track 2 Lektion 9 X/x, Taxi, Text, Mixer
Schritte plus Alpha : Transkriptionen der Hörtexte Lektion 9: Berufe Track Lektion 9 X/x, Taxi, Text, Mixer Track Lektion 9 Sch/sch, Schneider, Schule, Schere Track Lektion 9 C/c, Computer, Cola, Cafe
Lösungen Prüfung Fachmaturität Pädagogik
Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt
Wurzelgleichungen 150 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen
Wurzelgleichungen 50 thematisch geordnete Wurzelgleichungen mit ausführlichen Lösungen 6. erweiterte Auflage vom 6.09.005 Copyright by Josef Raddy .Wurzelgleichungen mit einer Wurzel a) b) + + c) + 7 d)
Tim ist dreimal so alt wie... ( 2x + 7z)². Quelle:
ab ² Tim ist dreimal so alt wie... ( 2x + 7z)² Quelle: http://www.sinus.lernnetz.de Wochenprogramm 1 9/10 a²b² a) Berechne die Terme ohne den Taschenrechner zu benutzen. 1674. 28 1,674. 28 1,674. 2,8 1,
WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch
Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen
Lektion 1. Lektion 2. Lektion 3. Lektion Lektion 5 C
Lektion 1 Sprechimpulse und Redemittel: Zeichen und Zahlen Veränderungen erkennen - Mengen vergleichen - Zahlen - Zahlen und Mengen zuordnen - zählen Schreibrichtung - Zahlen abschreiben, ergänzen und
ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17
Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:
ELEMENTE. Grundkompetenzen DER MATHEMATIK. für die neue Reifeprüfung. Mit Lösungen
5 ELEMENTE DER MATHEMATIK GK Grundkompetenzen für die neue Reifeprüfung Mit Lösungen Die Formulierung der Grundkompetenzen (GK) bezieht sich auf den Stand von August 2010. 1. Auflage, 2010 Gesamtherstellung:
Aufgaben. zu Inhalten der 5. Klasse
Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Aufgaben zu Lineare Gleichungen mit einer Variablen. Einfache Gleichungen, Gleichungen mit Klammern und Binomen. a) x + 17 = 21.
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Lineare Gleichungen mit einer Variablen
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Lösen von quadratischen Gleichungen mit der pq-formel. Aufgabe & Lösung Erläuterungen
Thema Voraussetzungen Quadratwurzeln Lösen von quadratischen Gleichungen mit der pq-formel Aufgabe & Lösung Erläuterungen 1. Bestimme die Lösungen der Gleichung. Führe anschließend eine Probe durch. 1
Fach: Mathematik (schriftlich: 180 Minuten)
Ergänzungsprüfung für die Zulassung zu den Studiengängen Vorschul-/Primarstufe bzw. Primarschulstufe (gemäss Richtlinien der PH vom 17. Januar 2013): Musterarbeit Fach: Mathematik (schriftlich: 180 Minuten)
Grundwissen. 8. Jahrgangsstufe. Mathematik
Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche
Lösen von linearen Gleichungen und Gleichungssystemen
- 1 - VB 2004 Lösen von linearen Gleichungen und Gleichungssystemen Inhaltsverzeichnis Lösen von linearen Gleichungen und Gleichungssystemen... 1 Inhaltsverzeichnis... 1 Einführung... 2 Lösen einfacher
