Mathematischer Vorkurs zum Studium der Physik
|
|
|
- Friedrich Calvin Berger
- vor 10 Jahren
- Abrufe
Transkript
1 Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a) Welche Maßeiheit hat der Impuls i SI-Eiheite ausgedrückt? [p] kg m N s s b) Aus welchem Gesetz ka ma die Krafteiheit herleite? F d dt (p) c) Wer hat dieses Gesetz zuerst formuliert? Newto d) Welche Dimesio hat die Arbeit? [W] J N m e) Welche Eiheit hat die elektrische Feldstärke? [ E] V m f) Astroome beutze oft die Eiheit 1 Parsec (1 pc). 1 pc ist die Etferug, aus dem der Erdbahradius ( 1, m) uter dem Wikel eier Bogesekude (1 1/300 ) erscheit. Wieviel Meter etspreche 1 pc? 1 ( ) π 30 1pc 1, m ta (1 ) ( , m ) 1, m 1, m 1 π wie i folgeder Graphik veraschaulicht wird: 30 ( )
2 Aufgabe 1.: Umrechug vo Maßeiheite a) Bereche Sie 30,45, 0 ud 180 i Radia ud 1 rad bzw. rad i Grad. Ausgehed vo der Umrechug eies Vollkreises 30 π rad erhält ma: 30 1 π rad 0, 5 rad 45 1 π rad 0, 79 rad π rad 1, 05 rad π rad 3, 14 rad 1 rad 180 π rad 30 π 57, 3 114, b) Wie viele Sekude hat ei Sterejahr (siderisches Jahr) mit 35 Tage, Stude, 9 Miute ud 9,54 Sekude? 1 Sterjahr 35 d + h + 9 mi + 9, 54 s s s s + 9, 54 s , 54 s
3 c) Wieviel kostet es bei eiem Strompreis vo 0,19 EURO/kWh, we Sie eie Nacht lag sechs Stude eie 0-Watt Glühbire bree ud Ihre PC laufe habe, der ca. 00 Watt verbraucht? 00 W + 0 W 0 W 0, kw Gesamtverbrauch. 0, kw h 0, 19 EURO kwh 0, 3 EURO d) Zwei amerikaische Kider messe ihre Traiigsstrecke mit eiem Stab aus, der 5 Fuß ud Iches lag ist. Der Stab paßt 54 mal hiei. Wie heiß der Lauf bei us? Wieviele Rude müsse die beide laufe, bis sie eie Meile zurückgelegt habe? (1 Meile 1,09 km (USA), 1 Fuß 1 ft 30,48 cm, 1 Ich 1 i 1/1 ft,54 cm) Eie Umrechug des Stabes ergibt eie Läge vo 5 ft + i 5 1 i + i 157, 48 cm Daraus ergibt sich für die Läge der Traiigsstrecke: 157, 48 cm , 9cm 400 m Der etsprechede Lauf heißt im Deutsche 400-m-Lauf. Um eie Meile (109 m) zurückzulege, müsse sie 4,05 Rude laufe. e) Bill Gates sagte: If Geeral Motors had kept up with techology like the computer idustry, we would all be drivig twety-five dollar cars that got 1000 miles per gallo. Meite er das 3 Liter-Auto? (1 mile 1,09 km (USA), 1 gallo 3,785 l (USA)) miles 109 km Daraus ergibt sich die Azahl der Liter pro Kilometer a 1 ud daraus die Azahl der Liter pro 100 km a 100 wie folgt: a 1 3, 785 l 109 km 0, 0035 l km a 100 a , 35 l 100 km Bill Gates meite icht das 3 Liter-Auto, soder ei och effizieteres Fahrzeug.
4 Aufgabe 1.3: Dezimalvorsilbe a) Drücke Sie die Läge eies Sterejahres (siderisches Jahr) (35 d + h + 9 mi+ 9,54s) i Megasekude aus. Aus Aufgabe 1.. b) ist die Dauer eies Sterjahres i Sekude bekat. Daraus folgt: , 54 s 31, Ms b) Die ideale Dauer eies wisseschaftliche Vortrags beträgt ei Mikrojahrhudert. Wie viele Miute sid das? a mi 5, 5 mi c) Wie lage braucht ei Photo, um mit der Lichtgeschwidigkeit vo c, m/s 1 m weit durch de Hörsaal zu fliege? t 1, s s 70 s d) Bei der Plack-Eergie vo E p 1, 10 1 TeV werde für die Elemetarteilche Gravitatioseffekte erwartet. Drücke Sie die dieser Eergie etsprechede Plack-Masse M p i Gramm aus (1 ev 1, J) E p M p c M p E p c M p 1, , (, ) kg 10 g µg
5 Aufgabe zu Kapitel Aufgabe.1: a) Zeige Sie mit dem vorgeführte Gaußsche Rezept, dass m(m + 1) auch für ugerade m gilt. Nach dem Gaußsche Rezept, vo auße ach ie die Terme der Summe jeweils paarweise zusammezufasse, ergibt sich ach Umordug der Terme i der Summe 1 für ugerade m folgedes: 1 + m + + (m 1) m 1 ( m 1 + ) ( ) m Fasst ma vo liks begied die Terme immer paarweise zusamme, erhält ma (m-1)/ Terme, die (m+1) ergebe. Aufgrud des ugerade m bleibt ei Term der Summe, der icht mit eiem Parter addiert werde ka. Daraus ergibt sich: m 1 ( m 1 (m + 1) + Vollstädige Iduktio: ) + 1 m 1 (m + 1) + m + 1 (m + 1) m 1. Iduktiosbehauptug: m m(m+1) gilt für ugerade m.. Iduktiosafag: Die Behauptug gilt offesichtlich für m 1: 1 1 1(1+1) 3. Iduktiosvoraussetzug: m m(m+1) gilt für alle ugerade m kleier m Iduktiosschritt: Zeige, dass aus der Gültigkeit der Behauptug für m die Gültigkeit der Behauptug für die folgede ugerade Zahl (m+) folgt. 5. Iduktiosschluss: m+ m (m + )(m + 3) + (m + 1) + (m + ) 1 Die Umordug ist ur i absolut kovergete Summe erlaubt q.e.d.
6 b) Beweise Sie m(m + 1)(m + 1) Hiweis: Betrachte Sie m ( + 1)3 ud extrahiere Sie die Summe aus der Behauptug daraus, um das Gewüschte zu zeige. Bei explizitem Aufliste der Terme i der Summe im Hiweis, stellt ma fest, dass ma de Idex um eis i positiver Richtug verschiebe ka, um eie eifachere Summade zu erhalte: m ( + 1) (m + 1) 3 m+1 3 Adererseits ist die Summe im Hiweis gleichzeitig mit Hilfe des Pascalsche Dreiecks ausmultiplizierbar, woraus sich folgedes ergibt: ( + 1) m Um u die Behauptug zu zeige, werde die beide Ergebisse, die aus dem Hiweis gewoe wurde, gleichgesetzt ud diese Gleichug ach der Summe über aufgelöst: 3 m m (m + 1) (m + 1) m m (m 3 + 3m + 3m (m + 1) m m m 3 + 3m + m m (m + 1)(m + 1) woraus die Behauptug folgt, achdem beide Seite dieser Gleichug durch drei geteilt wurde. Zu beachte ist, dass sich im erste Schritt Terme vo bis m aus de erste beide Summe gegeseitig auliere ud das Ergebis aus Aufgabe.1. a) für die Summe über beutzt wurde. Der letzte Schritt ka am eifachste durch Ausmultipliziere des Ergebisses ud aschließedem Vergleich der eizele Terme erfolge.
7 Vollstädige Iduktio: 1. Iduktiosbehauptug: m m(m+1)(m+1) gilt für alle m N.. Iduktiosafag: Die Behauptug gilt offesichtlich für m 1: 1 1 1(1+1)( 1+1) 3. Iduktiosvoraussetzug: m m(m+1)(m+1) gilt für alle m kleier m Iduktiosschritt: Zeige, dass aus der Gültigkeit der Behauptug für m die Gültigkeit der Behauptug für die folgede Zahl (m+1) folgt. 5. Iduktiosschluss: m+1 m + (m + 1) (m + 1) (m + )(m + 3) q.e.d. wobei der letzte Schritt am eifachste durch Ausmultipliziere des Ergebisses ud aschließede Vergleich der eizele Terme erfolgt. Aufgabe.: a) Bestimme Sie die Läge der Raumdiagoale i eiem Würfel der Kateläge a. Mit Hilfe des Satzes vo Pythagoras ergibt sich a 3. b) Bereche Sie (a4 b 4 ) (a b) (a 4 b 4 ) (a b) (a b )(a +b ) (a b) (a b)(a+b)(a +b ) (a b) (a + b)(a + b ) a 3 + a b + ab + b 3 c) Bereche Sie ( ( 0) ud ). 0! ( 0)! 0!! ( )!! 1 d) Bereche Sie ( ( 7 4) ud 8 3). ( ) 7 7! 4 (7 4)! 4! 35 ( ) 8 8! 3 (8 3)! 3! 5
8 e) Zeige Sie: ( ( k) ) k k! ( ( k))! ( k)!! ( k)! k! k f) Beweise Sie das Bildugsgesetz des Pascalsche Dreiecks: ( ) ( ) ( ) k 1 k k + k 1 k! ( k + 1)! (k 1)! +! ( k)! k!!(k + k + 1) ( k + 1)! k! ( + 1)! ( + 1 k)! (k 1)! + 1 k
Abschlussprüfung 2013 an den Realschulen in Bayern
Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.
eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
Abschlussprüfung 2014 an den Realschulen in Bayern
Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur
Statistik I/Empirie I
Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
Klasse: Platzziffer: Punkte: / Graph zu f
Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25
Versicherungstechnik
Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge
e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)
Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +
Übungsblatt 1 zur Vorlesung Angewandte Stochastik
Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche
Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39
Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle
Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222
Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme
15.4 Diskrete Zufallsvariablen
.4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet
BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008
Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110
Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das
Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.
Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,
Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield
Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der
Gruppe 108: Janina Bär Christian Hörr Robert Rex
TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe
= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:
E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche
Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac
Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala
VAIO-Link Kundenservice Broschüre
VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum
Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable
Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex
Lerneinheit 2: Grundlagen der Investition und Finanzierung
Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der
Kapitel 6: Quadratisches Wachstum
Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =
Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß
Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme
Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v
Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)
Nachklausur - Analysis 1 - Lösungen
Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,
Wirtschaftsmathematik
Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede
3.2 Die Schrödinger-Gleichung
3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir
PrivatKredit. Direkt ans Ziel Ihrer Wünsche
PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe
3. Tilgungsrechnung. 3.1. Tilgungsarten
[email protected] 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie
Heute Kapitalanlage morgen ein Zuhause
Immobilie Heute Kapitalalage morge ei Zuhause Courtage: Kaufpreis: Preis auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892
Finanzmathematische Formeln und Tabellen
Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,
Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++
Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt
Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte
Flexibilität beim Lager ud Kommissioiere: Schieegeführte Regalbediegeräte Ei Kozept zwei Baureihe: DAMBACH Regalbediegeräte Seit mehr als 35 Jahre baut die DAMBACH Lagersysteme Regalbediegeräte ud gehört
Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.
Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger
Logarithmus - Übungsaufgaben. I. Allgemeines
Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht
AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3
INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE
h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert
Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...
2. Einführung in die Geometrische Optik
2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2
Wiederkehrende XML-Inhalte in Adobe InDesign importieren
Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert
Klausur Grundlagen der Investition und Finanzierung
Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule
Wissenschaftliches Arbeiten Studiengang Energiewirtschaft
Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:
Karten für das digitale Kontrollgerät
Karte für das digitale Kotrollgerät Wichtige Iformatioe TÜV SÜD Auto Service GmbH Die Fahrerkarte Im Besitz eier Fahrerkarte muss jeder Fahrer sei, der ei Kraftfahrzeug mit digitalem Kotrollgerät zur Persoebeförderug
Vorlesung Informationssysteme
Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma ([email protected]) Foto: M. Strauch Aus de Videos wisse Sie......welche
Stichproben im Rechnungswesen, Stichprobeninventur
Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-
Kunde. Kontobewegung
Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:
Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i
D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi
Mit Ideen begeistern. Mit Freude schenken.
Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug
NEL Suchspulen - für jeden Detektor! TOP Leistung von unabhängigen Experten bestätigt. Such Spulen. nel-coils.de Shop ww.nuggets24.
NEL Suchspule - für jede Detektor! TOP Leistug vo uabhägige Experte bestätigt Such Spule el-coils.de Shop ww.uggets24.com el-coils.de Metalldetektor OlieShop www.uggets.at www.uggets24.com NEL BIG Die
Projekt Kochplatte. Ergänzen Sie die Schaltung zur Messung der elektrischen Energie und schließen Sie den Zähler an.
System- ud Gerätetecik Projekt Kocplatte Uterrictsleitug: Bucer Name: Datum: Seite C C C Sie abe u die Kocplatte repariert ud das Prüfprotokoll fertiggestellt Als der Kude die Kocplatte bei Ie abolt, will
3Landlust auf Hofweier? Kaufpreis: 230.000,00 Euro Courtage: 3,57% incl. 19% MwSt für den Käufer
3Ladlust auf Hofweier? Kaufpreis: 230.000,00 Euro Courtage: 3,57% icl. 19% MwSt für de Käufer OBJEKTDATEN Haustyp Eifamiliehaus Baujahr 1955 Letzte Moderisierug/ Saierug 2001 Zimmer 6 Wohfläche ca. 147,00
HONORAR Honorarabrechnung
HONORAR Hoorarabrechug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Freie Formulargestaltug... 5 3.2 Positiosvorschläge aus Leistuge bzw. Gegestadswerte...
Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.
C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische
Investitionsentscheidungsrechnung Annuitäten Methode
Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der
Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.
Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge
Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:
md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de
Aufgaben und Lösungen der Probeklausur zur Analysis I
Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur
Arbeitsplätze in SAP R/3 Modul PP
Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,
Projektmanagement Solarkraftwerke
Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale
BILANZ. Bilanzbericht
BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 03 2 Itegratio i das AGENDA-System... 04 3 Highlights... 05 3.1 Gestaltug vo Bilazberichte... 05 3.2 Stadardbausteie idividuell apasse... 06
Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares
4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus
DOWNLOAD. Arbeiten im Baumarkt. Mathe-Aufgaben aus dem. Pools, Pumpen, Wassermengen. Karin Schwacha. Downloadauszug aus dem Originaltitel:
DOWNLOAD Karin Schwacha Arbeiten im Baumarkt Mathe-Aufgaben aus dem Berufsalltag: Pools, Pumpen, Wassermengen Mathe-Aufgaben aus dem Berufsalltag Klasse 8 10 auszug aus dem Originaltitel: Aus vielen Berufen
Gliederung. Value-at-Risk
Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug
KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern
KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher
Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.
Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere
Zahlenfolgen, Grenzwerte und Zahlenreihen
KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:
Energetisches Feng Shui
KONZEPTE CHRISTIANE PAPENBREER Eergetisches Feg Shui Die Welt voller Eergie Die Afäge des Feg Shui liege im Dukel. Bereits vor tausede vo Jahre solle die legedäre chiesische Kaiser Prizipie des Feg Shui
Finanzmathematik für HAK
Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12
Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls
Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen
2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.
Die Instrumente des Personalmanagements
15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!
( 3) k ) = 3) k 2 3 für k gerade
Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3
Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung
Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8
Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir
3. Einführung in die Statistik
3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher
evohome Millionen Familien verfolgen ein Ziel: Energie zu sparen ohne auf Komfort zu verzichten
evohome Eergie spare weiter gedacht Millioe Familie verfolge ei Ziel: Eergie zu spare ohe auf Komfort zu verzichte evohome Nie war es schöer Eergie zu spare Es gibt viele iteressate Möglichkeite, eergie-
Lektion II Grundlagen der Kryptologie
Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit
Projektmanagement. Changing the way people work together
Der Projektleiter ist ählich eiem Uterehmer veratwortlich für Mesche, Techik ud Prozesse. Ihre Aforderuge plus usere Kompeteze sid Ihre Erfolgsfaktore Die Führug eies Projekts etspricht im Wesetliche der
Medienzentrum. Bibliothek. Handreichung zur Literatursuche
Mediezetrum Bibliothek Hadreichug zur Literatursuche Versio 1.6 23.09.2014 Sie schreibe Ihre Abschlussarbeit? Sie suche Literatur zu Ihrem Thema? Da hilft Ihe usere Hadreichug zur Literatursuche (icht
n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:
61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl
LOHN KUG, ATZ, Pfändung, Darlehen und Bescheinigungswesen
LOHN KUG, ATZ, Pfädug, Darlehe ud Bescheiigugswese Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Elektroischer AAG-Erstattugs-Atrag... 4 2.2 Elektroische EEL-Bescheiigug... 5 2.3 Kurzarbeitergeld...
( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1
Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge
A 2. Abb. 1: Analogon zum rechtwinkligen Dreieck
Has Walser, [0076], [0080] Verallgemeierug des Satzes vo Pythagoras Hiweis: H. Sch., W. Im Raum. Aalogo zum rechtwiklige Dreieck Wir ersetze de zweidimesioale rechte Wikel durch eie Raumecke, wie sie bei
ProjectFinder Der Kommunen Optimierer! Lassen Sie sich ProjectFinder noch heute vorführen. Warum auch Sie ProjectFinder nutzen sollten
ProjectFider Der Kommue Optimierer! Lasse Sie sich ProjectFider och heute vorführe. Warum auch Sie ProjectFider utze sollte re re abwickel ojekte r P ich e r g fol Er Op tim ie e Si Ih g u Pla Behalte
Der Durchbruch in der Zusammenarbeit. Health Relations
Der Durchbruch i der Zusammearbeit Health Relatios Warum isoft Health Relatios? Der demografische Wadel hat Folge für die Behadlugsbediguge: Es müsse immer mehr Patiete versorgt werde bei gleichzeitig
Einführung in die Investitionsrechnung
Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee
Reengineering mit Sniffalyzer
Reegieerig mit Siffalyzer Dr. Walter Bischofberger Wid River Ic. [email protected] http://www.widriver.com/siff 30.10.01 2001 Wid River Systems, Ic. 1 Das Siffgate Projekt Motivatio Schaffe eier Plattform
Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.
Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste
Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung
ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff
x mit Hilfe eines linearen, zeitinvarianten
Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede
IM OSTEN VIEL NEUES... Kaufpreis: 350.000,00 Euro 3,57% incl. 19% MwSt für den Käufer
Immobilie IM OSTEN VIEL NEUES... Courtage: Kaufpreis: 350.000,00 Euro 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892 Email [email protected]
