Differenzverstärker U T

Größe: px
Ab Seite anzeigen:

Download "Differenzverstärker U T"

Transkript

1 Differenzverstärker Problem der Verstärkung kleiner Gleichspannungen Verwendung zweier exakt gleicher, thermisch eng gekoppelter Verstärker als sog. Differenzverstärker Ausgangsspannungsdifferenz ist nur von der Eingangsspannungsdifferenz abhängig. Gesamter Temperatureinfluß durch eine temperaturabhängige Spannungsquelle am Eingang berücksichtigt U T ƒ1

2 Differenzverstärker U A1 = g ( u U E1 +U ) T U A2 = g ( u U E 2 +U ) T Differenzeingang Differenzausgang Nur thermische Kopplung keinerlei elektrische Verbindung zwischen den beiden Verstärkern. U A = g ( u U E1!U ) E 2 = g u U D ƒ2

3 Differenzverstärker NT: kleine Differenzen U D von großen Einspannungsspannungen U E1 bzw. U E 2 können diesen Differenzverstärker leicht in die Aussteuergrenze treiben Übersteuerung Gleichtakt-Eingangsspannung Mittelwert der beiden Eingangsspannungen U GT = U E1 +U E 2 2 U D g u wird genauso wie mit verstärkt ƒ3

4 Differenzverstärker U E1 = U E 2 = 0! U Re = U!!U be I e1 = I e2 = I e / 2 I e1 = I c1 + I b1! I c1 I c1 = I c2 U A1 = U +! I c1 R c U A2 = U +! I c2 R c U A = U A1!U A2 = 0 ƒ4

5 Differenzverstärker Betrachtung kleiner, ansonsten aber beliebiger Eingangsspannungen die wir uns in ein Gleichtaktspannung aufgeteilt denken und eine Differenzspannung U GT = U E1 +U E 2 2 U D = U E1!U E 2 Gleichaktspannung U GT wirkt auf beide Transistoren gleichsinnig. Gemeinsamer Emitterwiderstand R e auf 2 einzelne parallelgeschaltete Emitterwiderstände 2R e für jeden Transistor aufgeteilt gedacht 2R e 2R e = R e Bei gleichsinnigen Änderungen (bei konstant gehaltener Differenz) der Eingangsspannungen Verbindung zwischen den beiden parallelgeschalteten Widerständen stromlos aufgetrennt gedacht. ƒ5

6 Differenzverstärker 2 unabhängige Verstärkerstufen Spannungsverstärkung - R c /2R e U A1 =! R c 2 R e U E1 U A2 =! R c 2 R e U E 2 g ugt = U AGT U EGT = U A1 +U A2 2 U E1 +U E 2 2 =! R c 2 R e ƒ6

7 Differenzverstärker Bei konstanter Gleichakt- Eingangsspannung gilt für die Verstärkung von (kleinen) Differenzspannungen: U E1 +U! = U be1 +U Re U E1!U be1 = U Re!U! = U E 2!U be1 U E1!U be1 = U Re!U! = U E 2!U be1 Wir denken uns nun U D in U be1 = U D /2 und U be2 = -U D /2 aufgeteilt ƒ7

8 Differenzverstärker!I e =!I e1 +!I e2 = U D / 2 h 11 e " U D / 2 h 11 e = 0 Die Spannnung U Re bleibt trotz des Differenzeingangssignals konstant. Den gemeinsamen Emitterpunkt der beiden Transistoren können wir uns daher bezüglich Differenzspannungen am Eingang virtuell mit der Masse verbunden denken (virtual ground) und die Transistoren arbeiten bezüglich der Spannungen U D /2 und -U D /2 in einfacher Emitterschaltung ƒ8

9 Differenzverstärker!U A1 = " R c!i c1 = " R c #!I b1 = " R c# h 11 e!u b1 = g ud!u b1 = g ud!u D / 2!U A2 = " g ud!u D / 2!U A =!U A1 "!U A2 = g ud!u D g ud = " #R c h 11 e, (h 11 e = r be ) Unter Gleichtaktunterdrückung (common mode rejection ratio CMRR) versteht man das Verhältnis aus Differenzverstärkung zu Gleichtaktverstärkung: ƒ9

10 Kaskadenverstärker ƒ10

11 Rückkopplung - Harmonische Oszillatoren a = Ae!!!!!!FAe A(!) " A'(!) a Ausgangsgröße e Eingangsgröße s Steuergröße s = e + F ' a R F(!) " F '(!) a R = A' s = A' e + A' F ' a R ƒ11

12 Rückkopplung Harmonische Oszillatoren a R = A' s = A' e + A' F ' a R Rückkopplung feed back Mitkopplung positive Gegenkopplung negative a R = A' 1! A' F ' = A R e AR Wirksame Übertragungsfunktion 1! A' F ' = 0!!!!!!"!!!!!!e # 0 A' F ' = 1 Bei Nullwerden des Nenners Kreis- oder Schleifenverstärkung der Rückkkopplungsschaltung = 1 Rückkopplungsbedingung für den harmonischen Oszillator ƒ12

13 Operational Amplifier OpAmp Differenzverstärker Geradeausverstärkung Open Loop Gain Differenzspannungsverstärkung ohne Gegenkopplung ƒ13

14 Idealer Operationsverstärker Schaltsymbol des idealen OV Geradeausverstärkung A = g u! " Eingangsimpedanz Ohne Gegenkopplung (open loop) funktioniert der OV als Komparator: u + > u!!!!"!!!u A # +!$!!(+U 0 ) u + < u!!!!"!!!u A #!!$!!(!U 0 ) Z E! " Ausgangsimpedanz Z A = 0 Invertierender Eingang o - Nichtinvertierender Eingang ƒ14

15 Invertierende Operationsverstärkerschaltung i 1 i 2 u S u E u A g 0 u A = g 0 u S u A = gu E u S = u E! i 1 i 1 =!i 2 =! u A! u S u S = u E + u A! u S u S = u E + u A 1 + ƒ15

16 Invertierende Operationsverstärkerschaltung! u A 1 + " # $ % & = g 0 u E + g 0 u A u A = g 0 u S u S = u E + u A 1 + " u A 1 + R! g 1 # $ R 0 2 % & ' = g 0 u E lim g g 0!" = # g = u A u E = g 0 1 +! g 0 = + g 0! ƒ16

17 Summenpunktregeln lim g g 0!" = # 1. In keinen der OV-Eingänge kann ein Strom fließen 2. Zwischen den beiden OV-Eingängen kann sich bei geschlossener Rückkopplungsschleife keine Spannung ausbilden (virtueller Kurzschluss) ƒ17

18 Invertierende Operationsverstärkerschaltung i 1 =!i 2 i 1 = u E i 2 = u A! U E!=! U A!!!"!!! U A U E =! Der Eingangwiderstand der Schaltung ist wegen des virtuellen Kurzschlusses zwischen den OV-Eingängen gleich R1. ƒ18

19 Nichtinvertierende Operationsverstärkerstärkerschaltung Elektrometerverstärkerschaltung u A u E = + Da kein Strom in den invertierenden Eingang des OV fließt, bilden R2 und R1 einen einfachen, nicht belasteten Spannungsteiler. ƒ19

20 Differenzierschaltung Schaltsymbol des idealen OV Ohne Gegenkopplung (open loop) funktioniert der OV als Komparator: u A =!RC du E dt i 1 = C du C dt = C du E dt =!i 2 =! u A R ƒ20

21 Integrierschaltung Problem: Ausgangs-Offset-Spannung u A =! 1 RC t " u Edt' 0 i 1 = u E R =!i 2 =!C du C dt =!C du A dt ƒ21

22 Summierschaltung Addition von Spannungen mit einem gemeinsamen Bezugs- (Masse-)Punkt. Aus den beiden Summenpunktregeln folgt direkt: u E1 + u E2 + u En R n =! u A R A Für folgt = = R n = R A = R!!!!!!!!!u A = " n # u Ek k=1 ƒ22

23 ! Invertierende Operationsverstärkerschaltung Inverter i 1 =!i 2 i 1 = u E i 2 = u A! U E!=! U A!!!"!!! U A U E =! =!!!"!!!!U A =!U E durch Vorzeichenwechsel wird auch die Subtraktion einer Spannung realisierbar. ƒ23

24 Spannungsfolger u A! u E ƒ24

25 Idealer Gleichrichter ƒ25

26 Realer Operationsverstärker ƒ26

27 Realer Operationsverstärker ƒ27

28 Realer Operationsverstärker Geradeausverstärkung Open Loop Gain A[dB] = 20 log u A u S!!!typ.!10 6 Frequenzabhängigkeit Frequenzkompensation Frequency compensation A = A(!)e j" (!) Eingangsimpedanz Z E! " Ausgangsimpedanz Z A! 100" ƒ28

29 Realer Operationsverstärker Eingangs-Offsetspannung Input Offset Voltage u S!!!!!!u A = 0 Ausgangs-Offsetspannung Output Offset Voltage u S = 0!!!!!!!u A U A0 = AU S0 Temperaturabhängigkeit der Offsetspannung!U S0!T Gleichtaktfehler Verstärkung der Gleichtaktspannung u GT = u! + u + 2!!!!!!u A = Au S + A GTU u GT ƒ29

30 Realer Operationsverstärker Gleichtaktunterdrückung GTU Common Mode Rejection Ratio CMRR u S!!!!!!u A = 0 Einfluss und Unterdrückung von Betriebsspannungsschwankungen Supply Voltage Rejection Ration!u A!u B!!!!!!!u B!u A!!u B!u A bis 150 db ƒ30

31 Nichtlineare Verstärker Rechteck-Impulsformer ƒ31

32 Nichtlineare Verstärker Komparator ƒ32

33 Nichtlineare Verstärker Schmitt-Trigger ƒ33

Operationsverstärker OPV

Operationsverstärker OPV Operationsverstärker OPV Quelle:1 Houssein Zreik Betreuer : Ulrich Pötter 3/5/2010 Übersicht Geschichte Schaltsymbole Struktur Ansteuerung Temperaturbereich Idealer/Realer OPV Übertragungskennlinie Verstärkung

Mehr

E29 Operationsverstärker

E29 Operationsverstärker E29 Operationsverstärker Physikalische Grundlagen Ein Operationsverstärker (OPV) ist im Wesentlichen ein Gleichspannungsverstärker mit sehr hoher Verstärkung und einem invertierenden (E-) sowie einem nichtinvertierenden

Mehr

Projektlabor Sommersemester 2009 Mathis Schmieder. Operationsverstärker 1

Projektlabor Sommersemester 2009 Mathis Schmieder. Operationsverstärker 1 Operationsverstärker Projektlabor Sommersemester 2009 Mathis Schmieder Operationsverstärker 1 Was ist ein OPV? Gliederung Geschichte des Operationsverstärkers Genereller Aufbau und Funktion Ideale und

Mehr

1 Grundbegriffe S DC- und Kleinsignal-Ersatzschaltung S Verstärkertypen S1-26

1 Grundbegriffe S DC- und Kleinsignal-Ersatzschaltung S Verstärkertypen S1-26 Elektronik 1 - Formelsammlung (Revision : 1131 - powered by LATEX) Seite 1 von 9 1 Grundbegriffe S1 1.1 DC- und Kleinsignal-Ersatzschaltung S1-15 1. Verstärkertypen S1-6 Verstärkerfaktoren: - Spannungs-Verstärkerfaktor

Mehr

i c1 R c i b1 i b2 u a2 u e1 u e R e

i c1 R c i b1 i b2 u a2 u e1 u e R e Übungen zum 6. Versuch 13. Dezember 01 Elektronik 1 - UT-Labor 1. Folgende Schaltung zeigt einen einfachen Differenzverstärker. i c1 i c U b R c R c u a1 i b1 i b u a u e1 u e U b u e R e a) Stellen Sie

Mehr

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer:

Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer: Gruppe: 1/10 Versuch: C PRAKTIKM SCHALTNGSTECHNIK VERSCH C Differenzverstärker Versuchsdatum: 14.06.2006 Teilnehmer: 1. Vorbereitung 1.1 Definitionen Grossignalverhalten des idealen Differenzverstärkers

Mehr

Praktikum Versuch Bauelemente. Versuch Bauelemente

Praktikum Versuch Bauelemente. Versuch Bauelemente 1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.

Mehr

12. Operationsverstärker

12. Operationsverstärker 12. Operationsverstärker 12.1 Definition, Schaltbild, Anschlüsse Operationsverstärker sind Verstärker für elektrische Signale aller Art. Sie heissen so, weil sie früher für mathematische Operationen in

Mehr

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wird

Mehr

Integrierte Operationsverstärker. Theoretische Grundlagen. 1. Einleitung. 2. Schaltsymbol eines integrierten Operationsverstärkers

Integrierte Operationsverstärker. Theoretische Grundlagen. 1. Einleitung. 2. Schaltsymbol eines integrierten Operationsverstärkers 1 Dr.-Ing. Gottlieb Strassacker Dr.-Ing. Peter Strassacker Strassacker lautsprechershop.de Integrierte Operationsverstärker Theoretische Grundlagen 1. Einleitung Integrierte Operationsverstärker (Operational

Mehr

8 Operationsverstärker

8 Operationsverstärker Die bisher diskutierten Schaltungen mit Transistoren sind relativ beschränkt in ihrem Anwendungsbereich, da sie miest nur für einen relativ engen Bereich von Parametern befriedigend funktionieren Dies

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse A 06: Transistor & Verstärker. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse A 06: Transistor & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 04.05.2016 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = Maschenregel Σ ( ) = Ersatzquellen Überlagerungsprinzip Voraussetzung:

Mehr

Kapitel 9. Anwendungsschaltungen mit Operationsverstärkern

Kapitel 9. Anwendungsschaltungen mit Operationsverstärkern Kapitel 9 Anwendungsschaltungen mit Operationsverstärkern Die hier betrachteten Schaltungen mit OP lassen sich unterteilen in solche mit einer relativ geringen Ansteuerung und andere, die den OP voll aussteuern.

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

Operationsverstärker (E 20)

Operationsverstärker (E 20) Operationsverstärker (E 20) Ziel des Versuches In der physikalischen Messtechnik erfolgt die Verarbeitung elektrischer Signale (messen, steuern, regeln, verstärken) mit Hilfe elektronischer Schaltungen

Mehr

Bis jetzt: 2-polige, passive Bauelemente (Widerstand, Kondensator, Drossel)

Bis jetzt: 2-polige, passive Bauelemente (Widerstand, Kondensator, Drossel) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien lektronische Messgeräte im lektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker Sensorik PID-egler

Mehr

Operationsverstärker. 24. Mai Martin Albert

Operationsverstärker. 24. Mai Martin Albert Operationsverstärker - Martin Albert - - 24. Mai 2006 - Gliederung Einführung Grundlagen Grundlegende Schaltungen spezielle Typen 2 Gliederung Einführung Begriff OPV Grundlagen Transistor Grundschaltungen

Mehr

Kleine Formelsammlung zu Elektronik und Schaltungstechnik

Kleine Formelsammlung zu Elektronik und Schaltungstechnik Kleine Formelsammlung zu Elektronik und Schaltungstechnik Florian Franzmann 21. September 2004 Inhaltsverzeichnis 1 Stromrichtung 4 2 Kondensator 4 2.1 Plattenkondensator...............................

Mehr

Labor für elektrische Messtechnik Fakultät Elektro-Feinwerk- und Informationstechnik. 1. Einführung. Versuch Operationsvertärker-Schaltungen

Labor für elektrische Messtechnik Fakultät Elektro-Feinwerk- und Informationstechnik. 1. Einführung. Versuch Operationsvertärker-Schaltungen Fassung vom 8..09 Blatt. Einführung Der Operationsverstärker OPV ist ein mehrstufiger Gleichspannungsverstärker mit großer Verstärkung. Die Leerlaufverstärkung V 0 = 0 6 bis 0 8. Er ist ein Differenzverstärker,

Mehr

Elektronische Grundlagen

Elektronische Grundlagen Elektronische Grundlagen [ Einführung in die Technische Informatik ] Univ.-Prof. Dr. Paul Molitor Lehrstuhl für Technische Informatik Institut für Informatik Martin-Luther-Universität Halle-Wittenberg

Mehr

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik

Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Dauer: 90 Minuten Zugelassene Hilfsmittel: alle eigenen Diplomprüfung SS 2012 Elektronik/Mikroprozessortechnik Matr.-Nr.: Hörsaal:

Mehr

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen

Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski. Operationsverstärker. OPV-Kenndaten und Grundschaltungen Mathias Arbeiter 02. Mai 2006 Betreuer: Herr Bojarski Operationsverstärker OPV-Kenndaten und Grundschaltungen Inhaltsverzeichnis 1 Eigenschaften von Operationsverstärkern 3 1.1 Offsetspannung..........................................

Mehr

Elektrotechnik II Übung 3

Elektrotechnik II Übung 3 Elektrotechnik II Übung 3 Prof. Dr. Göran Andersson FS 2011 http://www.eeh.ee.ethz.ch/ Feedback zur Übung 2 Übung 3-2 Ziel und Motivation der Übung 3 Ziele: 1. Praktische Realisierung eines PID-Reglers

Mehr

Übungsaufgaben EBG für Mechatroniker

Übungsaufgaben EBG für Mechatroniker Übungsaufgaben EBG für Mechatroniker Aufgabe E0: Ein Reihen- Schwingkreis wird aus einer Luftspule und einem Kondensator aufgebaut. Die technischen Daten von Spule und Kondensator sind folgendermaßen angegeben:

Mehr

Versuch E24 - Operationsverstärker. Abgabedatum: 24. April 2007

Versuch E24 - Operationsverstärker. Abgabedatum: 24. April 2007 Versuch E24 - Operationsverstärker Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Thema des Versuchs 3 2 Physikalischer Kontext 3 2.1 Operationsverstärker......................... 3 2.1.1

Mehr

Fundamentals of Electrical Engineering 1 Grundlagen der Elektrotechnik 1

Fundamentals of Electrical Engineering 1 Grundlagen der Elektrotechnik 1 Fundamentals of Electrical Engineering 1 Grundlagen der Elektrotechnik 1 Chapter: Operational Amplifiers / Operationsverstärker Michael E. Auer Source of figures: Alexander/Sadiku: Fundamentals of Electric

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Elektronik-Praktikum-Eingangstest Lernzettel

Elektronik-Praktikum-Eingangstest Lernzettel Elektronik-Praktikum-Eingangstest Lernzettel 22. Oktober 2004 Ich möchte jeden, der von dieser Liste profitiert, bitten, zu ihrer Vollständigkeit beizutragen. Wenn Dir also auffällt, dass noch etwas fehlt,

Mehr

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN

PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN PROTOKOLL ZUM VERSUCH SIGNALGENERATOREN UND GESTEUERTE QUELLEN CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 1.3. Vorbetrachtungen 2 2. Versuchsdurchführung 6

Mehr

Laborübung Gegentaktendstufe Teil 1

Laborübung Gegentaktendstufe Teil 1 Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers

Mehr

Ideale Operationsverstärker

Ideale Operationsverstärker 1 Ideale Operationsverstärker 1.1 Eigenschaften Unter einem idealen Operationsverstärker wollen wir ein Bauelement verstehen, das durch das folgende Symbol 1 (Abbildung 1.1) dargestellt wird: i P i a u

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Amateurfunk-Kurs Ortsverband C Ø1, Vaterstetten 16.01.06

Amateurfunk-Kurs Ortsverband C Ø1, Vaterstetten 16.01.06 Netzteil 1 Netzgerätetechnik Die bei fast allen elektronischen Geräten benötigte Betriebspannung ist eine Gleichspannung, die üblicherweise in einem Bereich von 6..24 V liegt. Um diese Betriebspannungen

Mehr

Auswertung Operationsverstärker

Auswertung Operationsverstärker Auswertung Operationsverstärker Marcel Köpke & Axel Müller 31.05.2012 Inhaltsverzeichnis 1 Emitterschaltung eines Transistors 3 1.1 Arbeitspunkt des gleichstromgegengekoppelter Transistorverstärker....

Mehr

Ein Operationsverstärker ohne Gegenkopplung ist ein einfacher Komparator.

Ein Operationsverstärker ohne Gegenkopplung ist ein einfacher Komparator. 2.5 Funktionsschaltungen Mit Operationsverstärkern lassen sich einige Funktionen realisieren, die mit diskreten Bauelementen aufwendig oder nur mit großen Unzulänglichkeiten herzustellen sind. Manchmal

Mehr

HV Netzteil für die Anodenspannung

HV Netzteil für die Anodenspannung HV Netzteil für die Anodenspannung Ich Stelle euch eine Einfache Schaltung vor, mit der man Die Wechselstrom Anteile im DC Bereich noch weiter Minimieren kann. Gerade wenn es Darum geht Kleine Signale

Mehr

Überblick über Quadratur-Generation. Roland Pfeiffer 15. Vorlesung

Überblick über Quadratur-Generation. Roland Pfeiffer 15. Vorlesung Überblick über uadratur-generation Oszillator A Oszillator B Roland Pfeiffer 15. Vorlesung Design einer uadratur-generation Ihr Chef stellt Ihnen die Aufgabe, ein Signal in zwei um 90 phasenversetzte Signale

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Energie E= 1 Q r 4 r 2 r F = E q W 12 =Q E ds

Mehr

Operationsverstärker

Operationsverstärker Fakultät Elektrotechnik Seite 1 von 11 Operationsverstärker Ziel: - Kennenlernen der elektronischen Eigenschaften des OV (statisch und dynamisch) - Anwenden des OV in charakteristischen Schaltungen Literatur:

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Vorbereitung Matthias Ernst Matthias Faulhaber Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker (gleichstromgegengekoppelt)

Mehr

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

Inhaltsverzeichnis. Wolfgang Reinhold. Elektronische Schaltungstechnik. Grundlagen der Analogelektronik ISBN:

Inhaltsverzeichnis. Wolfgang Reinhold. Elektronische Schaltungstechnik. Grundlagen der Analogelektronik ISBN: Inhaltsverzeichnis Wolfgang Reinhold Elektronische Schaltungstechnik Grundlagen der Analogelektronik ISBN: 978-3-446-42164-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42164-6

Mehr

Versuch: A3 Verstärkerschaltungen für ein EKG

Versuch: A3 Verstärkerschaltungen für ein EKG Versuch: A3 Verstärkerschaltungen für ein EKG Ziel dieses Versuches: Transistoren und OP als Verstärker verstehen. Inhalte: Differenzverstärker aus Transistoren und OPs, Spannungsverstärkung, OP als Komparator,

Mehr

Stromspiegel und Differenzverstärker

Stromspiegel und Differenzverstärker Stromspiegel und Differenzverstärker Gunnar Demke, Studiengruppe E3A München den,25.01.02, Gliederung 1.Stromspiegel... 3 1.1.Statisches Verhalten Stromverhältnisse, Kennlinien und Innenwiderstände...

Mehr

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik

Mehr

TNF. Musterlösungen Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel

TNF. Musterlösungen Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel TNF Musterlösungen Übung Halbleiterschaltungstechnik WS 212/13 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 44 Linz, Internet:

Mehr

Aufbau eines Oszillators Theorie und Beispiele

Aufbau eines Oszillators Theorie und Beispiele Aufbau eines Oszillators Theorie und Beispiele Inhaltsverzeichnis 1 Theoretischer Aufbau eines Oszillators 2 Kenngrößen eines Schwingkreises 3.1 Beispiel1: Meissner-Schaltung 3.2 Beispiel2: Wien-Robinson

Mehr

Übungsaufgaben zum 5. Versuch 13. Mai 2012

Übungsaufgaben zum 5. Versuch 13. Mai 2012 Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

RATIOMETRISCHES INTERFACE IC PRINZIPIELLE FUNKTION

RATIOMETRISCHES INTERFACE IC PRINZIPIELLE FUNKTION PINZIPIELLE FUNKTION Verstärkung von differentiellen Sensorsignalen in eine der Versorgungsspannung ratiometrische Ausgangsspannung zwischen 0,5 und,5v V CC = 5V 5% differentielle Eingangsspannung V OUT

Mehr

Versuch EP5 Der Operationsverstärker

Versuch EP5 Der Operationsverstärker BERGISCHE UNIVERSITÄT WUPPERTAL FACHBEREICH C - PHYSIK ELEKTRONIKPRAKTIKUM Versuch EP5 Der Operationsverstärker Version 2.14, TEX: 3. Februar 2014 I. Zielsetzung des Versuches Wichtige Halbleiterbausteine

Mehr

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω

R 4 R 3. U q U L R 2. Probeklausur Elektronik, W 2015/ Gegeben ist die folgende Schaltung: R 1 1. R2= 1,1 kω Probeklausur Elektronik, W 205/206. Gegeben ist die folgende Schaltung: R U q R 3 R 2 R 4 U L 2 mit Uq= 0 V R= 800 Ω R2=, kω R3= 480 Ω R4= 920 Ω a) Berechnen Sie durch Anwendung der Kirchhoffschen Gesetze

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Realer Operationsverstärker

Realer Operationsverstärker Realer Operationsverstärker Zusammenfassung Ideale Operationsverstärker können mit einem einfachen mathematischen Modell beschrieben werden. Unter der Annahme, dass die Eingangsströme verschwindend klein

Mehr

Messung elektrischer Größen bei verschiedenen Spannungsformen

Messung elektrischer Größen bei verschiedenen Spannungsformen Laborversuch Messung elektrischer Größen bei verschiedenen Spannungsformen Begleitend zum Modul Messtechnik und EMV Dipl.-Ing. Ralf Wiengarten Messung elektrischer Größen bei verschiedenen Spannungsformen

Mehr

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz 3. Versuch Durchführung Seite G - 6 Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz Vorbemerkung: Betreibt man einen Operationsverstärker ohne Gegenkopplung,

Mehr

Skriptum zur 3. Laborübung. Operationsverstärker

Skriptum zur 3. Laborübung. Operationsverstärker Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 3. Laborübung Operationsverstärker Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter Wolfgang Puffitsch

Mehr

,WI November Institut für Experimentelle Kercphvsik. Schnc ller Vorverstärker! 00 K -EKP. Joachim Kind

,WI November Institut für Experimentelle Kercphvsik. Schnc ller Vorverstärker! 00 K -EKP. Joachim Kind November 1964,WI-1 257 Institut für Experimentelle Kercphvsik Schnc ller Vorverstärker! 00 K -EKP Joachim Kind KERNFORSCHUNGS ZENTRUM KARLSRUHE November 1964 Institut für Experimentelle Kernphysik Schneller

Mehr

Sensorsignalverstärker? Arbeitsplan Stückliste Werkzeuge + Prüf-und Hilfsmittel Schaltplan Wheatstonesche Brücke Platinenlayout (oben/unten)

Sensorsignalverstärker? Arbeitsplan Stückliste Werkzeuge + Prüf-und Hilfsmittel Schaltplan Wheatstonesche Brücke Platinenlayout (oben/unten) Sensorsignalverstärker? Arbeitsplan Stückliste Werkzeuge + Prüf-und Hilfsmittel Schaltplan Wheatstonesche Brücke Platinenlayout (oben/unten) Anschlussplan Innen und Außenansicht Genauere Informationen

Mehr

Frequenzgang der Verstäkung von OPV-Schaltungen

Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Verstäkung von OPV-Schaltungen Frequenzgang der Spannungsverstärkung eines OPV Eigenschaten des OPV (ohne Gegenkopplung: NF-Verstärkung V u 4 Transitrequenz T 2. 6. Hz T Knickrequenz =

Mehr

Protokoll zum Versuch OV II im Elektronikpraktikum

Protokoll zum Versuch OV II im Elektronikpraktikum Protokoll zum Versuch OV II im Elektronikpraktikum Datum, Ort: Freitag, ---; PHY/D2 Praktikanten: --- Gruppe: --- Betreuer: Hr. Dr. Eckstein Aufgabenstellung. Schaltung des OPV als invertierender Addierverstärker

Mehr

Grundlagenversuche Elektrotechnik / Elektronik

Grundlagenversuche Elektrotechnik / Elektronik Grundlagenversuche Elektrotechnik / Elektronik 1. Auflage Typ V 0105 hps SystemTechnik Lehr- + Lernmittel GmbH Altdorfer Straße 16 88276 Berg Telefon: 07 51 5 60 75 70 Telefax: 07 51 5 60 75 77 Internet:

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

Operationsverstärker Eine kurze Einführung ohne Formeln und Mathe

Operationsverstärker Eine kurze Einführung ohne Formeln und Mathe msw, Kern 05-2010 Opamp Einführung 1/6 Operationsverstärker Eine kurze Einführung ohne Formeln und Mathe Begriffe, Verwendung Operationsverstärker, Rechenverstärker, Operational Amplifier, Opamp, OP, OV,

Mehr

Grundlagen zur Wheatstone'schen Brückenschaltung

Grundlagen zur Wheatstone'schen Brückenschaltung Grundlagen zur Wheatstone'schen Brückenschaltung Stand: 14.07.2012 Herleitung der Brückengleichung Die Brückenschaltung besteht aus zwei parallelgeschalteten Spannungsteilern. Beide Spannungsteiler werden

Mehr

Wien - Robinson - Oszillator

Wien - Robinson - Oszillator Ernst-Moritz-Arndt-niversität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 8 Wien - Robinson - Oszillator Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt: 04.06.997 Protokoll

Mehr

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik

Elektrotechnische/Elektronische Grundlagen. Lehrpläne. Grundlagen Elektrotechnik Elektrotechnische/Elektronische Grundlagen Lehrpläne Grundlagen Elektrotechnik 1. Gleichstromtechnik 1.1 Grundgrößen 1.1.1 Ladung 1.1.1.1 Ladungsbeschreibung 1.1.1.2 Ladungstrennung 1.1.2 Elektrische Spannung

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P =

1 Grundlagen. 1.1 Leistung und Arbeit. 1.2 Dämpfung und Verstärkung. 1.3 Widerstände. 1.3.1 Vernachlässigungsregeln 1 T. P (t)dt P (t) = u(t) i(t) P = Grundlagen. Leistung und Arbeit W = P (t)dt P (t) = u(t) i(t) P = T T 0 u(t) i(t)dt.2 Dämpfung und Verstärkung P 2/P db U 2/U 2,00 3,4 4,00 6 2,00 0,00 0 3,6 00,00 20 0,00 (a) Verstärkung P 2/P db U 2/U

Mehr

Spannungs- und Stromquellen

Spannungs- und Stromquellen Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4

Mehr

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung 1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung

Mehr

Elektronik NATURWISSENSCHAFT UND TECHNIK. 1. Halbleiter Messung der Beleuchtungsstärke (Zusatzexperiment)

Elektronik NATURWISSENSCHAFT UND TECHNIK. 1. Halbleiter Messung der Beleuchtungsstärke (Zusatzexperiment) 1. Halbleiter 1.1. Ein belichtungsabhängiger Widerstand (LDR) 1 LDR-Widerstand 4 Verbindungsleitungen 1.2. Messung der Beleuchtungsstärke (Zusatzexperiment) 1 LDR-Widerstand 4 Verbindungsleitungen 1. Halbleiter

Mehr

D.2 Versuchsreihe 2: Spice

D.2 Versuchsreihe 2: Spice .2: Versuchsreihe 2: Spice.2 Versuchsreihe 2: Spice Name: Gruppe: Theorie: Versuch: (vom Tutor abzuzeichnen) (vom Tutor abzuzeichnen) In dieser Versuchsreihe soll das Frequenzverhalten von RC-Gliedern

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Abb. 1 : Regelkreis und OP

Abb. 1 : Regelkreis und OP Theorie In der Technik werden häfig egelkreise zr Einstellng von sgangsgrößen (Weg, Temperatr, Kraft sw) eingesetzt, bei denen ein Teil des erreichten Ist-Wertes zrückgeführt nd mit einem Soll- Wert verglichen

Mehr

Elektronik II 2. Groÿe Übung

Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1/31 Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1. Brückengleichrichter

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Elektronik Praktikum Operationsverstärker 2 (OV2)

Elektronik Praktikum Operationsverstärker 2 (OV2) Elektronik Praktikum Operationsverstärker 2 (OV2) Datum: -.-.2008 Betreuer: P. Eckstein Gruppe: Praktikanten: Versuchsziele Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Schaltung eines OPV als invertierenden

Mehr

Intel-Leibniz-Challenge 2008

Intel-Leibniz-Challenge 2008 Wettbewerb Intel-Leibniz-Challenge 008 3. Aufgabe: Temperaturmessung mit Elektronik eingereicht von: The Future-Team Christina Ließke Sven Haueisen Johannes Hein Schüler der 10. Klasse des Lyonel-Feininger-Gymnasium

Mehr

Bipolartransistoren. Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 2

Bipolartransistoren. Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 2 Versuch 2 Bipolartransistoren 1. Einleitung In diesem Versuch werden zunächst die elementaren Eigenschaften bipolarer Transistoren untersucht. Anschließend erfolgt ihr Einsatz in einigen Verstärker- Grundschaltungen.

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

7.Übung Schaltungstechnik SS2009

7.Übung Schaltungstechnik SS2009 . Aufgabe: Aktives Filter.Ordnung Lernziele Vorteile und Nachteile aktiver Filter im Vergleich zu passiven Filter-Schaltungen. Berechnung eines einfachen Filters.Ordnung. Aufgabenstellung e d a Gegeben

Mehr

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12

1. Einleitung. 1.1 Funktionsweise von npn Transistor. Seite 1 von 12 Seite 1 von 12 1. Einleitung Der Bipolartransistor ist ein Halbleiterbauelement welches aus einer npn bzw pnp Schichtfolge besteht (Er arbeitet mit zwei unterschiedlich gepolten pn Übergängen). Diese Halbleiterschichten

Mehr

1 Operationsverstärker

1 Operationsverstärker Elektronik 1 - Formelsammlung gemäss Unterricht Guido Keel HS12/13 powered by LATEX Seite 1 von 10 1 Operationsverstärker 1.1 Opamp Schaltungen allgemein gilt: V out = V + V A ol 1.1.1 Invertierender Verstärker

Mehr

7 Stromquellen und Stromspiegel

7 Stromquellen und Stromspiegel 7 Stromquellen und Stromspiegel 7.1 Prinzip einer Stromquelle Stromquelle Abbildung 7.1: Stromquelle Stromquellen sollen möglichst unabhängig von der Last (d.h. unabhängig von der Spannung, die an der

Mehr

Viele HF-Verstärkungsaufgaben kann der Funkamateur mit den bekannten Videoverstärkern NE592 und µa733 lösen, die sich stark ähneln.

Viele HF-Verstärkungsaufgaben kann der Funkamateur mit den bekannten Videoverstärkern NE592 und µa733 lösen, die sich stark ähneln. 98 Verstärker-ICs Verstärkung über der Frequenz mit Betriebsspannung als Parameter Verstärkungs- und Phasenfehler über der Betriebsspannung 13.2 HF-Verstärker NE592 und µa733 Viele HF-Verstärkungsaufgaben

Mehr

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses)

Frequenzgang eines RC-Tiefpasses (RC-Hochpasses) 51 Frequenzgang eines RC-Tiepasses (RC-Hochpasses) EBll-2 Augabe In dieser Übung soll ein RC-Tiepaß bzw. wahlweise eln RC- Hochpaß mit R = 10 kq und C = 22 nf augebaut und Deßtechnisch untersucht werden.

Mehr

Analogtechnik. Informationstechnik für Luft- und Raumfahrt Aerospace Information Technology

Analogtechnik. Informationstechnik für Luft- und Raumfahrt Aerospace Information Technology Analogtechnik Anwendung von Analogtechnik Hat eine lange Geschichte, aber auch Zukunft Auch Zukunft? Kommt wider? (Analog & Mixed FPGA) Einfache aber verlässliche Regelungen werden mit Analogtechnik gebaut

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2012 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen: Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3

Mehr

Vorwiderstandsberechnung für LEDs

Vorwiderstandsberechnung für LEDs B.Bulut (bx61) Inhaltsverzeichnis Thema Seite 1 Einleitung 1 2 Datenblatt vom LED 1 3 Vorwiderstand für eine LED 2 3.1 Bedeutung der Abkürzungen 3 3.2 Vorwiderstand für mehrere LEDs 3 4 Parallelschaltung

Mehr

13. Dioden Grundlagen

13. Dioden Grundlagen 13.1 Grundlagen Die Diode ist ein Bauteil mit zwei Anschlüssen, das die Eigenschaft hat den elektrischen Strom nur in einer Richtung durchzulassen. Dioden finden Anwendung als Verpolungsschutz (siehe Projekt)

Mehr

Schaltungstechnik 1 (Wdh.)

Schaltungstechnik 1 (Wdh.) Grundlagenorientierungsprüfung für Elektro- und Informationstechnik Schaltungstechnik 1 (Wdh.) Univ.-Prof. Dr. techn. Josef A. Nossek Freitag, den 13.4.27 9. 1.3 Uhr Name: Vorname: Matrikel-Nr.: Hörsaal:

Mehr

Hilfsblätter zu Industrieelektronik, Teil B

Hilfsblätter zu Industrieelektronik, Teil B Hilfsblätter zu Industrieelektronik, Teil B Empfohlene Literatur:. Halbleiter-Schaltungstechnik von: U. Tietze und Ch. Schenk Springer Verlag ISBN 3-540-6492-0 2. Operationsverstärker Lehr- und Arbeitsbuch

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Physik in der Praxis: Elektronik

Physik in der Praxis: Elektronik MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I INSTITUT FÜR PHYSIK Physik in der Praxis: Elektronik 2. Versuch: Bipolar-Transistoren und die Verstärker-Grundschaltungen Abgabe am 7.12.21 Übungsgruppe 9

Mehr

Messgerät. Signalquelle

Messgerät. Signalquelle Elektronische Systeme - 1. Grundgrößen 1 0. Einführung Programm: Grundlagen passive Bauelemente (GS-, WS-Verhalten) Operationsverstärker als "programmierbares" Verstärkermodell Grundlagen Halbleitertechnik

Mehr