Die Geschichte der Quantenmechanik
|
|
|
- Sabine Flater
- vor 8 Jahren
- Abrufe
Transkript
1 Die Geschichte der Quantenmechanik Kurt Bräuer Institut für Theoretische Physik
2 'Urväter'
3 Strahlung schwarzer Körper: Max Plank 1900 Plank'sches Strahlungsgesetz: (u: Strahlungsdichte, ν: Frequenz, T: Temperatur) Die Strahlungsdichte u eines schwarzen Strahlers hängt nur von der Temperatur des Strahlers und von der Frequenz der emittierten Strahlung ab. Obere Kurve: Das klassische Gesetz von Rayleigh & Jean gilt nur für hohe Temperaturen und niedere Strahlungsdichten. Es führt bei höheren Frequenzen zur Ultraviolettkatastrophe. Mittlere und untere Kurve: Strahlungsdichte nach dem Plank'schen Strahlungsgesetz für zwei verschiedene Temperaturen
4 Photoelektrischer Effekt: Albert Einstein 1905 Photonenenergie: Eγ = hν = ω = mγc Photonenmasse: hν mγ = c Photonenimpuls: hν h pγ = mc = = = k c λ in einlaufendes 'Lichtquant' γ löst ein Elektron e aus dem Festkörper. Entgegen den lassischen Vorstellungen hängt die kinetische Energie des Elektrons nicht mit der ichtintensität zusammen sondern von der Lichtfrequenz ν
5 Spezifische Wärme fester Körper: Albert Einstein 1905 Zustandssumme: ( ν / ) Z h kt e ( ) nhν / kt = = n 1 1 e hν / kt Innere Energie der Einstein-Oszillatoren U T 3 ν Spezifische Wärme: du C = dt 1 3 NkT; hν << kt = Nh hν / kt h / kt e 1 ν 3 Nhν e ; hν >> kt
6 Struktur der Atome: Ernest Rutherford 1911, Niels Bohr 1913 Bohr's Phasenraumbedingung: Wirkung Phasenraumvolumen des Oszillators: p + π mq v = E= nhν m Frequenzbedingung für Linienspektren: 1 ν = a h ( E E ) S = pdq = nh b
7 Compton-Effekt: Arthur Holly Compton 193 nergiebilanz: 1 Eγ = hν0 = hνc + meve mpulsbilanz: hν0 hνc px = = cosθ + mevecosϑ c c hν c py = 0 = sinθ + mevesinϑ c erschiebung der Compton-Linie: hνν θ ν ν = c c 0 0 sin mc e
8 Materiewellen: Louis Victor Prinz von De Broglie 194 Energie-Frequenz-Beziehung: E E ν =, bzw. ω = h Wellenlänge-Impuls-Beziehung: h p λ =, bzw. k = p
9 Ort u. Impuls-Variablen Operatoren: [, ] Matrizenmechanik: Werner Heisenberg m ω x= 0 0 3, p i mω = Vertauschungsrelation: x p = xp px= i Hamilton-Funktion -Operator: p 1 H = + mω x m Eigenwertproblem: n n n n 1 ( ) Hψ = Eψ E = ω n
10 Schrödinger-Gleichung: Erwin Schrödinger 196 chrödinger-gleichung: 1 ψ ω ψ i t m x eparationsansatz: ( xt, ) = + m x ( xt, ) / 1 (, ) ( ) ie n t xt = x e E = ( n+ ) ψ ψ ω n n 1 x /b 1 mit b= : ψ 0 ( x) = e, E0 = ω; mω π b ψ ψ ψ 1 x x = e, E = ω; π b b ( ) x /b x e E π b b 1 x 1 x /b ( ) =, x ( ) 3 ( ) 5 x /b ω; x = x 1+ e, π b 3 b b E = ω; =
11 Materiewellen erste Schritte zum Verständnis der QM: Bohr, Kramers, Later 194 Widerspruch zwischen Wellenbild und Teilchenbild sollte aufgeklärt werden -> Wahrscheinlichkeitswelle (Lichtwellen oder Teilchenwellen sind nicht real), Wellenintensität ~ Wahrscheinlichkeit Aber auch klassische Wahrscheinlichkeitswellen zeigen keine Interferenzphänomene
12 Kopenhagener Deutung der QM: 197 Ausführliche Diskussion zwischen Bohr, Schrödinger und Kopenhagener Arbeitsgruppe Ergebnis ist nicht leicht zu akzeptieren! Sprache Jedes physikalische Experiment muss in den Begriffen der klassischen Physik beschrieben werden Unbestimmtheitsrelation Anwendung klassischer Begriffe ist begrenzt durch Unbestimmtheits- Relation (z.b. Ort und Impuls eines Wirkungsquantums nicht beliebig genau)
13 Wahrscheinlichkeitsfeld Wahrscheinlichkeitsfeld beschreibt Wahrscheinlichkeit für bestimmte Messergebnisse und für Ungenauigkeit Zu den klassischen Messfehlern kommt noch die prinzipielle Unbestimmtheit Zeitliche Entwicklung QM erlaubt Berechnung der zeitlichen Entwicklung der Wahrscheinlichkeitsfunktion Keine Beschreibung des Ablaufes von Ereignissen sondern von Möglichkeiten Messung: Möglichkeiten zu Tatsachen, unscharfe Tatsachen Grundlage für erneute Entwicklung von Möglichkeiten Interpretation quantenmechanischer Prozesse drei Schritte: 1) experimentelle Ausgangssituation in Wahrscheinlichkeitsfeld übersetzen ) zeitliche Entwicklung des Feldes wird berechnet 3) neue Messung am System, Ausgang mit Wahrscheinlichkeitsfeld bestimmt
14 Beobachtung eines Wasserstoff-Hüllenatoms Beobachtung des Elektrons z.b. mit Mikroskop Impulsübertrag zwischen jedem 'Lichtquant' und dem Elektron ist jedoch so groß, daß das Elektron aus dem Atom herausgeschlagen wird. Die Elektronenbahn im Atom kann grundsätzlich nicht beobachtet werden
15 Wellen-Teilchen-Dualismus und Komplementarität
16 Anekdote vom Kosaken und dem Rabbi Es war einmal ein Kosak, der einen Rabbi fast jeden Tag zur selben Zeit über den Stadtplatz gehen sah. Eines Tages fragte er neugierig, 'Wohin gehst du, Rabbi?' Der Rabbi antwortete: 'Das weiß ich nicht so recht'. 'Du kommst hier jeden Tag um diese Zeit vorbei. Du musst doch wissen, wohin du gehst:' Als der Rabbi hartnäckig dabei blieb, dass er es nicht wisse, war der Kosak zunächst irritiert, wurde dann argwöhnisch und schleppte den Rabbi schließlich ins Gefängnis. Als er die Zelle absperrte, sah der Rabbi ihn an und sagte freundlich: 'Siehst du, das konnte ich vorhin absolut nicht wissen'. Bevor der Kosak ihn aufgehalten hatte, wusste der Rabbi, wohin er ging, aber danach nicht mehr. Diese Unterbrechung könnte als Messprozess betrachtet werden. Er brachte neue Möglichkeiten mit sich und legte eine davon fest
Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?
Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova
Ein schwarzer Körper und seine Strahlung
Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit
Die Macht und Ohnmacht der Quantenwelt
Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
Entwicklung der Atommodelle
Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.
Physik IV Einführung in die Atomistik und die Struktur der Materie
Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale
Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem
Fazit: Wellen haben Teilchencharakter
Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch
Der Welle-Teilchen-Dualismus
Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.
1.2 Grenzen der klassischen Physik Michael Buballa 1
1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:
Die Kopenhager Deutung der Quantentheorie
Zum Autor: Werner Heisenberg, geboren 1901 in Würzburg, gestorben 1976 in München, zählt zu den bedeutendsten Physikern des 20. Jahrhunderts. Sein Studium der Physik in München unter Arnold Sommerfeld
lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt
lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte
ν und λ ausgedrückt in Energie E und Impuls p
phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)
10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper
10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper
Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.
Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell
Grundbausteine des Mikrokosmos (6) Vom Planetenmodell der Atome zum Bohrschen Atommodell 1900: Entdeckung einer neuen Naturkonstanten: Plancksches Wirkungsquantum Was sind Naturkonstanten und welche Bedeutung
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012
9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen
Quantentheorie. Über Rätsel, die uns die Natur aufgibt. Franz Embacher.
Quantentheorie Über Rätsel, die uns die Natur aufgibt Franz Embacher http://homepage.univie.ac.at/franz.embacher/ [email protected] Fakultät für Physik Universität Wien VHS Science, Planetarium
27. Wärmestrahlung. rmestrahlung, Quantenmechanik
24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung
Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung
Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen
Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:
Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern
Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer
Einführung in die Quantentheorie der Atome und Photonen
Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich
CMB Echo des Urknalls. Max Camenzind Februar 2015
CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen
, = c. Heisenberg Matrizenmechanik
Planck Strahlungsgesetze 1900 existiert umfangreiches und sehr genaues Faktenmaterial zu den Spektren vor Linienspektrum, z. B. Natrium- und Quecksilberdampflampe Temperatur-Strahlung (Kontinuum, z. B.
Das quantenmechanische Atommodell
Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie
Das von Neumannsche Theorem. von Martin Fiedler
Das von eumannsche Theorem von Martin Fiedler Einleitung In der Mitte des letzten Jahrhunderts beschäftigten sich viele Physiker mit der Frage nach der Vollständigkeit der Quantentheorie. Einige Physiker,
Quantenphänomene und Strahlungsgesetze
Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................
Welle-Teilchen-Dualismus
Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie
Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin
Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
Abb.15: Experiment zum Rutherford-Modell
6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte
Materiewellen und Welle-Teilchen-Dualismus
Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen
Max Planck: Das plancksche Wirkungsquantum
Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren
Strukturaufklärung (BSc-Chemie): Einführung
Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme
2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten
Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,
Festkörperelektronik 2008 Übungsblatt 1
Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:
3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus
3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus Albert Einstein 1879-1955, im Jahr 1912 Einstein war der erste, der die Quanten Plancks und die Formel E = h ν für die
Ferienkurs Experimentalphysik 4
Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung
Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen
4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.
4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches
RELATIVITÄT und QUANTEN
FAKULTÄT FÜR PHYSIK PHYSIK AM SAMSTAG RELATIVITÄT und QUANTEN Konzepte der Teilchenphysik J. H. KÜHN http://www-ttp.physik.uni-karlsruhe.de/slides PHYSIK Reduktion der Beobachtungen auf einfache Naturgesetze
De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik
Physikalisches Institut Albert- Ludwigs- Universität Freiburg De Broglie und Dirac komplementäre Zugänge zur Quantenmechanik Thomas Filk Physikalisches Institut, Universität Freiburg Parmenides Center
Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen
UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen
Grundlagen der Laserzahnheilkunde Teil I: Das Licht
Grundlagen der Laserzahnheilkunde Teil I: Das Licht Jörg Meister, René Franzen, Christian Apel Schlüsselwörter Zusammenfassung Licht, Laser, Quantentheorie, Welle-Teilchen-Dualismus, Unschärferelation
1.4. Das freie quantenmechanische Elektron
1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die
Gymnasium Oberwil / Maturitätsprüfung. Physik (Lösungen)
Gymnasium Oberwil / Maturitätsprüfung Hilfsmittel: Arbeitszeit: 4 Stunden Hinweise: Physik (ösungen) Klasse 4 Az Physiklehrer N. Detlefsen - gelbe DMK-Formelsammlung oder die hauseigene kleine Grüne -
Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte
Einführung in die Astronomie und Astrophysik (I) Jürgen Schmitt Hamburger Sternwarte Vorlesung: Stellarphysik II Was wird behandelt? Schwarzkörperstrahlung Raumwinkel und Intensität Eektivtemperatur Photometrische
2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1
. H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1
Laserstrahlen & Quantenspuk Einstein und die Quantentheorie
Zweiter November der Wissenschaft»Einstein heute«laserstrahlen & Quantenspuk Einstein und die Quantentheorie Hannover, 16. November 2010 Peter Aufmuth Albert-Einstein-Institut Leibniz Universität Hannover
Projektarbeit zur Schwarzkörperstrahlung
Projektarbeit zur Schwarzkörperstrahlung Quantenmechanik SS 004 Gruppe 9 Gruppenmitglieder Simon Außerlechner Florian Hebenstreit Martin Horn Alexander Reinmüller Christoph Stieb Inhaltverzeichnis. Einleitung....
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler
Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung
Stundenprotokoll vom : Compton Effekt
Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend
VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1
VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im
Grundlagen der Physik 2 Schwingungen und Wärmelehre
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti [email protected] Institut für Experimentelle Physik 11. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 11. 06.
Welle-Teilchen-Dualismus
Physik A VL4 (01.0.013) Welle-Teilchen-Dualismus Strahlung schwarzer Körper Wärmestrahlung und schwarzer Körper Spektrum der Strahlung schwarzer Körper Die Planck sche Strahlungsformel Lichtstrahlung Welle
Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen Mechanik).
phys4.017 Page 1 10.4.2 Bahndrehimpuls des Elektrons: Einheit des Drehimpuls: Der Bahndrehimpuls des Elektrons ist quantisiert. Der Gesamtbahndrehimpuls ist eine Erhaltungsgrösse (genau wie in der klassischen
5. Kapitel Die De-Broglie-Wellenlänge
5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment
Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz
Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um
Rätsel in der Welt der Quanten. Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften
Rätsel in der Welt der Quanten Leipziger Gespräche zur Mathematik Sächsische Akademie der Wissenschaften 1. Februar 2012 Die Klassische Physik Bewegung von Objekten Lichtwellen Bewegung von Objekten Newtonsche
Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg
Quantenmechanik I Jens Kortus [email protected] TU Bergakademie Freiberg Literatur: Fließbach, Quantenmechanik, Spektrum Akademischer Verlag Nolting, Grundkurs Theoretische Physik, Quantenmechanik
Quantisierung des elektromagnetischen Feldes
18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das
Das Doppelspalt-Gedankenexperiment...
Universität Hamburg Physik im Alltag Das Doppelspalt-Gedankenexperiment... Ψ... und seine Konsequenzen Prof. Dr. Michael Potthoff I. Institut für Theoretische Physik p. 1 Experimentalphysik p. 2 Experimentalphysik
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt)
Äußerer lichtelektrischer Effekt (Äußerer Fotoeffekt; HALLWACHS-Effekt) Experiment 1: Bestrahlung einer elektrisch geladene Zinkplatte mit Licht Rotlichtlampe; positive Ladung Quecksilberdampflampe; positive
A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg
A. EINSTEIN und die Natur des Lichts Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. Einstein, Annalen der Physik, 17, 132 (1905) Über einen die Erzeugung und Verwandlung des
Der Photoelektrische Effekt
Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Übungsblatt 02. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,
Übungsblatt 2 PHYS4 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, ([email protected]) 2. 4. 25 22. 4. 25 Aufgaben. Das Plancksche Strahlungsgesetz als Funktion der
8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen.
Dieter Suter - 404 - Physik B3 8.2 Aufbau der Atome 8.2.1 Grundlagen Wenn man Atome als Bausteine der Materie i- dentifiziert hat stellt sich sofort die Frage, woraus denn die Atome bestehen. Dabei besteht
Strahlungsformel von M. Planck (1900) E = h ν = ω E = Energie ν = Frequenz ω = 2πν h = Wirkungsquantum 6.62608 10 34 Js = h/2π
Max Planck (1858 1947, Nobelpreis 1918) Hypothetische Erklärung des (klassisch nicht erklärbaren) Strahlungsverhaltens schwarzer Körper : eletromagnetische Strahlung wird nur in diskreten Portionen ( Quanten
Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html
Angewandte Quantenmechanik (132.070) Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Übersicht Grundlagen 1) Grenzen der klassischen Physik und Entdeckung
Aufgabe 1: Interferenz von Teilchen und Wellen
Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen
Zeichnen Sie qualitativ jeweils das dahinter und das seitlich aufgenommene Spektrum im Vergleich zum Spektrum der Quelle für die Fälle, dass i) die
UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 1007, Tel. 4712 E-mail: [email protected] Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.
Unschärfen in der Heisenbergschen Unschärferelation
Unschärfen in der Heisenbergschen Unschärferelation Johannes Kofler Max-Planck-Institut für Quantenoptik (MPQ), Garching, Deutschland Die Heisenbergsche Unschärferelation ist seit mehr als 80 Jahren von
5.3 Ausblick: Eine weitreichende Anwendung der Planckschen Strahlungsformel
Eberhard Müller: Interdisziplinärer Zugang zu den Grundlagen der Quantentheorie: Beginn der Quantentheorie 5.3 Ausblick: Eine weitreichende Anwendung der Planckschen Strahlungsformel Bei der Entwicklung
7. Quantenphysik. Geschichte der Physik, WS 2014/15 1
7. Quantenphysik 7.1 Das Plancksche Strahlungsgesetz 7.2 Max Planck 7.3 Einstein: Lichtquanten u. spezifische Wärme 7.4 Das Bohrsche Atommodell 7.5 Niels Bohr 7.6 Materiewellen und die Wellenmechanik 7.7
Quantenmechanik für Lehramtskandidaten
Quantenmechanik für Lehramtskandidaten Universität Tübingen SS 6 Kurt Bräuer Ergänzung zum Vorlesungsmitschrieb der Hörer (kein eigenständiges Skript! www.kbraeuer.de Tübingen, den 8..7 Inhalt. Die Geschichte
Der harmonische Oszillator anhand eines Potentials
Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der
15 Atom und Kernphysik
15 Atom und Kernphysik 1 Historische Modelle: Thomson: Versuche mit Elektronen (Kathoden) Rutherfordsche Streuversuche: Rutherford beschoss eine Goldfolie mit He-Kernen (α-teilchen) und untersuchte ihre
Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:
Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen
Theoretische Physik IV: Quantenmechanik I
Theoretische Physik IV: Quantenmechanik I Dirk H. Rischke Sommersemester 2011 Inhaltsverzeichnis 1 Grenzen klassischer Physik 1 1.1 Quantelung elektromagnetischer Strahlung.................. 1 1.1.1 Schwarzkörperstrahlung
Raffiniert ist der Herrgott..." Albert Einstein Eine wissenschaftliche Biographie
Abraham Pais Raffiniert ist der Herrgott..." Albert Einstein Eine wissenschaftliche Biographie übersetzt von Roman U. Sexl, Helmut Kühnelt und Ernst Streeruwitz Friedr. Vieweg & Sohn V Braunschweig /Wiesbaden
7. Klausur am
Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34
Das Rutherfordsche Atommodelle
Dieses Lernskript soll nochmals die einzelnen Atommodelle zusammenstellen und die Bedeutung der einzelnen Atommdelle veranschaulichen. Das Rutherfordsche Atommodelle Entstehung des Modells Rutherford beschoss
Geschichte der Quantenphysik
Quantenphysik Geschichte der Quantenphysik 1877-1925 Vor-Geschichte Eine unübliche Einführung... Die übliche Einführung 1900 14. Dezember 1900: Max Planck stellt seine berühmte Strahlungsformel mit Quantisierung
7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte.
7.1 Der Photoeffekt 7.Lichtquanten Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. Hg Lampe Zn Platte Elektroskop Ist die
Werner Heisenberg - Die Sprache der Atome
Helmut Rechenberg Werner Heisenberg - Die Sprache der Atome Leben und Wirken - Eine wissenschaftliche Biographie Die Fröhliche Wissenschaft"»> (Jugend bis Nobelpreis) Bandl Springer Inhaltsverzeichnis
Wellenfunktion. Kapitel 1. 1.1 Schrödinger - Gleichung
Kapitel 1 Wellenfunktion Diejenigen, die nicht schockiert sind, wenn sie zum ersten mal mit Quantenmechanik zu tun haben,habensie nicht verstanden. ( If you are not confusedby quantum physics then you
Aufgaben zum Photoeffekt
Aufgaben zum Photoeffekt 1. Die Türe einer U-Bahn wird durch eine Lichtschranke gesichert. Die Lichtschranke besteht aus einer Lichtquelle, die Licht der Wellenlänge λ = 549 nm emittiert und als Lichtbündel
