Numerisches Programmieren, Übungen
|
|
|
- Ernst Hausler
- vor 8 Jahren
- Abrufe
Transkript
1 Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dr.-Ing. Markus Kowarschik Numerisches Programmieren, Übungen 2. Übungsblatt: Kondition, Stabilität und Gauß-Elimination 1) Kondition, Stabilität Die (relative) Konditionszahl cond(f, x) für reellwertige Funktionen f : IR IR ist folgendermaßen definiert: cond(f, x) = x f (x) f(x) i) Berechnen Sie die relative Konditionszahl der folgenden Funktionen in Abhängigkeit von x: a) f 1 (x) = a x, b) f 2 (x) = a x, c) f 3 (x) = 3e x 3. Interpretieren Sie jeweils das Ergebnis! Wie lautet die Konditionszahl von f 3 an der Stelle x = 0 (Grenzwertbetrachtung!)? ii) Ist eine computergestützte Auswertung von f 3 stabil? (Hinweis: Betrachten Sie den relativen Fehler rd(f(x)) f(x) f(x).)
2 2) Ableitungsapproximation Die erste Ableitung einer Funktion f an einem Punkt x 0 ist definiert durch f (x 0 ) := lim h 0 f(x 0 + h) f(x 0 ) h und kann durch den rechtsseitigen Differenzenquotienten D f (x 0, h) := f(x 0 + h) f(x 0 ) h für kleine positive Werte von h numerisch approximiert werden. Dies geschieht auch oft in praktischen Anwendungen, in denen es nicht möglich oder zu aufwändig ist, die Ableitung auf analytischem Weg zu bestimmen. Dabei stellt sich die Frage, wie man die sogenannte Schrittweite h wählt. Wählt man sie zu groß, dann ist der Differenzenquotient aus analytischen Gründen keine gute Näherung für die Ableitung. Wählt man andererseits h zu klein, so gilt f(x 0 + h) f(x 0 ), und bei der Auswertung von Formel (1) tritt Auslöschung auf Analytischer Fehler Numerischer Fehler Gesamtfehler (1) Abbildung 1: Fehlerquellen bei der Ableitungsapproximation i) Leiten Sie mit Hilfe der Taylorformel f(x 0 + h) = f(x 0 ) + f (x 0 ) h + 1 2! f (z) h 2, z (x 0 ; x 0 + h) eine obere Schranke (abhängig von der Maschinengenauigkeit ε Ma ) für den absoluten Fehler err abs = f (x 0 ) rd ( D f (x 0, h) ) her. Berücksichtigen Sie dabei sowohl Rundungsfehler in den Eingabedaten f(x 0 ), f(x 0 + h) als auch bei der Berechnung von D f (x 0, h). ii) Verwenden Sie das Ergebnis aus Teilaufgabe i), um in Abhängigkeit von ε Ma anzugeben, wie eine optimale Schrittweite h zu wählen ist, so dass der absolute Fehler err abs minimiert wird.
3 3) Bildableitungen und -gradienten Wie Sie eben gesehen haben, kann die Ableitung einer Funktion an einem konkreten Punkt durch eine Entwicklung der Taylorreihe an dieser Stelle approximiert werden. In dieser Übungsaufgabe werfen wir einen Blick auf eine typische Anwendung aus der Bildverarbeitung, bei der erste und zweite Ableitungen vorkommen. Derart grundlegende Operationen sind sehr nützlich, da sie die Grundlage zum Finden von Kanten bzw. Konturen in Bildern darstellen. Um dies zu veranschaulichen, betrachten wir das Bild I, das in Abbildung 2 links gezeigt wird. Es handelt sich um ein Grauwertbild, dessen Pixel diskrete Werte zwischen 0 und 255 annehmen. Aus Gründen der Einfachheit werden wir lediglich eine horizontale Bildzeile betrachten, die rot im Bild I eingezeichnet ist. Die Intensitäten der Pixel entlang dieser Linie werden als Werte einer Funktion interpretiert, deren Graph oben rechts in Abbildung 2 zu sehen ist. Abbildung 2: Bildableitungen. Die ersten Ableitungen des Bildes (genauer gesagt der betrachteten Bildzeile) können durch die Verwendung von Finiten Differenzen (rechtsseitiger Differenzenquotient) angenähert werden: (x 0 ) I(x 0 + h) I(x 0 ) = lim x 0 h I(x 0 + h) I(x 0 ) (2)
4 i) Berechnen Sie die ersten Ableitungen mit Hilfe des rechtsseitigen Differenzenquotienten für denjenigen Teil der horizontalen Scanlinie, der unten rechts in Abbildung 2 vergrößert gezeigt ist. ii) Um eine Approximation für die zweite Ableitung zu erhalten, wendet man den zentralen Differenzenquotienten (x 0) I(x 0+h) I(x 0 +h) I(x 2h 0 + h) I(x 0 h) zwei mal hintereinander an. Berechnen Sie die zweiten Ableitungen für denjenigen Teil der horizontalen Scanlinie, der unten rechts in Abbildung 2 vergrößert gezeigt ist. iii) Zeichnen Sie die eben berechneten ersten und zweiten Ableitungen der horizontalen Scanlinie als diskreten Graphen und bestimmen Sie die Kanten im Bild. Hinweis: Kanten äußern sich im Bild durch Übergänge von hellen zu dunklen Bereichen und umgekehrt. iv) In der Praxis wird der Bildgradient als Methode der Wahl zur Berechnung von Kanten im Bild verwendet. Der Bildgradient ist wie folgt definiert: I(x, y) = [ ] T y ( Die Länge des Bildgradienten I(x, y) = ) ( y) und seine Richtung ψ( I) = ) arctan sind die fundamentalen Bausteine vieler Low-Level Algorithmen aus dem ( y Computer Vision Bereich. In der Praxis werden Bildgradienten und Bildableitungen als sogenannte Filter implementiert. Stellen Sie sich einen solchen Filter als Matrixmultiplikation vor. Leiten Sie einen einfachen 1D Filter zur Berechnung erster und zweiter Ableitungen her indem Sie Matrixmultiplikationen verwenden. Hinweis: Der Filter muss eine Matrix mit ganzzahligen Einträgen sein. Die Grauwerte entlang der Scanlinie werden in einem Vektor zusammen gefasst.
5 Zum Abschluss des Kapitels über Gleitpunktzahlen, Rundung und Kondition ist nachfolgend eine Aufgabe aus einer Semestralklausur aufgeführt. Diese ist dazu gedacht, dass man den Stoff noch einmal selbst üben kann. Sie wird deshalb nicht in der Übung behandelt. Wiederholung: Gleitpunktzahlen, Rundung und Kondition Betrachten Sie die Funktion f : IR IR, f(x) = ex e x. (3) 3 a) Die Formel (3) für die Funktion f(x) soll unter Anwendung von Gleitpunktarithmetik ausgewertet werden. Geben Sie den Term rd(f(x)) an, der alle Fehler, die bei der Auswertung entstehen, berücksichtigt. Die Negation eines Wertes x der Form neg(x) = x bewirkt keinen Rundungsfehler. Gehen Sie von exakten Eingabedaten x aus. Linearisieren Sie, indem Sie Fehlerterme höherer Ordnung vernachlässigen. b) Berechnen Sie den relativen Rundungsfehler, der bei der Berechnung des Ergebnisses f(x) auftritt. Wie verhält sich der relative Rundungsfehler für große x, d.h. für x ±? Ist die Auswertung für alle x IR stabil? Begründen Sie Ihre Antwort! c) Zeigen Sie, dass für die Kondition einer Funktion f cond(f, x) = x f (x) f(x) im Fall von Funktion (3) gilt: cond(f, x) = x e2x + 1 e 2x 1. Was lässt sich daraus für die Auswertung der Funktion (3) an der Stelle x = 0 folgern?
Numerisches Programmieren, Übungen
Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,
Numerisches Programmieren, Übungen
Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus
1. Rechnerzahlen, Kondition, Stabilität
1. Rechnerzahlen, Kondition, Stabilität 1 1.1. Rechnerzahlen 2 1.2. Kondition 3 1.3. Stabilität 1. Rechnerzahlen, Kondition, Stabilität 1 / 18 1.1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis
1. Rechnerarithmetik und. Rundungsfehler
1. Rechnerarithmetik und Rundungsfehler 1 Rundung (1) Die natürlichen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk, L. Kronecker Ohne Zahlendarstellung auf einem Rechner wiederholen
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 1 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG)
7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)
Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl
Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.
Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis
Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang
Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen
Rundungsfehler-Problematik bei Gleitpunktzahlen
Rundungsfehler-Problematik bei Gleitpunktzahlen 1 Rechnerzahlen 2 Die Rundung 3 Fehlerverstärkung bei der Addition Rundungsfehler-Problematik 1 1. Rechnerzahlen allgemeine Zahlendarstellung zur Basis b
Numerische Mathematik I: Grundlagen
Numerische Mathematik I: Grundlagen 09.10.2017 Inhalt der Lehrveranstaltung Inhaltlich sollen Sie in der Lehrveranstaltung Numerische Mathematik I insbesondere vertraut gemacht werden mit der Numerik linearer
3.4 Kondition eines Problems
38 KAPITEL 3. FEHLERANALYSE Beispiel 3.18 Betrachte M(10, 5, 1). Dann sind x 4.2832, y 4.2821, z 5.7632 darstellare Zahlen und (x y)z 0.00633952. Das korrekte Ergenis in M ist daher 0.0063395. Der Ausdruck
Tutorial: Numerisch Differenzieren
(basierend auf dem Skript Numerik für Ingenieure von R. Axthelm) Aufgabenstellung: Von ihrem GPS-Gerät bekommen sie alle 12 Sekunden ihre aktuelle Position zugeschickt. Daraus können sie das unten dargestellte
Numerische Ableitung
Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:
Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016
Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding
Numerische Mathematik
Michael Knorrenschild Mathematik-Studienhilfen Numerische Mathematik Eine beispielorientierte Einführung 6., aktualisierte und erweiterte Auflage 1.1 Grundbegriffe und Gleitpunktarithmetik 15 second, also
5. Numerische Differentiation. und Integration
5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen
Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10
Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration
Mathematik für Bauingenieure
Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.
3 Numerisches Rechnen
E Luik: Numerisches Rechnen 65 3 Numerisches Rechnen 31 Zahlen und ihre Darstellung Grundlage der Analysis bilden die reellen Zahlen Wir sind heute daran gewöhnt, eine reelle Zahl im Dezimalsystem als
Numerische Verfahren
Numerische Verfahren 1. Kapitel: Prof. Dr.-Ing. K. Warendorf Hochschule für Angewandte Wissenschaften München Fakultät 03 WS 13/14 Prof. Dr.-Ing. K. Warendorf (Fakultät 03) Numerische Verfahren WS 13/14
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn
Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: [email protected] Universität Ulm Institut für Numerische Mathematik Sommersemester
1 Arithmetische Grundlagen
Am 4. Juni 1996 explodierte kurz nach dem Start die erste Ariane 5 Rakete durch einen Softwarefehler. Die Horizontalgeschwindigkeit wurde durch eine Gleitkommazahl v [ 10 308, 10 308 ] {0} [10 308,10 308
KAPITEL 2. Fehleranalyse: Kondition, Rundungsfehler, Stabilität. Datenfehler. Dahmen-Reusken Kapitel 2 1
KAPITEL 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität Datenfehler Fehler im Algorithmus Fehler im Resultat Dahmen-Reusken Kapitel 2 1 Kondition eines Problems Analyse der Fehlerverstärkung bei
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015
Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix
Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.
3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
1 Fehleranalyse, Kondition, Stabilität
Fehleranalyse, Kondition, Stabilität Fehlerquellen: Modellierungsfehler z.b. Ohmsches Gesetz u = Ri berücksichtigt nicht die Temperaturabhängigkeit des Widerstandes Messfehler z.b. digitaler Temperatursensor
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Finite Differenzen Methode (FDM)
Finite Differenzen Methode (FDM) /home/lehre/vl-mhs-1/folien/vorlesung/2_fdm/deckblatt_fdm.tex Seite 1 von 15. p.1/15 Inhaltsverzeichnis 1. Problemdarstellung 2. Bilanzgleichungen 3. Finite Differenzen-Approximation
ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht
ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )
( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )
64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den
Der Satz von Taylor. Kapitel 7
Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem
Kapitel 18 Numerisches Differenzieren und Integrieren
Kapitel 8 Numerisches Differenzieren und Integrieren 8 8 8 Numerisches Differenzieren und Integrieren.......... 43 8. Numerische Differenziation... 43 8.. Differenzenformeln für die erste Ableitung...
Fehlerfortpflanzung. Fehler bei Fließkomma-Arithmetik. Addition x ` y ` z. Fehlerfortpflanzung. Analyse des Relativen Fehlers
Numerisches Programmieren (IN0019) Frank R. Schmidt. Kondition und Stabilität Winter Semester 016/017 Fließkommazahlen (Wdh.) Eine Fließkommazahl benutzt die folgende Zahlendarstellung Fließkomma-Arithmetik
Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,
Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.
Übungen zu Numerisches Programmieren
Technische Universität München SS 009 Institut für Informatik Prof. Dr. Thomas Huckle Michael Lieb, M. Sc. Dipl.-Tech. Math. Stefanie Schraufstetter Übungen zu Numerisches Programmieren 3. Programmieraufgabe
Höhere Mathematik für Physiker II
Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei
Numerisches Programmieren
Informatics V - Scientific Computing Numerisches Programmieren Tutorübung 1 Jürgen Bräckle, Christoph Riesinger 2. Mai 2013 Tutorübung 1, 2. Mai 2013 1 Einführung in die Binärzahlen Zahlendarstellung im
Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis
Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung
Unter den endlich vielen Maschinenzahlen gibt es zwangsläufig eine größte und eine kleinste:
1.1 Grundbegriffe und Gleitpunktarithmetik 11 Aufgaben 1.4 Bestimmen Sie alle dualen 3-stelligen Gleitpunktzahlen mit einstelligem Exponenten sowie ihren dezimalen Wert. Hinweis: Sie sollten 9 finden.
1. Anfangswertprobleme 1. Ordnung
1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger
Numerische Verfahren Übungen und Lösungen, Blatt 1
Technische Universität Hamburg-Harburg Institut für Numerische Simulation, E-0 Dr. Jens-Peter M. Zemke Sommersemester 2008 Numerische Verfahren Übungen und Lösungen, Blatt Aufgabe : (Thema: relativer und
(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)
33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen
Nichtlineare Gleichungssysteme
Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei
Inhalt Kapitel I: Nichtlineare Gleichungssysteme
Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren
Erweiterungen der LR-Zerlegung
Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen
Einführung FEM 1D - Beispiel
p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie
Programmieren in MATLAB Mehr als nur ein Taschenrechner
Computational Physics 1, Seminar 02 Seite 1 Programmieren in MATLAB Mehr als nur ein Taschenrechner 1) Definition eigener Funktionen Anlegen eines neuen m-files im m-file-editor mit folgem Beispielinhalt:
Werkstatt Multiplikation Posten: Rundung im Quadrat. Informationsblatt für die Lehrkraft. Rundung im Quadrat
Informationsblatt für die Lehrkraft Rundung im Quadrat Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Numerische Grenzen des Computers Mittelschule, technische Berufsschule,
Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :
Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5
Übungsaufgaben Analysis hilfsmittelfrei
Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)
GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida
GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?
28. Lineare Approximation und Differentiale
28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den
Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform
2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen
Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7
Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt
(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0
Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die
Numerik für Ingenieure I Wintersemester 2008
1 / 34 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 7.1.2009 2 / 34 Technisches Vorlesungswebsite: http://www.am.uni-erlangen.de/am3/de/lehre/ws08/numing1/
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
Mathematische Werkzeuge für Computergrafik 2016/17. Gleitkommzahlen
Mathematische Werkzeuge für Computergrafik 2016/17 Gleitkommzahlen 1 Grundlagen 1 Da im Computer nur endliche Ressourcen zur Verfügung stehen, können reelle Zahlen in vielen Fällen nicht exakt dargestellt
Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1
exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches
Mathematischer Vorkurs für Physiker WS 2012/13
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+
Aufgaben für das Fach Mathematik
Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten November 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool
Elemente der Analysis II
Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel
Der CG-Algorithmus (Zusammenfassung)
Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine
Numerische Integration
Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche
2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!
Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist
Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen
Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen
Programmieren in C/C++ und MATLAB
Programmieren in C/C++ und MATLAB Sven Willert Sabine Schmidt Christian-Albrechts-Universität zu Kiel CAU 4-1 Übung 1) Schreiben Sie ein Programm, das die Fläche unter einer Parabel, also das Integral
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
Numerisches Programmieren, Übungen
Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,
Modellieren in der Angewandten Geologie II. Sebastian Bauer
Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine
1.4 Stabilität der Gauß-Elimination
KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive
7. LINEARISIERUNG UND DAS DIFFERENTIAL
63 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Numerische Verfahren
Numerische Verfahren Numerische Methoden von gewöhnlichen Differentialgleichungen (AWP) Prof. Dr.-Ing. K. Warendorf, Prof. Dr.-Ing. P. Wolfsteiner Hochschule für Angewandte Wissenschaften München (FH)
Übung (13) dx 3, 2x 1 dx arctan(x3 1).
Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v
(geometrische) Anschauung
(geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,
Computer-orientierte Mathematik
Computer-orientierte Mathematik 3. Vorlesung - Christof Schuette 11.11.16 Memo: Rationale und reelle Zahlen Rationale Zahlen: Rationale Zahlen als Brüche ganzer Zahlen. q-adische Brüche, periodische q-adische
Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient
Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung
Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }
A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 13. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Andreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 89-8-748 Großhadernerstr. Fax:
Mathematische Grundlagen der dynamischen Simulation
Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei
EVC Repetitorium Blender
EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil
D - 2 Gleitkommadarstellung und -arithmetik
Numerik im Überblick Was ist, was will Numerik Numerische Grundaufgaben und ihre Lösbarkeit Warnung Alles wird beliebig viel schwieriger wenn einige Variablen ganzzahlig sein müssen und / oder die Lösung
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
Linearisierung einer Funktion Tangente, Normale
Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion
INTELLIGENTE DATENANALYSE IN MATLAB
INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:
38 Iterative Verfahren für lineare Gleichungssysteme
38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige
