Wirtschaftsmathematik
|
|
|
- Kajetan Dunkle
- vor 8 Jahren
- Abrufe
Transkript
1 Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 2017 Dr. rer. nat. habil. 1
2 Finanzmathematik (nach der Ausarbeitung von S. Puth) Verzinsung Stetige Verzinsung Barwert Geometrische Reihe Unendlich geometrische Reihe Barwert eines Zahlungsstroms Hypothekenrückzahlung Investitionsprojekte und interne Ertragsrate 2
3 Beispiel : S0 = 100 Startkapital, p = 3% Zinsen pro Jahr Kapital nach t Jahren: Verzinsung (1) Allgemein: St = Kapital im Jahr t, S0 = Startkapital r = Zins pro Periode t (z.b. r = 0,03) p = Zins pro Priode t in Prozent (z.b. p = 3) 3
4 Allgemein: Hochschule Darmstadt Verzinsung (2) Beispiel : Statt p = 3% pro Jahr wird p/2 =1,5% pro Halbjahr verzinst, d.h. Allgemein: 4
5 Verzinsung (3) Verallgemeinerung: Wenn nicht halbjährig sondern n mal pro Jahr mit einem Zinssatz von r/n verzinst wird, gilt entsprechend: 5
6 Stetige Verzinsung Wir gehen noch einen Schritt weiter und fragen: Was passiert, wenn jeden Augenblick verzinst wird, d.h. wenn n mal pro Jahr mit einem Zinssatz von h = r/n verzinst wird und n? Wenn also jeden Augenblick mit der Zinsrate r verzinst wird, wächst das Kapital exponentiell Stetiger Wachstumsprozess 6
7 Barwert (1) Motivation: Wenn ich heute 100 zu einem Zins von 5% anlege, habe ich in einem Jahr 105 und in 10 Jahren 100 1,05 10 = 163. D.h. 100 heute haben den gleichen Wert wie 105 in einem Jahr und 163 in 10 Jahren (Endwert). Barwert (oder Gegenwartwert) = heutiger Wert = 100 in allen Fällen. Alternative Interpretation: Ich bekomme in 10 Jahren 163. Ich kann heute einen Kredit über 100 zu einem Zins von 5% aufnehmen und verjubeln. In 10 Jahren reichen die 163 genau um den Kredit zurückzuzahlen. 7
8 Barwert (2) Allgemein: Barwert einer Zahlung K, die man t Jahren erhält ist gleich Beispiel: Man weiß, dass man in 15 Jahren eine Zahlung von bekommt. Wieviel sind diese heute wert, wenn der Zinssatz pro Periode 6% beträgt? Gegeben: t = 15, K = , r = 0,06 Barwert = ( 1+ 0,06) = ( 1+ 0,06) ,51 15 = 8
9 Barwert bei stetiger Verzinsung Barwert (3) Barwert einer Zahlung K, die man in t Jahren erhält (t kann eine beliebige reelle Zahl sein) bei einem stetigen Zinssatz von r: 9
10 Geometrische Reihen Beispiel : Ihr Gehalt beträgt pro Jahr und Sie bekommen jedes Jahr eine Gehaltserhöhung von 3%. Wieviel verdienen Sie in 10 Jahren insgesamt? , , ,03 9 = ,48 Allgemein: 10
11 Unendlich geometrische Reihe (1) Beispiel: Summiere folgende Reihe auf: 1, 1/2, 1/4, 1/8, 1/16, 1/32,... Vermutung: die Summe sollte insgesamt 2 ergeben 11
12 Allgemein für k < 1: Hochschule Darmstadt Unendlich geometrische Reihe (2) In vorherigem Beispiel: a = 1, k = 1/2 a 1 S = = = 2 1 k
13 Barwert eines Zahlungsstroms (1) Allgemeiner Zahlungsstrom: Beispiel: Wie viel ist dieser Zahlungsstrom heute wert? (Zinssatz = 10%) 13
14 Barwert eines Zahlungsstroms (2) Gesamtbarwert = = 3.651, ,1 1,1 1,1 14
15 Barwert eines Zahlungsstroms (3) Allgemein ist der Gesamtbarwert: r = Zinssatz a t = Zahlung in Periode t 15
16 Barwert eines Zahlungsstrom (4) Barwert einer Annuität Annuität = Zahlungsstrom mit fester Zahlung a pro Periode 16
17 Barwert eines Zahlungsstroms (5) Beispiel: Sie gewinnen in der Lotterie eine Sofortrente, die Ihnen für die nächsten 30 Jahre jedes Jahr auszahlt. Wieviel müsste man Ihnen heute mindestens für diese Annuität bieten, damit Sie sie verkaufen wenn der relevante Zinssatz 6% beträgt? Gegeben: a = , n = 30, r = 0,06 P P n n = = a r ,06 1 ( 1+ r) 1 n 1 ( 1+ 0,06) 30 =
18 Barwert eines Zahlungsstroms (6) Zukünftiger Wert einer Annuität: Frage: Was ist der Wert am Ende der Zahlungen? Gedankenexperiment: Lege den Gegenwartswert für n Perioden P n an. 18
19 Barwert eines Zahlungsstroms (8) Beispiel: Sparvertrag über pro Jahr bei einer Laufzeit von 8 Jahren bei einem Zins von 6%. Wie groß ist das Vermögen am Ende? Gegeben: a = 1.000, n = 8, r = 0,06 I I n n a = r = 0,06 [( 1 r) 1] n + [( ) ] ,06 1 = 9.897,47 19
20 Hypothekenrückzahlung (1) Frage: Schulden der Höhe K sollen in n gleichen Raten a bei einem Zinssatz von r zurückgezahlt werden. Wie hoch müssen die Raten a sein? Ansatz: Der Barwert der Annuitätenzahlungen muss K entsprechen. Also: Durch Auflösen nach a ergibt sich: 20
21 Hypothekenrückzahlung (2) Beispiel: Schulden von sollen in 5 gleichen Raten mit einem Zinssatz von 15% zurückgezahlt werden. Gegeben: K = , n = 5, r = 0,15 0, a = = , ( 1+ 0,15) 5 21
22 Beispiel: Hochschule Darmstadt Investitionsprojekte und interne Ertragsrate (1) Welches Projekt ist vorteilhafter? Methode 1: Barwerte vergleichen (bei gegebenem Zins) Methode 2: Interne Ertragsrate berechnen. 22
23 Investitionsprojekte und interne Ertragsrate (2) Das Investitionsprojekt verzinst die Anfangsinvestition mit der internen Ertragsrate. Alternativinterpretation: Wie hoch muss der Zins r* sein, damit der Barwert gerade Null ist? Beispiel: Projekt A Barwert = ( 1+ r) ( ) 2 1+ r 23
24 Investitionsprojekte und interne Ertragsrate (3) Berechnung der internen Ertragsrate: Barwert = 0 setzen s = 1 ( 1+ r) s 2 1 s = 0,804= 1+ r s = 0 die positive Lösung ist : r = 0,243 Die interne Verzinsung ist also 24,3%. 24
25 Allgemein: Hochschule Darmstadt Investitionsprojekte und interne Ertragsrate (4) a 0 = Investition a 1,a 2,,a n = Rückzahlungen 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe =
Aufgabe : [6 Punkte] Richtige Ergebnisse ergeben nur bei erkenntlichem Lösungsweg Punkte! a) Berechnen Sie den Wert der geometrischen Reihe 0 i i über die Summenformel der geometrischen Reihe ( Nachkommastellen).
FINANZMATHEMATIK. Einführung. Weitere Begriffe. Einfache Verzinsung (unter 1 Jahr) Zinseszinsen
FINANZMATHEMATIK Einführung Wenn man Geld auf die Bank legt, bekommt man Zinsen, wenn man sich Geld von der Bank ausleiht, muss man Zinsen bezahlen. Grundsätzlich unterscheidet man zwischen einfachen Zinsen
VWA Wintersemester 2005/06 Investitionsplanung und rechnung Leistungstest: Bearbeiten Sie alle Aufgaben.
Leistungstest 1 VWA Wintersemester 2005/06 Investitionsplanung und rechnung Leistungstest: 09.01.2006 Name: Note: Vorname: Punkte: Bearbeiten Sie alle Aufgaben. Aufgabe 1 (4 Punkte) a) Der Kapitalwert
ˆ zwei gleich große Rückzahlungen am und am
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zu QM II Finanzmathematik) Gemischte Verzinsung
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Sommersemester 2015 Prof. Dr. Stefan Etschberger HSA Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen zeitlichen Abständen und (meistens) in
Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.
Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht
Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage. Seite 1
Finanzmathematik Aufgaben einfach gelöst mit FinCalcPro 1. Auflage von Francesco Grassi www.educationalapps.ch Seite 1 Inhaltsverzeichnis VORWORT... 3 SYMBOLLISTE...4 FORMELSAMMLUNG... 5 Kap.1 Prozentrechnung...7
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA m+1 re = r m + i 2 Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112
Mathematik-Klausur vom Finanzmathematik-Klausur vom
Mathematik-Klausur vom 01.10.2012 Finanzmathematik-Klausur vom 24.09.2012 Studiengang BWL DPO 2003: Aufgaben 1,2,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 1,2,4 Dauer der Klausur:
SS 2016 Torsten Schreiber
SS 2016 Torsten Schreiber 303 TILGUNGSRECHNUNG: DEFINITION: Unter der Tilgungsrechnung versteht man einen Zahlungsstrom, der zur Rückführung eines geliehen Betrags (Schuld) dient. Die mathematischen Grundlagen
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Unterjährige einfache Verzinsung In Deutschland Einteilung des Zinsjahres
Finanzierung I+II. Ausgewählte Folien für die Kapitel 3+4
Finanzierung I+II Ausgewählte Folien für die Kapitel 3+4 Die Bilanz Definition: Eine Finanzaussage, die zu einem bestimmten Zeitpunkt den Wert der Vermögensgegenstände und der Schulden eines Unternehmens
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals
Elementare Zinsrechnung
Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)
F-Mathe-Klausur am
F-Mathe-Klausur am 19.07.2017 Aufgabe 1 Jemand zahlt bei 4% Zinsen p.a. im Zeitraum vom 01.01.2010 bis 31.12.2015 jeweils zu Beginn eines Monats 200 und im Zeitraum vom 01.01.2016 bis 31.12.2018 jeweils
Finanzmathematik. Aufgabe 71
Finanzmathematik Aufgabe 71 Finanzmathematik: Einfach (FIMA.1) Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen in Höhe von 144,45 zu bezahlen. Für welche Zeitspanne wurden
Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.
(K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 7.09.202 Lösungen zur Zinseszinsrechnung Ergebnisse E Auf welchen Betrag wachsen foende Anfangskapitalien an? a) 800 wachsen bei einem Zinssatz von 5% in 0 Jahren
Unter einer Rente versteht man eine regelmässige und konstante Zahlung.
Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche
ist die Vergütung für die leihweise Überlassung von Kapital ist die leihweise überlassenen Geldsumme
Information In der Zinsrechnung sind 4 Größen wichtig: ZINSEN Z ist die Vergütung für die leihweise Überlassung von Kapital KAPITAL K ist die leihweise überlassenen Geldsumme ZINSSATZ p (Zinsfuß) gibt
Lösungshinweise zur Einsendearbeit 2 SS 2010
Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, S010 1 Lösungshinweise zur Einsendearbeit 2 S010 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe 1 24 Punkte Für die
Taschenbuch der Wirtschaftsmathematik
Taschenbuch der Wirtschaftsmathematik Bearbeitet von Wolfgang Eichholz, Eberhard Vilkner 6., aktualisierte Auflage 013. Buch. 396 S. Kartoniert ISBN 978 3 446 43535 3 Format B x L): 1,7 x 19,5 cm Gewicht:
Lösungshinweise zur Einsendearbeit des A-Moduls Investition und Finanzierung, Kurs 40520, SS
Einsendearbeit des A-Moduls Investition und Finanzierung, Kurs 40520, SS 2015 1 Kurs 40520: Investition Lösungshinweise zur Einsendearbeit (SS 2015) Inhaltlicher Bezug: KE 1, 2, 3 und 4 Aufgabe 1 (Fisher-Modell)
Leistungen des Mähdreschers: 50 ha eigene Mähdruschfläche: Bisher wurden die eigenen Flächen durch einen Lohnunternehmer
Ein Betriebsleiter erwägt den Kauf eines Mähdreschers, um im Nebenerwerb als Lohnunternehmer tätig zu werden. Folgende Daten für das Investitionsprojekt sind gegeben: Mähdrescher (100 kw, 3,80 m, 4.400
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n heißt
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das
III. Dynamische Investitionsrechnung
III Bewertung von Investments Dynamische Investitionsrechnung Investition und Finanzierung - Wintersemester 2012/13 1 Die dynamische Investitionsrechnung betrachtet Zahlungsströme... Im Vergleich zum traditionellen
Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38
Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder
Übungsaufgaben Investitions- und Wirtschaftlichkeitsrechnung. Aufgabe 18: Kapitalwertmethode (aufzinsen) Einwohnerzahl
Aufgabe 17: Kapitalwertmethode (aufzinsen) Sparbuch Auf welchen Betrag K n wächst ein Sparguthaben mit K 0 = 10.000 in n = 6 Jahre an, wenn man einen Zinssatz von i = 8% annimmt? Aufgabe 18: Kapitalwertmethode
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende
Dynamische Investitionsrechenverfahren. Charakteristika Verfahren Kritische Beurteilung
Dynamische Investitionsrechenverfahren Charakteristika Verfahren Kritische Beurteilung Charakteristika Sie basieren auf Zahlungsströmen genauer: auf Aus- und Einzahlungen. Sie beziehen sich auf MEHRERE
Betriebswirtschaftliche Vergleichsrechnung für Energiesysteme nach dynamischen Rechenmethoden Ulrike Radosch
swirtschaftliche Vergleichsrechnung für Energiesysteme nach dynamischen Rechenmethoden Ulrike Radosch Österreichische Energieagentur 29. August 2013 Wirtschaftlichkeitsberechnung Berücksichtigung von über
Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.
Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.
Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
3. entenrechnung Definition: ente = laufende Zahlungen, die in regeläßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzatheatisch sind zwei Gesichtspunkte
Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen/ Investition und Finanzierung
Ak. OR Dr. Ursel Müller BWL III Rechnungswesen/ Investition und Finanzierung Übersicht Methoden der Investitionsrechnung 3 klassische finanzmathematische Methoden der Investitionsrechnung Der Kapitalwert
11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4)
Geldtheorie und -politik Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) 11. April 2011 Überblick Barwertkonzept Kreditmarktinstrumente: Einfaches Darlehen, Darlehen mit konstanten Raten,
Finanzmathematik - Grundlagen
Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole
Einführung in die Betriebswirtschaftslehre
Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für
Expertengruppe A: Die Annuitätenmethode
Expertengruppe A: Die Annuitätenmethode Besprecht und berechnet in eurer Gruppe das Musterbeispiel und löst anschließend das neue Beispiel. Kapitalwertmethode (= Goodwill = Net Present Value NPV) Kapitalwert
Aufgabe 82. Für den Kauf einer Maschine stehen folgende Zahlungsalternativen zur Auswahl:
Aufgabe 82 Finanzmathematik: Maschine (FIMA.) Für den Kauf einer Maschine stehen folgende Zahlungsalternativen zur Auswahl: a) 8. sofort, 4 jährliche Raten zu je 2., zahlbar am Ende eines jeden Jahres
Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe
Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 [email protected] Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe
Klassische Finanzmathematik (Abschnitt KF.1 )
Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.
= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =
1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen
Versicherungstechnik
Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die
Finanzmathematik Übungen (Gurtner 2009)
Finanzmathematik Übungen (Gurtner 2009) 1. Kapitalverzinsung bei der Bank mit linearen (einfachen) Zinsen während des Jahres K E = K 0 (1+ p/100*d/360) mit d = Tage 1. Ein Betrag von 3000 wird bei einer
Aufgaben zur Finanzmathematik, Nr. 1
Aufgaben zur Finanzmathematik, Nr. 1 1.) Ein Unternehmen soll einen Kredit in Höhe von 800.000 in fünf gleich großen Tilgungsraten zurückzahlen. Der Zinssatz beträgt 6,5 % p. a. Erstellen Sie einen Tilgungsplan!
Übungsblatt 1 Finanzmathematik
Übungsblatt 1 Finanzmathematik 1. Können bei einfacher Verzinsung von 6% und einer Anlagedauer von einem halben Jahr aus 1.000 e mehr als 1.030 e werden? 2. Ein fester Anlagebetrag wird bei der Privatbank
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Kreditmanagement. EK Finanzwirtschaft
EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften [email protected] Kreditmanagement 1 Kreditmanagement
Finanzierung und Investition
Kruschwitz/Husmann (2012) Finanzierung und Investition 1/21 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 4 Kruschwitz/Husmann (2012) Finanzierung
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb
I. Grundlagen der Investitionstheorie
I. Grundlagen der Investitionstheorie Dieser Kapitel ist eine Einführung in die Investitionstheorie. Ein Investitionsprojekt () ist z.b. Bau eine Produktionsanlage, Kauf von Immobilien, Kauf von Aktien
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen
Investition und Finanzierung. Investition Teil 1
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,
QM I (W-Mathe)-Klausur am
QM I (W-Mathe)-Klausur am 06.07.206 Aufgabe a) Berechnen Sie den folgenden Grenzwert: 3 2 36+05 lim 5 4 20 b) Die Preis-Absatz Funktion eines Unternehmens sei gegeben durch: (p) = 8 0,6p. Bestimmen Sie
Zinsen, Zinseszins, Rentenrechnung und Tilgung
Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins
Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57
Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich lange Rentenperioden, d.h.
Startkapital. Erstellen Sie eine Zeitlinie zu diesem Zahlungsfluss. Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann.
Startkapital Aufgabennummer: B_146 Technologieeinsatz: möglich erforderlich S Simon möchte sich selbstständig machen. Er setzt für die Gründung seines Unternehmens als Startkapital seine Ersparnisse und
Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre. Lösungshinweise zur Einsendearbeit 2 (WS 2010/2011)
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, WS 010/011 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit
Wirtschaftlichkeitsrechnung
Karl-Werner Schulte Wirtschaftlichkeitsrechnung 2., erweiterte und verbesserte Auflage TECHNISCHE HOCHSCHULE DARMST
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate
1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00
Verfahren der Investitionsrechnung
Verfahren der Investitionsrechnung Aufgabe 1: (Einführung in die Kapitalwertmethode) a. Erläutern Sie bitte kurz die Ziele der Kapitalwertmethode? b. Entwickeln Sie für die nachfolgenden Beispiele die
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen
Fachhochschule Bochum Fachhochschule Münster Fachhochschule Südwestfalen Verbundstudiengang Technische Betriebswirtschaft Prof. Dr. rer. nat. habil. J. Resch Teilprüfung: Mathematik 1 (Modul) Termin: 19.
3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1
Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.
Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines
lebensbegleitenden Finanzmathematik
Martin Hödlmoser Das lxl der lebensbegleitenden Finanzmathematik Kredit-, Darlehens-, Leasingraten Rendite von Veranlagungen (Sparbücher, Wertpapiere,...) Zinsverrechnungsmodalitäten Tilgungspläne Grundzüge
Finanzierung Kapitel 4: Der Zeitwert des Geldes
Kapitel 4: Der Zeitwert des Geldes von Sommersemester 2010 Grundlegendes zur Investitionstheorie Jedes Investitionsprojekt kann abstrakt als eine zeitliche Verteilung von Cash-Flows betrachtet werden.
a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? b) Was versteht man unter dem Begriff Wertstellungspraxis?
1 Klausur SoSe 2007 Aufgabe 1: Fragen zur Finanzmathematik (7 Punkte) a) Welche Aufgabe hat der Zinssatz im Rahmen der Finanzmathematik wahrzunehmen? (2 Punkte) b) Was versteht man unter dem Begriff Wertstellungspraxis?
Finanzmathematik. Intensivkurs. Von Prof. Dr. Holger Ihrig. und Prof. Dr. Peter Pflaumer. 6., verbesserte und erweiterte Auflage
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Finanzmathematik Intensivkurs Von Prof. Dr. Holger Ihrig und Prof.
10.1 Zinsperioden und effektive Raten
Kapitel 10 Themen aus der Finanzmathematik: Zinsraten und Barwerte Dann hättest du mein Geld zu den Wechslern bringen sollen, und wenn ich gekommen wäre, hätte ich das Meine wiederbekommen mit Zinsen.
Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1
Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z
Übungsserie 6: Rentenrechnung
HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine
Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor
1. Kapitel: Grundkonzeption der Unternehmensbewertung Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor Sachverhalt: Herr Glück kauft im Dezember 2012 von seinem Weihnachtsgeld (5 000 Euro) Lose der
1. Wie viel Zinsen bekommt man, wenn man 7000,00 1 Jahr lang mit 6 % anlegt?
Zinsrechnung mit der Tabellenform: Berechnen der Jahreszinsen Ein Sparbuch mit 1600 wird mit 4% verzinst. Wie Zinsen erhält man im Jahr? Geg.: K = 1600 p% = 4% ges.: Z Das Kapital (Grundwert) entspricht
Finanzwirtschaft. Teil II: Bewertung
Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.
Zinsrechnung ist Prozentrechnung: Einstiegshilfen mit Musterbeispielen zum Selbstlernen:
Zinsrechnung ist Prozentrechnung: Einstiegshilfen mit Musterbeispielen zum Selbstlernen: Den Bezeichnungen und Symbolen aus der Prozentrechnung entsprechen bei der Zinsrechnung: Prozentrechnung Zinsrechnung
Grundzüge der Finanzmathematik
Markus Wessler Grundzüge der Finanzmathematik Das Übungsbuch Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 2 Zinsrechnung
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Ewige Renten Eine Rente heißt ewige Rente, wenn Anzahl n der Ratenzahlungen nicht begrenzt, n also beliebig groß wird (n ). Berechnung
Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel
Kapitel 1 Zinsrechnung Problemstellung worum geht es in diesem Kapitel? 1 Verschiedene Verzinsungsverfahren 2 Häufig auftretende Fragestellung: Wenn man heute einen Betrag X anlegt, wie viel hat man dann
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich
Finanzmathematik. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät HW.
Finanzmathematik Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät HW http://www.mathe.wiwi.uni-sb.de Mathematik Grundlagen& Grundbegriffe Ziel der Finanzmathematik:
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 [email protected] Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm
urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen
Aufgabe 1. Kolloquium zur Klausurnachbesprechung Innovationscontrolling Wintersemester 2011/12. Thomas Hahn
Aufgabe 1 Kolloquium zur Klausurnachbesprechung Innovationscontrolling Wintersemester 2011/12 Thomas Hahn Agenda 1 Aufgabe 1a 2 Aufgabe 1b 3 Aufgabe 1c 4 Aufgabe 1d 5 Aufgabe 1e 6 Aufgabe 1f «März 2012
