3.4 Bivariate Datenanalyse in R

Größe: px
Ab Seite anzeigen:

Download "3.4 Bivariate Datenanalyse in R"

Transkript

1 90 KAPITEL 3. BIVARIATE ANALYSE 3.4 Bivariate Datenanalyse in R Beginnen wir mit dem Zusammenhang zwischen einem qualitativem und einem quantitativem Merkmal. Wir wollen das Alter der weiblichem Teilnehmer mit dem Alter der männlichen Teilnehmer vergleichen. Wir haben auf Seite 2.3 die Werte des Merkmals Alter dem Vektor Alter und auf Seite 57 die Werte des Merkmals Geschlecht dem Vektor Geschlecht zugewiesen. Auf Seite 60 haben wir gesehen, wie man aus einem Vektor Komponenten auswählen kann, die bestimmte Bedingungen erfüllen. Wir selektieren mit dieser vorgehensweise das Alter der Frauen > alter.w<-alter[geschlecht=="w"] > alter.w [1] und das Alter der Männer > alter.m<-alter[geschlecht=="m"] > alter.m [1] aus dem Vektor Alter. Wir können die üblichen Maßzahlen wie Mittelwert, Median, Stichprobenvarianz und Standardabweichung berechnen. > mean(alter.w) [1] > mean(alter.m) [1] 30.5 > median(alter.w) [1] 28 > median(alter.m) [1] 29.5 > var(alter.w) [1] > var(alter.m) [1] > sd(alter.w) [1] > sd(alter.m) [1] Die Boxplots in Abbildung 3.1 auf Seite 67 erstellen wir durch:

2 3.4. BIVARIATE DATENANALYSE IN R 91 > boxplot(alter.w,alter.m,names=c("frauen","maenner"), horizontal=true) Mit dem Argument horizontal kann man steuern, ob die Boxplots waagerecht oder senkrecht gezeichnet werden sollen. Betrachten wir nun die qualitativen Merkmale Geschlecht und Titanic. Hier können wir bei der Analyse von den Rohdaten oder der Kontingenztabelle ausgehen. Beginnen wir mit den Rohdaten. Wir erzeugen einen Vektor Titanic mit den Werten des Merkmals Titanic. > Titanic<-c("n","j","j","n","n","j","j","n","j","n","j","j", "j","j","j","j","n","j","n","j","j","j","j","j","n") Die Kontingenztabelle erzeugen wir folgendermaßen mit der Funktion table: > h<-table(geschlecht,titanic) > h Titanic Geschlecht m 5 7 w 12 1 Die Variable h ist eine Matrix. Eine Matrix besteht aus Zeilen und Spalten. Die Matrix h besitzt 2 Zeilen und 2 Spalten. Auf Elemente einer Matrix greifen wir wie Vektoren durch Indizierung zu, wobei wir die Informationen, die sich auf Zeilen beziehen, von den Informationen, die sich auf Spalten beziehen, durch Komma trennen. Um auf das Element in der ersten Zeile und zweiten Spalte zuzugreifen, geben wir also ein: > h[1,2] [1] 7 Alle Elemente der ersten Zeile erhalten wir durch > h[1,] 5 7 und alle Elemente der zweiten Spalte durch > h[,2] m w 7 1

3 92 KAPITEL 3. BIVARIATE ANALYSE Wir können die Häufigkeitstabelle auch direkt als Matrix eingeben. In R erzeugt man eine Matrix mit der Funktion matrix. Der Aufruf der Funktion matrix ist matrix(data,nrow=1,ncol=1,byrow=f) Dabei ist data der Vektor mit den Elementen der Matrix. Das Argument nrow gibt die Anzahl der Zeilen und das Argument ncol die Anzahl der Spalten der Matrix an. Standardmäßig wird eine Matrix spaltenweise eingegeben. Sollen die Zeilen aufgefüllt werden,so muss das Argument byrow auf den Wert TRUE gesetzt werden. Wir geben also ein > h<-matrix(c(5,12,7,1),2,2) > h [,1] [,2] [1,] 5 7 [2,] 12 1 Wir sehen, dass die Dimensionen der Matrix keine Namen haben. Wir weisen den Dimensionen von h mit der Funktion dimnames Namen zu. Der Aufruf von dimnames für eine Matrix mat ist dimnames(mat)<-list(zn,sn) Dabei sind ZN und SN Vektoren mit den Namen der Zeilen beziehungsweise Spalten der Matrix mat. In der Regel werden dies Vektoren sein, die Zeichenketten enthalten. Die Funktion list verbindet ihre Argumente zu einer Liste. Eine Liste besteht aus Komponenten, die unterschiedliche R-Objekte sein können. In einer Liste kann man zum Beispiel Vektoren und Matrizen zu einem Objekt zusammenfassen. Schauen wir uns dies für das Beispiel an. Folgender Aufruf ordnet den Dimensionen von h die entsprechenden Namen zu: > dimnames(h)<-list(c("m","w"),c("j","n")) > h m 5 7 w 12 1 Wir wollen nun die Randhäufigkeiten bestimmen. Hierzu verwenden wir die Funktion apply. Der allgemeine Aufruf von apply ist

4 3.4. BIVARIATE DATENANALYSE IN R 93 apply(x, MARGIN, FUN) Dabei sind X die Matrix und MARGIN die Dimension der Matrix, bezüglich der die Funktion angewendet werden soll. Dabei steht 1 für die Zeilen und 2 für die Spalten. Das Argument FUN ist der Name der Funktion, die auf MARGIN von X angewendet werden soll. Um den Vektor der Zeilensummen von h zu erhalten, geben wir also ein: > apply(h,1,fun=sum) m w Den Vektor der Spaltensummen erhalten wir durch > apply(h,2,fun=sum) 17 8 Um die bedingten relativen Häufigkeiten zu erhalten, verwenden wir die Funktion sweep. Der Aufruf von sweep für eine Matrix ist sweep(m, MARGIN, STATS, FUN) Dabei sind M die Matrix und MARGIN die Dimension der Matrix, bezüglich der die Funktion angewendet werden soll. Dabei steht 1 für die Zeilen und 2 für die Spalten. Das Argument STATS ist ein Vektor, dessen Länge der Größe der Dimension entspricht, die im Argument MARGIN gewählt wurde, und das Argument FUN ist der Name der Funktion, die auf MARGIN von M angewendet werden soll. Standardmäßig wird die Subtraktion gewählt. Die Funktion sweep bewirkt, dass die Funktion FUN angewendet wird, um die Komponenten des Vektors aus der gewählten Dimension von M im wahrsten Sinne des Wortes herauszufegen. Die Matrix der auf die Zeilen bedingten relativen Häufigkeiten erhält man also durch: > h.bz<-sweep(h,1,apply(h,1,fun=sum),fun="/") > h.bz j n m w

5 94 KAPITEL 3. BIVARIATE ANALYSE Die Matrix der auf die Spalten bedingten relativen Häufigkeiten erhält man analog durch: > h.bs<-sweep(h,2,apply(h,2,fun=sum),fun="/") > h.bs m w Das vergleichende Paretodiagramm in Abbildung 3.3 auf Seite 71 erhalten wir folgendermaßen mit Hilfe der Funktion barplot: > h.bz<-h.bz[c(2,1),] > barplot(t(h.bz),legend.text=c("j","n"),col=1:2,beside=t, names.arg=c("frauen","maenner")) Hierbei wird die Matrix m durch den Befehl t(m) transponiert. Es werden also Zeilen und Spalten der Matrix vertauscht. Dies ist nötig, da die Funktion barplot die bedingten Verteilungen in den Spalten erwartet. Das Argument legend.text erstellt eine Legende der Merkmalsausprägungen des interessierenden Merkmals. Durch das Argument col werden die farben für die Säulen festgelegt. Das Argument beside zeichnet die Säulen nebeneinander, wenn es auf TRUE steht. Das vergleichende Paretodiagramm in Abbildung 3.4 auf Seite 72 erhalten wir durch folgende Befehlsfolge: > wahl<-matrix(c(13,55,10,30,3,20,11,24,5,24,23,35),2,6) > partei<-c("cdu","spd","fdp","gruene","keine","weiss nicht") > dimnames(wahl)<-list(geschlecht=c("w","m"),wahl=partei) > h<-sweep(wahl,1,apply(wahl,1,fun=sum),fun="/") > o<-rev(order(h[1,])) > barplot(t(h[,o]),legend.text=partei[o],col=1:6,beside=t, names.arg=c("w","m")) Hier muss noch der Befehl o<-rev(order(wahl[1,])) kommentiert werden. Hier werden zwei bisher unbekannte Funktionen verwendet. Für einen numerischen Vektor v liefert der Aufruf

6 3.4. BIVARIATE DATENANALYSE IN R 95 order(v) einen Vektor, dessen i-te Komponente angibt, an der wievielten Stelle das i-t kleinste Element im Vektor steht. Für den Vektor > v [1] liefert der Aufruf > order(v) folgendes Ergebnis [1] Mit der Funktion order können wir sowohl die bedingten relativen Häufigkeiten als auch die Namen der Merkmalsausprägungen in die richtige Ordnung bringen. Wir müssennur berücksichtigen, dass wir mit dem gröss ten Element beginen müssen. Der Aufruf rev(v) bringt die Elemente des Vektors v in die umgekehrte Reihenfolge. > rev(v) [1] Die Abbildung 3.5 auf Seite 73 erhalten wir durch folgende Befehlsfolge: > barplot(h[,o],legend.tex=c("w","m"),col=1:2,beside=t, names.arg=partei[o]) Abbildung 3.6 auf Seite 74 erhalten wir durch folgende Befehle > Titanic<-c("n","j","j","n","n","j","j","n","j","n","j","j", "j","j","j","j","n","j","n","j","j","j","j","j","n") > Geschlecht<-c("m","w","w","m","m","m","w","m","w","m","w", "m","m","w","w","m","m","m","w","w","w","w","w","w","m") > h<-table(geschlecht,titanic) > mosaicplot(h,main="")

7 96 KAPITEL 3. BIVARIATE ANALYSE Schauen wir uns den Zusammenhang zwischen quantitativen Merkmalen an. Wir betrachten das Beispiel 17 auf Seite 75 und erzeugen in R die Variablen Flaeche und Miete: > Miete<-c(530,520,420,500,440,650) > Flaeche<-c(55,40,30,23,26,45) Das Streudiagramm in Abbildung 3.9 auf Seite 76 erhält man durch: > plot(flaeche,miete) Den Wert der Kovarianz zwischen den Merkmalen Fäche und Miete liefert die Funktion var: > var(flaeche,miete) [1] 610 R verwendet bei der Bestimmung der Kovarianz folgende Formel: d x,y = 1 n 1 n (x i x) (y i y) i=1 Den Wert des Korrelationskoeffizienten zwischen den Merkmalen Fäche und Miete liefert die Funktion cor: > cor(flaeche,miete) [1] Um den Korrelationskoeffizienten von Spearman für die Merkmale Fäche und Miete bestimmen zu können, benötigt man zuerst die Ränge der Beobachtungen bei beiden Merkmalen. Diese erhält man mit der Funktion rank. > rank(flaeche) [1] Wendet man die Funktion cor auf die Ränge an, so erhält man den Korrelationskoeffizienten von Spearman: > cor(rank(flaeche),rank(miete)) [1]

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal

3.1 Zusammenhang zwischen einem qualitativen und einem quantitativen Merkmal Kapitel 3 Bivariate Analyse In Kapitel 2 haben wir gesehen, wie man ein Merkmal auswertet. Mit Hilfe statistischer Verfahren kann man aber auch untersuchen, ob zwischen mehreren Merkmalen Abhängigkeiten

Mehr

Mehrere kategoriale Merkmale

Mehrere kategoriale Merkmale Kapitel 3 Mehrere kategoriale Merkmale 3.1 Wie kann man zwei kategoriale Merkmale numerisch beschreiben? Kontingenztafeln (Kreuztabellen) erzeugt man wiederum mit table: R> CMMRCIAL

Mehr

Bivariate explorative Datenanalyse in R

Bivariate explorative Datenanalyse in R Bivariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-09 In der LV Statistik 1 haben wir auch den Zusammenhang von 2 Variablen untersucht. Hier werden die dazugehörenden R-Befehle

Mehr

Skalenniveaus =,!=, >, <, +, -

Skalenniveaus =,!=, >, <, +, - ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis, Regina Tüchler 2006-10-03 1 Ein metrisches Merkmal Wir laden den Datensatz: R> load("statlab.rda") und machen die Variablen direkt verfügbar: R>

Mehr

Lineare Algebra mit dem Statistikprogramm R

Lineare Algebra mit dem Statistikprogramm R SEITE 1 Lineare Algebra mit dem Statistikprogramm R 1. Verwendung von Variablen Variablen werden in R definiert, indem man einem Variablennamen einen Wert zuweist. Bei Variablennamen wird zwischen Groß

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

5 Assoziationsmessung in Kontingenztafeln

5 Assoziationsmessung in Kontingenztafeln 5 Assoziationsmessung in Kontingenztafeln 51 Multivariate Merkmale 51 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt zur Beschreibung

Mehr

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n

1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n 3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:

Mehr

Eine Einführung in R: Grundlagen II

Eine Einführung in R: Grundlagen II Eine Einführung in R: Grundlagen II Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

Datenaufbereitung, Grafische Datenanalyse

Datenaufbereitung, Grafische Datenanalyse Datenaufbereitung, Grafische Datenanalyse R-Übung 2 Statistik III für Nebenfachstudierende LMU WS 2013/14 David Rügamer 6. & 13. November 2013 Nach einer Vorlage von Toni Hilger (WS 11/12) und Arne Kaldhusdal

Mehr

Univariate explorative Datenanalyse in R

Univariate explorative Datenanalyse in R Univariate explorative Datenanalyse in R Achim Zeileis 2009-02-20 1 Grundlegende Befehle Zunächst laden wir den Datensatz (siehe auch Daten.pdf ) BBBClub R> load("bbbclub.rda") das den "data.frame" BBBClub

Mehr

2.3 Univariate Datenanalyse in R

2.3 Univariate Datenanalyse in R 2.3. UNIVARIATE DATENANALYSE IN R 47 2.3 Univariate Datenanalyse in R Wir wollen nun lernen, wie man in R Daten elementar analysiert. R bietet eine interaktive Umgebung, Befehlsmodus genannt, in der man

Mehr

Lösungen zur Klausur zur Statistik Übung am

Lösungen zur Klausur zur Statistik Übung am Lösungen zur Klausur zur Statistik Übung am 28.06.2013 Fabian Kleine Staatswissenschaftliche Fakultät Aufgabe 1 Gegeben sei die folgende geordneten Urliste des Merkmals Y. 30 Punkte Y : 5 5 5 5 10 10 10

Mehr

W-Rechnung und Statistik für Ingenieure Übung 5

W-Rechnung und Statistik für Ingenieure Übung 5 W-Rechnung und Statistik für Ingenieure Übung 5 Grafische/ tabellarische Darstellung für bivariate Daten diskrete Merkmale (qualitativ+ quantitativ diskret) stetige Merkmale (quantitativ stetig) Zusammenhangsmaße

Mehr

R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung.

R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung. R-Wörterbuch Ein Anfang... ein Klick auf einen Begriff führt, sofern vorhanden, zu dessen Erklärung. Carsten Szardenings [email protected] 7. Mai 2015 A 2 B 3 C 4 D 5 F 6 R 16 S 17 V 18 W 19 Z 20 H 7 I 8 K 9

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel.

Statistik I. Zusammenfassung und wichtiges zur Prüfungsvorbereitung. Malte Wissmann. 9. Dezember Universität Basel. Zusammenfassung und wichtiges zur Prüfungsvorbereitung 9. Dezember 2008 Begriffe Kenntnis der wichtigen Begriffe und Unterscheidung dieser. Beispiele: Merkmal, Merkmalsraum, etc. Skalierung: Nominal etc

Mehr

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale)

PROC MEANS. zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) PROC MEAS zum Berechnen statistischer Maßzahlen (für quantitative Merkmale) Allgemeine Form: PROC MEAS DATA=name Optionen ; VAR variablenliste ; CLASS vergleichsvariable ; Beispiel und Beschreibung der

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober

1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte. D. Horstmann: Oktober 1.1 Graphische Darstellung von Messdaten und unterschiedliche Mittelwerte D. Horstmann: Oktober 2014 4 Graphische Darstellung von Daten und unterschiedliche Mittelwerte Eine Umfrage nach der Körpergröße

Mehr

Statistische Software (R-Vertiefung) Kontrollstrukturen: Bedingte Anweisungen. Logische Operatoren & Verknüpfungen. Syntax. Paul Fink, M.Sc.

Statistische Software (R-Vertiefung) Kontrollstrukturen: Bedingte Anweisungen. Logische Operatoren & Verknüpfungen. Syntax. Paul Fink, M.Sc. Kontrollstrukturen: Bedingte Anweisungen Statistische Software (R-Vertiefung) if ( Bedingung ) { Ausdruck 1 } else { Ausdruck 2} Paul Fink, M.Sc. Institut für Statistik Ludwig-Maximilians-Universität München

Mehr

Kurzanleitung für SPSS Statistics 22

Kurzanleitung für SPSS Statistics 22 Kurzanleitung für SPSS Statistics 22 im Rahmen des Moduls Betriebssoziologie (Prof. Dr. Christian Ernst) Schritt 1: Variablen definieren (in der Variablenansicht) Daten können direkt in ein "leeres" Datenfenster

Mehr

Musterlösung zur Aufgabensammlung Statistik I Teil 3

Musterlösung zur Aufgabensammlung Statistik I Teil 3 Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Eine Einführung in R: Grundlagen I

Eine Einführung in R: Grundlagen I Eine Einführung in R: Grundlagen I Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/

Mehr

2 R die Basics. Inhalt. 2.1 Ziel. 2.2 R als Taschenrechner. Markus Burkhardt

2 R die Basics. Inhalt. 2.1 Ziel. 2.2 R als Taschenrechner. Markus Burkhardt 2 R die Basics Markus Burkhardt ([email protected]) Inhalt 2.1 Ziel... 1 2.2 R als Taschenrechner... 1 2.3 Umgang mit Vektoren... 2 2.3 Weitere Objektklassen... 3 2.4 Umgang mit

Mehr

Eine Einführung in R: Grundlagen I

Eine Einführung in R: Grundlagen I Eine Einführung in R: Grundlagen I Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 14. Oktober 2009 Bernd Klaus, Verena Zuber Grundlagen

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Weitere smaße skoeffizient: CR g = Anteil,

Mehr

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum

Merkmalstypen Univ.-Prof. Dr. rer. nat. et med. habil. Andreas Faldum 1 Merkmalstypen Quantitativ: Geordnete Werte, Vielfache einer Einheit Stetig: Prinzipiell sind alle Zwischenwerte beobachtbar Beispiele: Gewicht, Größe, Blutdruck Diskret: Nicht alle Zwischenwerte sind

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny Institut für angewandte Mathematik Universität Bonn

Softwarepraktikum. zu Elemente der Mathematik. Carsten Rezny Institut für angewandte Mathematik Universität Bonn Softwarepraktikum zu Elemente der Mathematik Carsten Rezny Institut für angewandte Mathematik Universität Bonn 18. 20.05.2016 Listen Liste: Aufzählung von beliebigen Objekten liste={2,1.4,"abc"} Einzelnes

Mehr

Programmieren. Aufgabe 1 (Eine erste Datenstruktur)

Programmieren. Aufgabe 1 (Eine erste Datenstruktur) Prof. Dr. S.-J. Kimmerle (Vorlesung) Dipl.-Ing. (FH) V. Habiyambere (Übung) Institut BAU-1 Fakultät für Bauingenieurwesen und Umweltwissenschaften Herbsttrimester 2016 Aufgabe 1 (Eine erste Datenstruktur)

Mehr

Lösungen zur deskriptiven Statistik

Lösungen zur deskriptiven Statistik Lösungen zur deskriptiven Statistik Aufgabe 1. Bei einer Stichprobe von n = Studenten wurden folgende jährliche Ausgaben (in e) für Urlaubszwecke ermittelt. 1 58 5 35 6 8 1 6 55 4 47 56 48 1 6 115 8 5

Mehr

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst

Mehr

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend

Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Beispiel in R: Verfahren zur Modellierung von ZR mit Saison und Trend Regina Tüchler November 2, 2009 Beispiel: Zeitreihenanalyse der Übernachtungs-Daten: Wir haben Daten mit monatlichen Übernachtungszahlen

Mehr

Übungsblatt 4. Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten

Übungsblatt 4. Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten Aufgabe 1: Übungsblatt 4 Berechnen Sie für die statistischen Reihen die Varianzen, Kovarianzen und Korrelationskoeffizienten a) s 2 X, s 2 Y, sz, 2 s 2 U, s 2 V, s 2 W, s 2 T b) c XY, c Y Z c) c ZU, c

Mehr

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

6. Vorlesung. Rechnen mit Matrizen.

6. Vorlesung. Rechnen mit Matrizen. 6. Vorlesung. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt

Mehr

Kurze Einführung in Octave

Kurze Einführung in Octave Kurze Einführung in Octave Numerische Mathematik I Wintersemester 2009/2010, Universität Tübingen Starten von Octave in einer Konsole octave eintippen (unter Linux) Octave als Taschenrechner Beispiele:

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Eine Einführung in R: Programmstrukturen

Eine Einführung in R: Programmstrukturen Eine Einführung in R: Programmstrukturen Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 4. November 2009 Bernd Klaus, Verena Zuber

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Eigene MC-Fragen SPSS

Eigene MC-Fragen SPSS Eigene MC-Fragen SPSS 1. Welche Spalte ist in der Variablenansicht unbedingt festzulegen? [a] Variablenlabel [b] Skala [c] Name [d] Typ [e] Wertelabel 2. Wie heißt das Standardfenster von SPSS? [a] Dialogfenster

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2008/2009 Aufgabe 1 Der Student

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Statistisches Programmieren

Statistisches Programmieren Statistisches Programmieren Session 1 1 Was ist R R ist eine interaktive, flexible Software-Umgebung in der statistische Analysen durchgeführt werden können. Zahlreiche statistische Funktionen und Prozeduren

Mehr

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten

4) Lösen linearer Gleichungssysteme mit zwei oder drei Unbekannten 1) Wechsel der Darstellung Taschenrechner CASIO fx-991 ES Denn es ist eines ausgezeichneten Mannes nicht würdig, wertvolle Stunden wie ein Sklave im Keller der einfachen Berechnungen zu verbringen. Gottfried

Mehr

Reihen sind Beobachtungen (jedes Mal, dass eine Versuchsperson etwas getan hat, gibt es eine Reihe).

Reihen sind Beobachtungen (jedes Mal, dass eine Versuchsperson etwas getan hat, gibt es eine Reihe). 1 Data-Frames, Faktoren, Deskriptive Statistik Jonathan Harrington 0. Vorbereitung von Daten Data-Frame besteht aus Reihen und Spalten. Reihen sind Beobachtungen (jedes Mal, dass eine Versuchsperson etwas

Mehr

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0.

1. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei. 1 für 0 x 1 und 0 y 1 0 sonst. 1 Volumen über schraffierter Fläche = = 0. Übungsbeispiele. Die gemeinsame Dichtefunktion der Zufallsvariablen X,Y sei { für und f(,) sonst (a) Skizzieren Sie die Dichtefunktion. f(,) (b) Berechnen Sie P(.5,.75) Lösung:.75 Volumen über schraffierter

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Im ersten Schritt müssen die Daten in die Datenansicht eingelesen werden.

Im ersten Schritt müssen die Daten in die Datenansicht eingelesen werden. Kapitel 2 FRAGESTELLUNG 1 Im ersten Schritt müssen die Daten in die Datenansicht eingelesen werden. Dazu muss man auf den Menüpunkt Datei / Öffnen / Daten gehen und die Datei commercial.sav laden. Nun

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Wahrscheinlichkeitsrechnung und Statistik Für Ingenieurstudenten an Fachhochschulen von Michael Sachs erweitert Wahrscheinlichkeitsrechnung und Statistik Sachs schnell und portofrei erhältlich bei beck-shopde

Mehr

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale)

PROC NPAR1WAY. zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) PROC NPAR1WAY zum Durchführen des U-Tests für zwei unverbundene Stichproben (für quantitative nicht-normalverteilte Merkmale) Allgemeine Form: PROC NPAR1WAY DATA=name Optionen ; VAR variablenliste ; CLASS

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 Aufgaben zu Kapitel 1 Aufgabe 1 a) Öffnen Sie die Datei Beispieldatensatz.sav, die auf der Internetseite zum Download zur Verfügung steht. Berechnen Sie die Häufigkeiten für die beiden Variablen sex und

Mehr

Kompaktwissen zu R. 1. Hilfe. Allgemein. Beispiele hilfreicher Internetseiten (mit weiteren Verweisen zu Einführungen und Tutorien)

Kompaktwissen zu R. 1. Hilfe. Allgemein. Beispiele hilfreicher Internetseiten (mit weiteren Verweisen zu Einführungen und Tutorien) Kompaktwissen zu R 1. Hilfe Allgemein Manuale und Archive von Mailinglisten Beispiele hilfreicher Internetseiten (mit weiteren Verweisen zu Einführungen und Tutorien) Bücher In R Starten des Hilfesystems

Mehr

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Sachs. Wahrscheinlichkeitsrechnung und Statistik. für Ingenieurstudenten an Fachhochschulen. ISBN (Buch): Leseprobe Michael Sachs Wahrscheinlichkeitsrechnung und Statistik für Ingenieurstudenten an Fachhochschulen ISBN (Buch): 978-3-446-43797-5 ISBN (E-Book): 978-3-446-43732-6 Weitere Informationen oder Bestellungen

Mehr

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7

Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7 Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

Analytische Geometrie

Analytische Geometrie Der fx-991 DE X im Mathematik- Unterricht Analytische Geometrie Station 1 Schnittgerade zweier Ebenen Da der Taschenrechner nur eindeutige Lösungen eines Gleichungssystems liefert, kann er nur Schnittpunkte

Mehr

Grundlagen der Bioinformatik Übung 5 Einführung in R. Ulf Leser, Yvonne Mayer

Grundlagen der Bioinformatik Übung 5 Einführung in R. Ulf Leser, Yvonne Mayer Grundlagen der Bioinformatik Übung 5 Einführung in R Ulf Leser, Yvonne Mayer Introduction to R Ulf Leser: Grundlagen der Bioinformatik, Sommer Semester 2016 2 Einführung in R Voraussetzung: funktionsfähige

Mehr

8. Kreuztabellenanalyse

8. Kreuztabellenanalyse 8. Kreuztabellenanalyse In den bislang dargestellten Beispielen wurde in der Regel der Mittelwert eines Merkmals ausgewertet. Meistens ist man aber nicht nur an der Verteilung eines einzigen Merkmals oder

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion Summenprodukt... 4

Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion Summenprodukt... 4 Inhaltsverzeichnis Inhaltsverzeichnis... 1 Bestandteile einer Formel... 1 Die Funktion SUMME... 2 Die Funktion AUTOSUMME... 2 Die Funktion SUMMEWENN... 2 Die Funktion SUMMEWENNS... 3 Die Funktion Summenprodukt...

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt

Mehr

3. Lektion: Deskriptive Statistik

3. Lektion: Deskriptive Statistik Seite 1 von 5 3. Lektion: Deskriptive Statistik Ziel dieser Lektion: Du kennst die verschiedenen Methoden der deskriptiven Statistik und weißt, welche davon für Deine Daten passen. Inhalt: 3.1 Deskriptive

Mehr

y = y = 2'500 Darstellung in Grafik: P 2 (800 2'500) x (Stk) 1'000

y = y = 2'500 Darstellung in Grafik: P 2 (800 2'500) x (Stk) 1'000 . Kostenfunktion a) Vorgaben und Fragestellung Über die Herstellungskosten eines Produkts ist folgendes bekannt: Die variablen Material- und Lohnkosten betragen CHF. pro Stück. Die Fikosten belaufen sich

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK

htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 1 EINFÜHRUNG IN DIE STATISTIK: BESCHREIBENDE STATISTIK htw saar 2 Grundbegriffe htw saar 3 Grundgesamtheit und Stichprobe Ziel: Über eine Grundgesamtheit (Population) soll eine Aussage über ein

Mehr

Statistik ohne Angst vor Formeln

Statistik ohne Angst vor Formeln Statistik ohne Angst vor Formeln Das Studienbuch für Wirtschaftsund Sozialwissenschaftler 4., aktualisierte Auflage Andreas Quatember 1.3 Kennzahlen statistischer Verteilungen 1.3.4 Kennzahlen des statistischen

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)

Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

1.) Matrix einer linearen Abbildung

1.) Matrix einer linearen Abbildung 1.) Matrix einer linearen Abbildung Aufgaben: 7 restart; with(linearalgebra): Definitionen MATH: Seien und Vektorräume über dem Körper mit Basen und. Wir wollen eine bequeme Art finden, eine lineare Abbildung

Mehr

Deskriptive Statistik Aufgaben und Lösungen

Deskriptive Statistik Aufgaben und Lösungen Grundlagen der Wirtschaftsmathematik und Statistik Aufgaben und en Lernmaterial zum Modul - 40601 - der Fernuniversität Hagen Inhaltsverzeichnis 1 Daten und Meßskalen 5 1.1 Konkrete Beispiele...................................

Mehr