Informatik II Dynamische Programmierung
|
|
|
- Elke Maurer
- vor 10 Jahren
- Abrufe
Transkript
1 lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit Tabulierug " Programmierug" hat ichts mit "Programmiere" zu tu, soder mit "Verfahre" Vergleiche "lieares Programmiere", "Iteger-Programmiere" (alles Begriffe aus der Optimierugstheorie) Typische Awedug für dyamisches Programmiere: Optimierug. Zachma Iformatik 2 SS Dyamische Programmierug 2
2 Matrix hai Multiplicatio Problem (MMP) egebe: eie Folge (Kette) A, A 2,, A vo Matrize mit verschiedee Dimesioe esucht: das Produkt A. A. 2. A Aufgabe: Orgaisiere die Multiplikatioe so, daß möglichst weig skalare Multiplikatioe ausgeführt werde. eerelle Idee hier: utze Assoziativität aus. Defiitio: Ei Matrizeprodukt heißt vollstädig geklammert, we es etweder eie eizele Matrix oder das geklammerte Produkt zweier vollstädig geklammerter Matrizeprodukte ist.. Zachma Iformatik 2 SS Dyamische Programmierug Multiplikatio zweier Matrize p A q q B r = r p # Eigabe: p q Matrix A, q r Matrix B # Ausgabe: p r Matrix = A B for i i rage(,p ): for j i rage(,r ): [i,j] = for k i rage(,q ): [i,j] += A[i,k] * B[k,j] Azahl der Muliplikatioe ud Additioe = p q r Bem: für 2 -Matrize werde hier Multiplikatioe beötigt, es geht auch mit O( 2.78 ). Zachma Iformatik 2 SS Dyamische Programmierug 4 2
3 Beispiel Berechug des Produkts vo A, A 2, A mit A : Matrix A 2 : 5 Matrix A : 5 5 Matrix. Klammerug ((A A 2 )A ) erfordert 2. Klammerug (A (A 2 A )) erfordert A' = (A A 2 ) 5 Mult. A' A 25 Mult. A'' = (A 2A ) 25 Mult. A A'' 5 Mult. Summe: 75 Mult. Summe: 75 Mult.. Zachma Iformatik 2 SS Dyamische Programmierug 5 Problemstellug egebe: Folge vo Matrize A, A 2,, A ud die Dimesioe p, p,, p, wobei Matrix A i Dimesio p i- p i hat esucht: eie Multiplikatiosreihefolge, die die Azahl der Multiplikatioe miimiert Beachte: der Algorithmus führt die Multiplikatioe icht aus, er bestimmt ur die optimale Reihefolge! Verallgemeierug: ermittle die optimale Ausführugsreihefolge für eie Mege vo Operatioe Z.B. im ompilerbau: ode-optimierug Bei Datebake: Afrageoptimierug. Zachma Iformatik 2 SS Dyamische Programmierug 6
4 Beispiel für A A 2 A Alle vollstädig geklammerte Matrizeprodukte der Folge A, A 2, A, A 4 sid: Klammeruge etspreche strukturell verschiedee Auswertugsbäume: A A 4 A A 4 etc A A 2 A A 4 A A 2 A A 4 A 4 A 2 A A 4 A 4 A 2 A A A 2 A A 4 A A A 4 A 2 A A A 2. Zachma Iformatik 2 SS Dyamische Programmierug 7 Azahl der verschiedee Klammeruge P() sei die Azahl der verschiedee Klammeruge vo A A k A k + A : Defiitio: P( +)=: = -te atala'sche Zahl Es gilt (o. Bew.): P( +)= π + O 5 Folge: Fide der optimale Klammerug durch Ausprobiere aller Möglichkeite ist silos. Zachma Iformatik 2 SS Dyamische Programmierug 8 4
5 Die Struktur der optimale Klammerug Sei A i j das Produkt der Matrize i bis j; A i j ist eie p i- p j -Matrix Behauptug: Jede optimale Lösug des MMP ethält optimale Lösuge vo Teilprobleme Aders gesagt: Jede optimale Lösug des MMP setzt sich zusamme aus optimale Lösuge vo bestimmte Teilprobleme. Zachma Iformatik 2 SS Dyamische Programmierug 9 Beweis (durch Widerspruch) Sei eie optimale Lösug so geklammert A i j = (A i k ) (A k+ j ), i k < j Behauptug: die Klammerug ierhalb A i k muß ihrerseits optimal sei A.: die Klammerug vo A i k ierhalb der optimale Lösug zu A i j sei icht optimal Es gibt bessere Klammerug vo A i k mit gerigere Koste Setze diese Teillösug i Lösug zu A i j = (A i k ) (A k+ j ) ei Ergibt eie bessere Lösug Widerspruch zur Aahme der Optimalität der ursprügliche Lösug zu A i j. Zachma Iformatik 2 SS Dyamische Programmierug 5
6 Eie rekursive Lösug Auf der höchste Stufe werde 2 Matrize multipliziert, d.h., für jedes k, k -, ist (A ) = ((A k ) (A k+ )) Die optimale Koste köe beschriebe werde als i = j Folge ethält ur eie Matrix, keie Koste i < j ka geteilt werde, idem jedes k, i k < j betrachtet wird: Koste für ei bestimmtes k = "Koste liks" + "Koste rechts" Koste für die Matrix-Multiplikatio (A i k ). (A k+ j ) Daraus lässt sich die folgede rekursive Regel ableite: m[i,j] sei die miimale Azahl vo Operatioe zur Berechug des Teilprodukts A i j. Zachma Iformatik 2 SS Dyamische Programmierug Ei aiver rekursiver Algorithmus # Iput p = Vektor der Array-röße # Output m[i,j] = optimale Koste für die # Multiplikatio der Arrays i,.., j def mcm_rek( p, i, j ): if i = j: retur m = for k i rage( i,j ): q = p[i-]*p[k]*p[j] + \ mcm_rek( p, i, k ) + \ mcm_rek( p, k+, j ) if q < m: m = q retur m Aufruf für das gesamte Problem: mcm_rek( p,, ). Zachma Iformatik 2 SS Dyamische Programmierug 2 6
7 Laufzeit des aive rekursive Algorithmus Sei T() die Azahl der Schritte zur Berechug vo mcm_rek für Eigabefolge der Läge Expoetielle Laufzeit!. Zachma Iformatik 2 SS Dyamische Programmierug Formulierug mittels Dyamischer Programmierug Beobachtug: die Azahl der Teilprobleme A i j (+) mit i j ist ur Θ 2 2 Folgerug: der aive rekursive Algo berechet viele Teilprobleme mehrfach! Idee: Bottom-up-Berechug der optimale Lösug: Speichere Teillösuge i eier Tabelle j i Daher "dyamische Programmierug" Welche Tabelleeiträge werde für m[i,j] beötigt? Hier: bottom-up = vo der Diagoale ach "rechts obe". Zachma Iformatik 2 SS Dyamische Programmierug 4 7
8 Berechugsbeispiel A : 5 A 2 : 5 5 A : 5 5 A 4 : 5 A 5 : 2 A 6 : 2 25 p = (, 5, 5, 5,, 2, 25) j i m Zachma Iformatik 2 SS Dyamische Programmierug 5 ewiug der optimale Reihefolge Speichere die Positio für die beste Treug, d.h., dejeige Wert k, der zum miimale Wert vo m[i,j] führt Speichere dazu i eiem zweite Array s[i,j] dieses optimale k: s[i,j] wird ur für Folge mit midestes 2 Matrize ud j > i beötigt m s s[i,j] gibt a, welche Multiplikatio zuletzt ausgeführt werde soll Für s[i,j] = k ud die Teilfolge A i j ist es optimal, zuerst A i k, daach A k+ j ud zum Schluss die beide Teilergebisse zu multipliziere:. Zachma Iformatik 2 SS Dyamische Programmierug 6 8
9 Algorithmus mittels dyamischer Programmierug = le(p) - for i i rage(, + ): # assume m has dim (+). (+) m[i,i] = for L i rage( 2,+ ): # cosider chais of legth L for i i rage(,-l ): j = i+l- # le = L j-i = L- m[i,j] = for k i rage( i,j ): q = m[i,k] + m[k+,j] + p[i-]*p[k]*p[j] if q < m[i,j]: m[i,j] = q s[i,j] = k Komplexität: es gibt geschachtelte Schleife, die jeweils höchstes -mal durchlaufe werde, die Laufzeit beträgt also O( ). Zachma Iformatik 2 SS Dyamische Programmierug 7 Beispiel egebe: die Folge vo Dimesioe (5, 4, 6, 2, 7) Multiplikatio vo A (5 4), A 2 (4 6), A (6 2) ud A 4 (2 7) Optimale Folge ist ((A (A 2 A ))A 4 ) j 2 4 j A 4 A i s[i,j] 2 2 i 2 m[i,j] A 2 A A A 2 A 2 A 2 optimale Folge. Zachma Iformatik 2 SS Dyamische Programmierug 8 9
10 Die Techik der dyamische Programmierug Rekursiver Asatz: Löse eies Problems durch Löse mehrerer kleierer Teilprobleme, aus dee sich die Lösug für das Ausgagsproblem zusammesetzt Häufiger Effekt: Mehrfachberechuge vo Lösuge Bottom-up-Berechug: fügt Lösuge kleierer Uterprobleme zusamme, um größere Uterprobleme zu löse ud liefert so eie Lösug für das gesamte Problem Methode: iterative Erstellug eier Tabelle. Zachma Iformatik 2 SS Dyamische Programmierug 9 Wichtige Begriffe Optimale Uterstruktur (optimal substructure): Ei Problem besitzt die (Eigeschaft der) optimale Substruktur, bzw. gehorcht dem Prizip der Optimalität : :. Die Lösug eies Problems setzt sich aus de Lösuge vo Teilprobleme zusamme - Bsp. MMP: gesuchte Klammerug vo A A setzt sich zusamme aus der Klammerug eier (bestimmte) Teilkette A A k ud eier Teilkette A k+ A 2. We die Lösug optimal ist, da müsse auch die Teillösuge optimal sei! - Bsp. MMP: wir habe folgede Behauptug bewiese: Falls Klammerug zu A A k icht optimal Klammerug zu A A (die gemäß A. Teillsg zu A A k ethält) ka icht optimal sei. Zachma Iformatik 2 SS Dyamische Programmierug 2
11 Achtug: die zweite Bedigug (Teillösuge müsse optimal sei) ist machmal icht erfüllt: Beispiel: lägster Pfad durch eie raphe a b Aufgabe hier: bestimme lägste Pfad vo a ach c d c Im Beispiel rechts: Lösug besteht aus Teilpfade a b ud b c Aber diese sid icht optimale(!) Lösuge der etspr. Teilprobleme - Optimale (d.h., lägste) Lösug für a b = a d c b. Zachma Iformatik 2 SS Dyamische Programmierug 2 Uabhägigkeit der Teillösuge: Die Teilprobleme heiße (im Sie der Dy. Progr.) uabhägig : : die Optimierug des eie Teilproblems beeiflußt icht die Optimierug des adere (z.b. bei der Wahl der Uterteilug) - Bsp. MMP: die Wahl der Klammerug für A A k ist völlig uabhägig vo der Klammerug für A k+ A - egebsp. "lägster Pfad": die optimale Lsg für a b (ämlich a d c b) immt der optimale Lsg für b c Elemete weg a d b c. Zachma Iformatik 2 SS Dyamische Programmierug 22
12 Überlappede Teilprobleme: Ei Problem wird zerlegt i Uterprobleme, diese wieder i Uter- Uterprobleme, usw. Ab irgedeiem rad müsse dieselbe Uter-Uterprobleme mehrfach vorkomme, sost ergibt das DP wahrscheilich keie effiziete Lösug - Bsp. MMP: Rekursiosbaum ethält viele überlappede Teilprobleme Zachma Iformatik 2 SS Dyamische Programmierug 2 Rekostruktio der optimale Lösug: Optimale Lösug für esamtproblem beihaltet Schritte:. Etscheidug treffe zur Zerlegug des Problems i Teile 2. Optimale Wert für Teilprobleme bereche. Optimale Wert für esamtproblem "zusammesetze" Dyamische Programmierug berechet zuächst oft ur de "Weg" zur optimale Lösug, aber - im zweite Schritt wird da die optimale Lösug mittels diese Weges berechet; - dazu Etscheiduge eifach i Phase speicher ud i Phase 2 da "abspiele" m s - Beispiel: MMP Speichere Idex k, der zum optimale Wert führt i zweitem Array s. Zachma Iformatik 2 SS Dyamische Programmierug 24 2
13 Schritte bei der dyamische Programmierug. harakterisiere die (rekursive) Struktur der optimale Lösug (Prizip der optimale Substruktur) 2. Defiiere de Wert eier optimale Lösug rekursiv. Trasformiere die rekursive Methode i eie iterative bottom-up Methode, bei der alle Zwischeergebisse i eier Tabelle gespeichert werde. Zachma Iformatik 2 SS Dyamische Programmierug 25 Das Rucksack-Problem (Kapsack Problem) Das Problem: "Die Qual der Wahl" Beispiel: ei Dieb raubt eie Lade aus; um möglichst flexibel zu sei, hat er für die Beute ur eie Rucksack dabei Im Lade fidet er egestäde; der i-te egestad hat de Wert v i ud das ewicht w i Sei Rucksack ka höchstes das ewicht c trage w i ud c sid gaze Zahle (die v i köe aus sei) Aufgabe: welche egestäde sollte für de maximale Profit gewählt werde?. Zachma Iformatik 2 SS Dyamische Programmierug 8
14 Beispiel Rucksack = 6 = 8 = 22 Fazit: es ist keie gute Strategie, das Objekt mit dem beste Verhältis Profit:ewicht als erstes zu wähle. Zachma Iformatik 2 SS Dyamische Programmierug 9 Eiige Variate des Kapsack-Problems Fractioal Kapsack Problem: Der Dieb ka Teile der egestäde mitehme Lösugsalgo später (mit reedy-strategie) - Kapsack Problem: Biäre Etscheidug zwische ud : jeder egestad wird vollstädig geomme oder gar icht Formale Problemstellug: x i = / : egestad i ist (icht) im Rucksack. Zachma Iformatik 2 SS Dyamische Programmierug 4 4
15 Die rekursive Lösug Betrachte de erste egestad i=; es gibt zwei Möglichkeite:. Der egestad wird i de Rucksack gepackt (x =) Rest-Problem: 2. Der egestad wird icht i de Rucksack gepackt (x =) Rest-Problem: Bereche beide Fälle, wähle de bessere. Zachma Iformatik 2 SS Dyamische Programmierug 4 Der Rekursiosbaum vorhadee Rest-Kapazität Wert des Rucksacks c Objekt c c - w v 2 c c - w 2 v 2 c - w v c - w - w 2 v + v 2 c c - w v c - w v c - w - w v + v. Zachma Iformatik 2 SS Dyamische Programmierug 42 5
Dynamische Programmierung Matrixkettenprodukt
Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
Nachklausur - Analysis 1 - Lösungen
Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:
... a ik) i=1...m, k=1...n A = = ( a mn
Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,
Aufgaben und Lösungen der Probeklausur zur Analysis I
Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac
Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala
Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.
Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,
Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares
4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,
AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3
INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE
15.4 Diskrete Zufallsvariablen
.4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet
BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008
Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe
Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S
Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere
Statistik I/Empirie I
Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass
Stichproben im Rechnungswesen, Stichprobeninventur
Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-
Kunde. Kontobewegung
Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:
Finanzmathematische Formeln und Tabellen
Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,
Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222
Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme
3. Tilgungsrechnung. 3.1. Tilgungsarten
[email protected] 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie
Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39
Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle
Übungsblatt 1 zur Vorlesung Angewandte Stochastik
Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche
Stochastik für WiWi - Klausurvorbereitung
Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F
1 Randomisierte Bestimmung des Medians
Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser
GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.
eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases
Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.
Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere
Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield
Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der
VAIO-Link Kundenservice Broschüre
VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum
Mathematischer Vorkurs zum Studium der Physik
Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)
Medienzentrum. Bibliothek. Handreichung zur Literatursuche
Mediezetrum Bibliothek Hadreichug zur Literatursuche Versio 1.6 23.09.2014 Sie schreibe Ihre Abschlussarbeit? Sie suche Literatur zu Ihrem Thema? Da hilft Ihe usere Hadreichug zur Literatursuche (icht
Mit Ideen begeistern. Mit Freude schenken.
Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug
Vorlesung Informationssysteme
Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma ([email protected]) Foto: M. Strauch Aus de Videos wisse Sie......welche
Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++
Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt
Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.
Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger
Vorkurs Mathematik für Informatiker Folgen
Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,
Dynamisches Programmieren Stand
Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:
Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110
Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das
SUCHPROBLEME UND ALPHABETISCHE CODES
SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich
3. Inkrementelle Algorithmen
3. Ikremetelle Algorithme Defiitio 3.1: Bei eiem ikremetelle Algorithmus wird sukzessive die Teillösug für die erste i Objekte aus der bereits bekate Teillösug für die erste i-1 Objekte berechet, i=1,,.
Kapitel 4: Stationäre Prozesse
Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud
Kapitel 6: Quadratisches Wachstum
Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =
Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte
Flexibilität beim Lager ud Kommissioiere: Schieegeführte Regalbediegeräte Ei Kozept zwei Baureihe: DAMBACH Regalbediegeräte Seit mehr als 35 Jahre baut die DAMBACH Lagersysteme Regalbediegeräte ud gehört
Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i
D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi
Wissenschaftliches Arbeiten Studiengang Energiewirtschaft
Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
11 Divide-and-Conquer und Rekursionsgleichungen
160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze
e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)
Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule
BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher
Gliederung. Value-at-Risk
Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug
Lerneinheit 2: Grundlagen der Investition und Finanzierung
Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der
Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re
atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische
Logarithmus - Übungsaufgaben. I. Allgemeines
Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht
3. Einführung in die Statistik
3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :
Versicherungstechnik
Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge
Gruppe 108: Janina Bär Christian Hörr Robert Rex
TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe
Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung
ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff
= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:
E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche
Wiederkehrende XML-Inhalte in Adobe InDesign importieren
Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert
Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß
Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme
PrivatKredit. Direkt ans Ziel Ihrer Wünsche
PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe
HONORAR Honorarabrechnung
HONORAR Hoorarabrechug Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Freie Formulargestaltug... 5 3.2 Positiosvorschläge aus Leistuge bzw. Gegestadswerte...
Aufgaben zur vollständigen Induktion
c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist
1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren
Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts
Übungsblatt 6 Musterlösung
NumLiAlg WS56 Übugsblatt 6 Musterlösug Lösug 22 (QR-Zerlegug ud Vergleich mit der LU-Zerlegug) a) fuctio [Q, R] = my_qr_house(a) 2 % [Q,R] = qr_house(a) berechet die QR Zerlegug eier 3 % quadratische Matrix
Analysis I Probeklausur 2
WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch
Private Altersvorsorge. Berufsunfähigkeitsschutz plus Steuerersparnis. Günstig vorsorgen durch Kombination mit unserer fondsgebundenen Basisrente.
Private Altersvorsorge Steueroptimierter Berufsufähigkeitsschutz Berufsufähigkeitsschutz plus Steuerersparis Güstig vorsorge durch Kombiatio mit userer fodsgebudee Basisrete. Berufsufähigkeitsschutz +
Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I
Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik
Finanzmathematik für HAK
Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma
Lektion II Grundlagen der Kryptologie
Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit
Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet
Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im
Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.
Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste
h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert
Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...
Calmet Calibration. Calmet C300 Der Kalibrator für nicht sinusförmige Signalverläufe - Oberwellen Erweiterte Spezifikationen.
C300 Der Kalibrator für icht siusförmige Sigalverläufe - Oberwelle Erweiterte Spezifikatioe Calibratio Awedugsbericht Was bedeutet Leistugs-/Eergiekalibrierug bei icht siusförmige Ströme/Spauge Elektrische
3 Grenzwerte. 3.1 Grenzwerte von Folgen
03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge
FIBU Kontoauszugs- Manager
FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3
Einleitung. Aufgabe 1a/1b. Übung IV
Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]
Klasse: Platzziffer: Punkte: / Graph zu f
Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25
Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:
md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de
Löslichkeitsdiagramm. Grundlagen
Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader
4 Konvergenz von Folgen
4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder
n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:
61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl
Heute Kapitalanlage morgen ein Zuhause
Immobilie Heute Kapitalalage morge ei Zuhause Courtage: Kaufpreis: Preis auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892
Projektmanagement Solarkraftwerke
Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale
Analysis ZAHLENFOLGEN Teil 4 : Monotonie
Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik
Feldeffekttransistoren in Speicherbauelementen
Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit
Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen
Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH [email protected] Eileitug Biometrische Systeme werde durch zwei wichtige
