Dynamisches Programmieren Stand
|
|
|
- Linda Siegel
- vor 8 Jahren
- Abrufe
Transkript
1 Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem: Algorithmus für schwieriges Problem Laufzeit hägt vo Eigabewert ab SS 28 9.Dyamisches Programmiere
2 Fraktioales Rucksack-Problem Gegebe sid Gegestäde. Der i-te Gegestad besitzt Wert v i ud Gewicht g i. Ausserdem ist eie Gewichtsschrake W gegebe. Zulässige Lösuge sid Zahle a i [, ] mit i= a i g i W. Gesucht ist eie zulässige Lösug möglichst großem Gesamtwert a K mit,, a i= a v. i i SS 26 9.Dyamisches Programmiere 2
3 Gierige Lösug des fraktioale Rucksack-Problems Algorithmus Gieriges-Eipacke:. Sortiere die Verhältisse v i / g i absteiged. Sei v π g v g Lv ( ) π( ) π( 2) π( 2) π( ) π( ) für Permutatio π auf (,,). 2. Bestimme maximales k, so dass och gilt gπ( i) W 3. Setze aπ( ) = aπ( 2) = L = aπ( ) = ud setze g k i=. a π ( k+ ) = W k i= gπ + ( k ) g π ( i). Alle adere a i setze auf. SS 26 9.Dyamisches Programmiere 3
4 Gieriges Eipacke ist optimal Satz 7.4: Gieriges Eipacke löst das fraktioale Rucksackproblem optimal. SS 26 9.Dyamisches Programmiere 4
5 Dyamisches Programmiere Rucksack Das Rucksackproblem: Rucksack mit begrezter Kapazität Objekte mit uterschiedlichem Wert ud uterschiedlicher Größe Wir wolle Objekte vo möglichst großem Gesamtwert mitehme SS 28 9.Dyamisches Programmiere 5
6 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert SS 28 9.Dyamisches Programmiere 6
7 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert Objekt ud 3 passe ud habe Gesamtwert 3 Optimal? SS 28 9.Dyamisches Programmiere 7
8 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert Objekt ud 3 passe ud habe Gesamtwert 3 Optimal? Objekt 2, 3 ud 4 passe ud habe Gesamtwert 5! SS 28 9.Dyamisches Programmiere 8
9 Dyamisches Programmiere Rucksack Das Rucksackproblem (Optimierugsversio): Eigabe: Objekte {,,}; Objekt i hat gazz. pos. Größe g[i] ud Wert v[i]; Rucksackkapazität W Ausgabe: Mege S {,,} mit Σ g[i] W ud maximalem Wert Σ v[i] i S i S SS 28 9.Dyamisches Programmiere 9
10 Dyamisches Programmiere Rucksack Herleite eier Rekursio: Sei O optimale Lösug Bezeiche Opt(i,w) de Wert eier optimale Lösug aus Objekte bis i bei Rucksackgröße w Uterscheide, ob Objekt i O ist: Fall ( icht i O): Opt(,W) = Opt(-,W) Fall 2 ( i O): Opt(,W) = v[] + Opt(-,W-g[]) SS 28 9.Dyamisches Programmiere
11 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere
12 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W Kei Objekt passt i de Rucksack We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 2
13 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W Kei Objekt steht zur Auswahl We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 3
14 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Passt aktuelles Objekt i de Rucksack? Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 4
15 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} Sost, verwede Rekursio SS 28 9.Dyamisches Programmiere 5
16 Dyamisches Programmiere Rucksack Rucksack(,W). Iitialisiere Feld A[,..,][,..,W] mit A[,i] = für alle i ud A[j,]= für alle i W 2. for i to do 3. for j to W do 4. Bereche A[i,j] ach Rekursio 5. retur A[,W] SS 28 9.Dyamisches Programmiere 6
17 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 7
18 Dyamisches Programmiere Rucksack Größe Wert g v g[]>w: Also Opt(i,w) = Opt(i-,w) W SS 28 9.Dyamisches Programmiere 8
19 Dyamisches Programmiere Rucksack Größe Wert g v Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} W SS 28 9.Dyamisches Programmiere 9
20 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 2
21 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 2
22 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 22
23 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 23
24 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 24
25 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 25
26 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 26
27 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 27
28 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 28
29 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 29
30 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 3
31 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 3
32 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 32
33 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 33
34 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 34
35 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 35
36 Dyamisches Programmiere Rucksack Größe Wert Optimaler Lösugswert für W=8 2 g v W SS 28 9.Dyamisches Programmiere 36
37 Dyamisches Programmiere Rucksack Größe Wert Optimaler Lösugswert für W=8 2 g v W SS 28 9.Dyamisches Programmiere 37
38 Dyamisches Programmiere Rucksack Satz 9.6 Algorithmus Rucksack berechet i Θ(W) Zeit de Wert eier optimale Lösug, wobei die Azahl der Objekte ist ud W die Größe des Rucksacks. SS 28 9.Dyamisches Programmiere 38
39 Dyamische Programmierug - APSP All Pairs Shortest Path (APSP): Eigabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar vo Kote u,v V die Distaz vo u ach v sowie eie kürzeste Weg a b c d e f a b c d a 2 5 b -4 d c e 7 - f e f SS 28 9.Dyamisches Programmiere 39
40 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur über Kote aus {,,k} läuft: k i j SS 28 9.Dyamisches Programmiere 4
41 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur über Kote aus {,,k} läuft: k Kote k tritt maximal eimal auf i j SS 28 9.Dyamisches Programmiere 4
42 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, vo u der ach ur k über Kote aus {,,k} läuft: führt ur über Kote aus {,,k-} k i j SS 28 9.Dyamisches Programmiere 42
43 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur Weg über vo Kote k ach v aus {,,k} läuft: k führt ur über Kote aus {,,k-} i j SS 28 9.Dyamisches Programmiere 43
44 Dyamische Programmierug - APSP Kürzester i-j-weg über Kote aus {,,k} ist (a) kürzester i-j-weg über Kote aus {,,k-} oder (b) kürzester i-k-weg über Kote aus {,,k-} gefolgt vo kürzestem k-j-weg über Kote aus {,,k-} Fall (b): k i j SS 28 9.Dyamisches Programmiere 44
45 Dyamische Programmierug - APSP Die Rekursio: (k) Sei d ij die Läge eies kürzeste i-j-wegs mit Kote aus {,,k} (k) ij d = w ij, falls k= (k-) (k-) (k-) mi ( d, d + d ), falls k ij ik kj () () ij Matrix D =(d ) ethält die gesuchte Lösug SS 28 9.Dyamisches Programmiere 45
46 Dyamische Programmierug - APSP Floyd-Warshall(W,) (). D W 2. for k to do 3. for i to do 4. for j to do 5. d mi(d, d + d ) 6. retur D (k) ij () (k-) ij (k-) ik (k-) kj SS 28 9.Dyamisches Programmiere 46
47 Dyamisches Programmiere Rucksack Teile & Herrsche: Aufteile der Eigabe i mehrere Uterprobleme Rekursives löse der Uterprobleme Zusammefüge Gierige Algorithme: Kostruiere Lösug Schritt für Schritt I jedem Schritt optimiere eifaches, lokales Kriterium Dyamische Programmierug: Formuliere Problem rekursiv Vermeide mehrfache Berechug vo Teilergebisse Verwede bottom-up Implemetierug SS 28 9.Dyamisches Programmiere 47
16. All Pairs Shortest Path (ASPS)
. All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e
Dynamisches Programmieren - Problemstruktur
Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)
Informatik II Dynamische Programmierung
lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay [email protected] Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit
Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann
Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht
4. Die Menge der Primzahlen. Bertrands Postulat
O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p
Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09
Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht
Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel
Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe
Zahlenfolgen und Konvergenzkriterien
www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit
... a ik) i=1...m, k=1...n A = = ( a mn
Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,
Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban
Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,
1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren
Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts
2. Gleichwertige Lösungen
8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,
Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge
1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
3. Tilgungsrechnung. 3.1. Tilgungsarten
[email protected] 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie
Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1
Mathematische Rekursio Rekursio o Viele mathematische Fuktioe sid sehr atürlich rekursiv defiierbar, d.h. o die Fuktio erscheit i ihrer eigee Defiitio. Mathematische Rekursio o Viele mathematische Fuktioe
Klausur 1 über Folgen
www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;
Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39
Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle
Finanzmathematische Formeln und Tabellen
Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,
Lektion II Grundlagen der Kryptologie
Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit
1 Lösungen zu Analysis 1/ 12.Übung
Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt
Aufgaben zur Analysis I
Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.
Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield
Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der
Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares
4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus
Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110
Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das
6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $
Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum
n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:
61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl
Übungsblatt 1 zur Vorlesung Angewandte Stochastik
Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche
Finanzmathematik für HAK
Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
SUCHPROBLEME UND ALPHABETISCHE CODES
SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich
AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3
INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE
BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008
Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe
Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr
DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK
1. Zahlenfolgen und Reihen
. Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,
Aufgaben zu Kapitel 8
Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe
6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung
6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez
Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I
Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik
Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet
Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im
Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?
Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder
Wahrscheinlichkeit & Statistik
Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch [email protected] 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege
15.4 Diskrete Zufallsvariablen
.4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet
Musterlösung zu Übungsblatt 2
Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.
= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:
E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche
Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.
Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste
Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung
1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug
Gliederung. Value-at-Risk
Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug
Wirtschaftsmathematik
Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede
Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09
Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug
Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S
Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere
Parameter von Häufigkeitsverteilungen
Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige
Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben
Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei
PrivatKredit. Direkt ans Ziel Ihrer Wünsche
PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe
Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr
ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische
Löslichkeitsdiagramm. Grundlagen
Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader
Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik
Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug
Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.
Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,
Die while-schleife (Abweisschleife) Die while-schleife (Beispiele) Die while-schleife ist eine Abweisschleife Syntax:
Wiederholugsaweisuge (chleife) Oft sid dieselbe Recheschritte viele Male zu wiederhole Daher biete alle Programmiersprache Wiederholugsaweisuge bzw. chleife Ohe chleife loht sich ei Programm icht! Java
Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.
ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede
Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II
Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe
Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.
Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
Wissenschaftliches Arbeiten Studiengang Energiewirtschaft
Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:
Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11
Mrek Kubic, [email protected] Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222
Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme
Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln
6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel
Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v
Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)
Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.
R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver
Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.
Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere
Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt
2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:
Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i
D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi
Lernhilfe in Form eines ebooks
Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite
Finanzmathematik. = K 0 (1+i) n = K 0 q n
Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das
Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung
ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff
5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung
Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder
von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:
Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes
Einführung in die Grenzwerte
Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der
1.2. Taylor-Reihen und endliche Taylorpolynome
1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg
Formelsammlung. zur Klausur. Beschreibende Statistik
Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe
Übungen mit dem Applet Fourier-Reihen
Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss
Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt
Klasse: Platzziffer: Punkte: / Graph zu f
Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25
Feldeffekttransistoren in Speicherbauelementen
Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit
