Dynamisches Programmieren Stand

Größe: px
Ab Seite anzeigen:

Download "Dynamisches Programmieren Stand"

Transkript

1 Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem: Algorithmus für schwieriges Problem Laufzeit hägt vo Eigabewert ab SS 28 9.Dyamisches Programmiere

2 Fraktioales Rucksack-Problem Gegebe sid Gegestäde. Der i-te Gegestad besitzt Wert v i ud Gewicht g i. Ausserdem ist eie Gewichtsschrake W gegebe. Zulässige Lösuge sid Zahle a i [, ] mit i= a i g i W. Gesucht ist eie zulässige Lösug möglichst großem Gesamtwert a K mit,, a i= a v. i i SS 26 9.Dyamisches Programmiere 2

3 Gierige Lösug des fraktioale Rucksack-Problems Algorithmus Gieriges-Eipacke:. Sortiere die Verhältisse v i / g i absteiged. Sei v π g v g Lv ( ) π( ) π( 2) π( 2) π( ) π( ) für Permutatio π auf (,,). 2. Bestimme maximales k, so dass och gilt gπ( i) W 3. Setze aπ( ) = aπ( 2) = L = aπ( ) = ud setze g k i=. a π ( k+ ) = W k i= gπ + ( k ) g π ( i). Alle adere a i setze auf. SS 26 9.Dyamisches Programmiere 3

4 Gieriges Eipacke ist optimal Satz 7.4: Gieriges Eipacke löst das fraktioale Rucksackproblem optimal. SS 26 9.Dyamisches Programmiere 4

5 Dyamisches Programmiere Rucksack Das Rucksackproblem: Rucksack mit begrezter Kapazität Objekte mit uterschiedlichem Wert ud uterschiedlicher Größe Wir wolle Objekte vo möglichst großem Gesamtwert mitehme SS 28 9.Dyamisches Programmiere 5

6 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert SS 28 9.Dyamisches Programmiere 6

7 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert Objekt ud 3 passe ud habe Gesamtwert 3 Optimal? SS 28 9.Dyamisches Programmiere 7

8 Dyamisches Programmiere Rucksack Rucksackgröße 6 Größe Wert Objekt ud 3 passe ud habe Gesamtwert 3 Optimal? Objekt 2, 3 ud 4 passe ud habe Gesamtwert 5! SS 28 9.Dyamisches Programmiere 8

9 Dyamisches Programmiere Rucksack Das Rucksackproblem (Optimierugsversio): Eigabe: Objekte {,,}; Objekt i hat gazz. pos. Größe g[i] ud Wert v[i]; Rucksackkapazität W Ausgabe: Mege S {,,} mit Σ g[i] W ud maximalem Wert Σ v[i] i S i S SS 28 9.Dyamisches Programmiere 9

10 Dyamisches Programmiere Rucksack Herleite eier Rekursio: Sei O optimale Lösug Bezeiche Opt(i,w) de Wert eier optimale Lösug aus Objekte bis i bei Rucksackgröße w Uterscheide, ob Objekt i O ist: Fall ( icht i O): Opt(,W) = Opt(-,W) Fall 2 ( i O): Opt(,W) = v[] + Opt(-,W-g[]) SS 28 9.Dyamisches Programmiere

11 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere

12 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W Kei Objekt passt i de Rucksack We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 2

13 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W Kei Objekt steht zur Auswahl We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 3

14 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Passt aktuelles Objekt i de Rucksack? Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} SS 28 9.Dyamisches Programmiere 4

15 Dyamisches Programmiere Rucksack Rekursio: Opt(i,)= für i Opt(,i)= für i W We w<g[i] da Opt(i,w) = Opt(i-,w) Sost, Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} Sost, verwede Rekursio SS 28 9.Dyamisches Programmiere 5

16 Dyamisches Programmiere Rucksack Rucksack(,W). Iitialisiere Feld A[,..,][,..,W] mit A[,i] = für alle i ud A[j,]= für alle i W 2. for i to do 3. for j to W do 4. Bereche A[i,j] ach Rekursio 5. retur A[,W] SS 28 9.Dyamisches Programmiere 6

17 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 7

18 Dyamisches Programmiere Rucksack Größe Wert g v g[]>w: Also Opt(i,w) = Opt(i-,w) W SS 28 9.Dyamisches Programmiere 8

19 Dyamisches Programmiere Rucksack Größe Wert g v Opt(i,w) = max{opt(i-,w), v[i] + Opt(i-,w-g[i])} W SS 28 9.Dyamisches Programmiere 9

20 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 2

21 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 2

22 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 22

23 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 23

24 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 24

25 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 25

26 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 26

27 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 27

28 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 28

29 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 29

30 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 3

31 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 3

32 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 32

33 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 33

34 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 34

35 Dyamisches Programmiere Rucksack Größe Wert g v W SS 28 9.Dyamisches Programmiere 35

36 Dyamisches Programmiere Rucksack Größe Wert Optimaler Lösugswert für W=8 2 g v W SS 28 9.Dyamisches Programmiere 36

37 Dyamisches Programmiere Rucksack Größe Wert Optimaler Lösugswert für W=8 2 g v W SS 28 9.Dyamisches Programmiere 37

38 Dyamisches Programmiere Rucksack Satz 9.6 Algorithmus Rucksack berechet i Θ(W) Zeit de Wert eier optimale Lösug, wobei die Azahl der Objekte ist ud W die Größe des Rucksacks. SS 28 9.Dyamisches Programmiere 38

39 Dyamische Programmierug - APSP All Pairs Shortest Path (APSP): Eigabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar vo Kote u,v V die Distaz vo u ach v sowie eie kürzeste Weg a b c d e f a b c d a 2 5 b -4 d c e 7 - f e f SS 28 9.Dyamisches Programmiere 39

40 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur über Kote aus {,,k} läuft: k i j SS 28 9.Dyamisches Programmiere 4

41 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur über Kote aus {,,k} läuft: k Kote k tritt maximal eimal auf i j SS 28 9.Dyamisches Programmiere 4

42 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, vo u der ach ur k über Kote aus {,,k} läuft: führt ur über Kote aus {,,k-} k i j SS 28 9.Dyamisches Programmiere 42

43 Dyamische Programmierug - APSP Zur Erierug: Sei G ei Graph ohe egative Zykle ud sei j vo i aus erreichbar. Da gibt es eie kürzeste i-j-weg, der keie Kote doppelt beutzt. Wir köe also aehme, dass jeder Kote i jedem Weg maximal eimal vorkommt Betrachte i-j-weg, der ur Weg über vo Kote k ach v aus {,,k} läuft: k führt ur über Kote aus {,,k-} i j SS 28 9.Dyamisches Programmiere 43

44 Dyamische Programmierug - APSP Kürzester i-j-weg über Kote aus {,,k} ist (a) kürzester i-j-weg über Kote aus {,,k-} oder (b) kürzester i-k-weg über Kote aus {,,k-} gefolgt vo kürzestem k-j-weg über Kote aus {,,k-} Fall (b): k i j SS 28 9.Dyamisches Programmiere 44

45 Dyamische Programmierug - APSP Die Rekursio: (k) Sei d ij die Läge eies kürzeste i-j-wegs mit Kote aus {,,k} (k) ij d = w ij, falls k= (k-) (k-) (k-) mi ( d, d + d ), falls k ij ik kj () () ij Matrix D =(d ) ethält die gesuchte Lösug SS 28 9.Dyamisches Programmiere 45

46 Dyamische Programmierug - APSP Floyd-Warshall(W,) (). D W 2. for k to do 3. for i to do 4. for j to do 5. d mi(d, d + d ) 6. retur D (k) ij () (k-) ij (k-) ik (k-) kj SS 28 9.Dyamisches Programmiere 46

47 Dyamisches Programmiere Rucksack Teile & Herrsche: Aufteile der Eigabe i mehrere Uterprobleme Rekursives löse der Uterprobleme Zusammefüge Gierige Algorithme: Kostruiere Lösug Schritt für Schritt I jedem Schritt optimiere eifaches, lokales Kriterium Dyamische Programmierug: Formuliere Problem rekursiv Vermeide mehrfache Berechug vo Teilergebisse Verwede bottom-up Implemetierug SS 28 9.Dyamisches Programmiere 47

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Dynamisches Programmieren - Problemstruktur

Dynamisches Programmieren - Problemstruktur Dynamisches Programmieren - Problemstruktur Optimale Substruktur: Optimale Lösung enthält optimale Lösungen von Teilproblemen. Bsp.: Kürzester Weg im Graphen, LCS (s. etwa Folie 42 der letzten Vorlesung)

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay [email protected] Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten [email protected] 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1 Mathematische Rekursio Rekursio o Viele mathematische Fuktioe sid sehr atürlich rekursiv defiierbar, d.h. o die Fuktio erscheit i ihrer eigee Defiitio. Mathematische Rekursio o Viele mathematische Fuktioe

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch [email protected] 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Die while-schleife (Abweisschleife) Die while-schleife (Beispiele) Die while-schleife ist eine Abweisschleife Syntax:

Die while-schleife (Abweisschleife) Die while-schleife (Beispiele) Die while-schleife ist eine Abweisschleife Syntax: Wiederholugsaweisuge (chleife) Oft sid dieselbe Recheschritte viele Male zu wiederhole Daher biete alle Programmiersprache Wiederholugsaweisuge bzw. chleife Ohe chleife loht sich ei Programm icht! Java

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, [email protected] Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf. R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Feldeffekttransistoren in Speicherbauelementen

Feldeffekttransistoren in Speicherbauelementen Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit

Mehr