Darstellungstheorie I

Ähnliche Dokumente
Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Manfred Hörz

Irreduzible Darstellungen von SU 2 (C)

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Satz 2.8 V sei ein endlichdimensionaler euklidischer Vektorraum. Für jeden Unterraum

Lineare Algebra und Numerische Mathematik für D-BAUG

4 Orthogonale Endormorphismen

Übungen zur Modernen Theoretischen Physik I SS 14

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

1 Grundlagen zur Darstellungstheorie

4 Lineare Abbildungen und Matrizen

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

44 Orthogonale Matrizen

3 Lineare Abbildungen und Matrizen

Kap.2 Darstellungstheorie (allgemein)

4.1. Vektorräume und lineare Abbildungen

Theoretische Physik II Quantenmechanik

1 Eigenschaften von Abbildungen

35 Matrixschreibweise für lineare Abbildungen

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

1 Darstellungsmatrizen

Lineare Algebra I 14. Tutorium Lineare Abbildungen und Matrizen

Lineare Algebra I Zusammenfassung

Die Schrödingergleichung

Eigenwerte und Diagonalisierung

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Lineare Algebra: Determinanten und Eigenwerte

Einführung in die Mathematik für Informatiker

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

TC1 Grundlagen der Theoretischen Chemie

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

HM II Tutorium 1. Lucas Kunz. 24. April 2018

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Seminar zur Darstellungstheorie von Köchern HS08. Erste Definitionen und der Satz von Gabriel

1 Vektoren, Vektorräume, Abstände: 2D

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Lösbarkeit linearer Gleichungssysteme

4 Lineare Abbildungen

7.2 Die adjungierte Abbildung

ALGEBRA II Serie 9. (c) Beweisen Sie, dass die Charaktertafel von G wie unten ist: Abgabetermin. Bis am Montag 11 Juni.

Aufgabe 1. Die Determinante ist eine lineare Abbildung von C n n nach C? Nein (außer für n = 1). Es gilt det(λa) = (λ) n det(a).

Komplexe Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

6. Normale Abbildungen

Geometrische Deutung linearer Abbildungen

Lineare Algebra und analytische Geometrie I

Körper sind nullteilerfrei

Elemente der Gruppentheorie

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Liegruppen und Liealgebren

1 Analytische Geometrie und Grundlagen

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

7.4 Gekoppelte Schwingungen

Proseminar Lineare Algebra II, SS 11. Blatt

Nach der Drehung des Systems ist der neue Zustandsvektor

Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag

Lineare Algebra I. 2. Ist n = 4k für ein k N, so ist die

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.

Matthias Stemmler SS 2005 Quotientenräume

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

10.2 Linearkombinationen

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

5.4 Affine Abbildungen in C 2 und R 2

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen und Matrizen

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Kapitel 3 Lineare Algebra

Mathematik I. Vorlesung 12. Lineare Abbildungen

Höhere Mathematik I HM I A. WiSe 2014/15. Variante A

9 Vektorräume mit Skalarprodukt

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

LIE GRUPPEN EMANUEL SCHEIDEGGER

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematik II Frühjahrssemester 2013

Lineare Algebra I (WS 13/14)

Analysis II. Vorlesung 52. Diffeomorphismen

Vorlesung. Komplexe Zahlen

Die Gruppen SO(2) und SO(3) Phuoc Thien Le Inhaltsverzeichnis. 1 Einleitung Dention der speziellen orthogonalen Gruppen SO(n)...

1 Rechnen mit 2 2 Matrizen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Lineare Algebra. 1 Lineare Abbildungen

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

M U = {x U f 1 =... = f n k (x) = 0}, (1)

Computergrafik Universität Osnabrück, Henning Wenke,

Darstellungstheorie endlicher Gruppen

5.2 Diagonalisierbarkeit und Trigonalisierung

Wiederholungsserie II

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

Aufgaben. f : R 2 R, f(x, y) := y.

Körper- und Galoistheorie

5 Lineare Algebra (Teil 3): Skalarprodukt

Brückenkurs Mathematik. Mittwoch Freitag

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Lineare Algebra und analytische Geometrie I

Transkript:

Darstellungstheorie I Vortrag im Rahmen des Proseminars: Gruppentheorie und Quantenmechanik von Prof. Dr. Jan Louis und Dr. Robert Richter Universität Hamburg Jan Oliver Rieger 8. November 2012 1

1 Grundlegende Definitionen Definition 1.1 (lineare Abbildung) Sei V ein Vektorraum über dem Körper K. Eine Abbildung T : V V ist linear, wenn für alle u, v V und α, β K gilt: T (αu + βv) = α T (u) + β T (v) Bemerkung 1.2 Jede lineare Abbildung zwischen endlichdimensionalen Vektorräumen lässt sich nach der Wahl einer Basis Φ B durch eine Matrix beschreiben, denn der Vektorraum L(V n, V m ) der linearen Abbildungen zwischen V n und V m ist isomorph zum Vektorraum der m n - Matrizen Mat(m, n, K). Bemerkung 1. Die Menge der bijektiven linearen Abbildungen φ : V V bilden in natürlicher Weise die Gruppe Aut(V ) der Automorphismen des Vektorraums V. Definition 1.4 (allgemeine lineare Gruppe) Betrachtet man endlichdimensionale Vektorräume V spricht man auch von der allgemeinen linearen Gruppe GL(V ) und schreibt GL(V ) := Aut(V ). Ist V ein K n -Vektorraum, dann entspricht GL(V ) gerade der Gruppe der invertierbaren Matrizen GL(n, K) := {A Mat(n, K) det(a) 0}. 2 Darstellungen und deren Eigenschaften Die meisten Eigenschaften einer abstrakten Gruppe sind nicht sofort erkennbar, deshalb bildet man sie auf ein besser verstandenes Objekt ab, genauer gesagt auf eine lineare Abbildung. Definition 2.1 (Darstellung) Sei G eine beliebige Gruppe, V ein n dimensionaler K-Vektorraum (n < ) und GL(V ) die allgemeine lineare Gruppe. Einen Gruppenhomomorphismus D : G GL(V ), g D(g) nennt man Darstellung vom Grad n der Gruppe G. Der Gruppenhomomorphismus D hat folgende Eigenschaften: 1. D(g 1 g 2 ) = D(g 1 )D(g 2 ) 2. D(e G ) = Id V D(g 1 ) = D 1 (g) Eine Darstellung heißt treu, wenn der Gruppenhomomorphismus D injektiv ist. Bemerkung 2.2 Eine M atrixdarstellung ist ein Gruppenhomomorphismus D : G GL(n, C). 2

Beispiel: Darstellungen der Gruppe C 1. Es wird hier explizit eine Drehung um den Winkel θ = 2π um die z-achse betrachtet. Sei V = R, a V und eine lineare Abbildung P : V V ; a P (a) := a, wobei a die Projektion von a auf die x-y-ebene ist. Die z-komponente ändert sich nicht bei einer Rotation um die z-achse: z z = z Somit reicht die Betrachtung der Projektion a. Nun geht man über in Polarkoordinaten: x = r cos(ϕ + θ) y (2.1) = r sin(ϕ + θ) Man vereinfacht: x = r cos(ϕ + θ) = r(cos ϕ cos θ sin ϕ sin θ) = x cos θ y sin θ y = y cos θ + x sin θ (2.2) Das Gleichungssystem (2.2) lässt sich auch als eine Matrix schreiben: x cos θ sin θ 0 x y = sin θ cos θ 0 y (2.) z 0 0 1 z Die Rotationsmatrix R(θ) beschreibt also die Drehung eines Vektors (im R ): cos θ sin θ 0 R(θ) = sin θ cos θ 0 (2.4) 0 0 1 Für die Gruppe C = c, c = e existiert daher folgende Darstellung: D(e) = D(c ) = R(0) = E n D(c) = R( 2π ) (2.5) D(c 2 ) = D(c)D(c) = R( 4π ) 2. Dies ist allerdings nicht die einzige Darstellung der Gruppe C, man kann sich überlegen, dass durch ( ) 0 1 D(c) = (2.6) 1 1 ebenfalls eine Darstellung gegeben ist, denn: det(d(c)) = 1 0 ( 1) 1 = 1 0 D(c) ist invertierbar. (2.7)

Außerdem gilt: und D(e) = D(c ) = D(c 2 ) = D(c)D(c) = ( ) 1 0 = E 0 1 n (2.8) ( ) 1 1 1 0 (2.9) Wie man schnell sieht handelt es sich in beiden Fällen sogar um eine treue Darstellung. Bemerkung 2. Die Matrix R gehört zur speziellen orthogonalen Gruppe SO(), also der Gruppe der orthogonalen Matrizen (R t R = 1) mit Determinante det(r) = 1. Sie beschreiben echte Rotationen (ohne Spiegelungen) im R. R SO() = {A O() deta = 1} Definition 2.4 (Äquivalenz) Zwei Darstellungen D 1, D 2 : G GL(n, C) heißen äquivalent, wenn es eine invertierbare Matrix S GL(n, C) gibt, sodass gilt: D 2 (g) = SD 1 (g)s 1 g G Man schreibt dann: D 1 D 2 Die Gruppen- bzw. Darstellungseigenschaften bleiben erhalten: SD 2 (gh)s 1 = SD 2 (g)d 2 (h)s 1 = (SD 2 (g)s 1 )(SD 2 (h)s 1 ) = D 1 (g)d 1 (h) = D 1 (gh) Sie beschreiben die gleichen linearen Abbildungen lediglich im Bezug auf eine andere Basis. Bemerkung 2.5 Äquivalente Darstellungen bilden eine Äquivalenzklasse. (vgl. Konjugation aus dem Vortrag von Leonard Wienke, Beweis: analog.) Man kann einer Darstellung einen sogenannten Charakter zuordnen. Dies wird sich als äußerst vorteilhaft erweisen. Definition 2.6 (Charakter) Sei D eine Darstellung einer Gruppe G und sei χ folgende Funktion: χ : G C g χ(g) = Tr(D(g)) = n D ii (g) i=1 So nennt man χ = {χ(g) g G} den Charakter der Darstellung. 4

Satz 2.7 Zwei Darstellungen D 1 und D 2 sind äquivalent genau dann, wenn sie denselben Charakter haben: D 1 D 2 {χ 1 (g)} = {χ 2 (g)}. Beweis. Die Richtung kann man zeigen, indem man die Eigenschaften der Spur geschickt nutzt. Mit S GL(n, C) gilt: Dann ist für ein beliebiges g G: D 1 D 2 S : D 2 (g) = SD 1 (g)s 1 g G χ 2 (g) = Tr(D 2 (g)) = Tr(SD 1 (g)s 1 ) = Tr(D 1 (g)s 1 S) = Tr(D 1 (g)) = χ 1 (g) Die andere Richtung benötigt Definitionen und Sätze, die erst in den nachfolgenden Vorträgen behandelt werden. Dieser Satz ist ein wesentliches Resultat der Darstellungstheorie, denn so lassen sich äquivalente Darstellungen sehr schnell identifizieren. Bemerkung 2.8 Aus dem Satz 2.6 folgt, dass der Charakter auf einer Äquivalenzklasse konstant ist, damit ist die Äquivalenzklasse einer Darstellung D schon durch den Charakter eindeutig bestimmt. Definition 2.9 (Reduzibilität) Eine Darstellung D vom Grad m+n heißt reduzibel, wenn D(g) von folgender Form ist: ( ) A(g) C(g) D(g) = g G 0 B(g) Dabei handelt es sich bei A(g) um eine m m, bei B(g) um eine n n und bei C(g) um eine m n Matrix. Beispiel Die Darstellung der Gruppe C ist offensichtlich reduzibel, denn es ist: 0 R(θ) = 0 (2.10) 0 0 1 bzw. D(c) = ( ) D1 (c) 0 0 D 2 (c) (2.11) Man sagt auch die Darstellung zerfällt in die zwei Teildarstellungen D 1 (c) und D 2 (c) und schreibt sie als direkte Summe: D(c) = D 1 (c) D 2 (c) 5

Dabei wirkt D 1 (c) im R 2 und D 2 (c) im R. Außerdem können die beiden Teildarstellungen D 1 (c) und D 2 (c) selbst wieder reduzibel sein. Man kann die Darstellungen nun weiter reduzieren bis man zu einer irreduziblen Darstellung gelangt. Bemerkung 2.10 Ein K-Vektorraum V mit einer fest gewählten Darstellung D einer Gruppe G wird als G-Modul bezeichnet. Darstellungen in der Quantenmechanik.1 Induzierte Transformation der Wellenfunktion Ψ Bis jetzt wurden lediglich klassische Drehungen betrachtet, aber die Darstellungstheorie ist insbesondere in der Quantenmechanik ein nützliches Werkzeug. Interessant ist hier jetzt die Frage, wie die rotierte Wasserstoffwellenfunktion aussieht. Eine Rotation wird z.b. durch das Anlegen eines externen Magnetfeldes B ext erreicht. Aufgrund der Kugelsymmetrie des Coulombpotentials ist es sinnvoll, den Separationsansatz Ψ nlm (r, θ, ϕ) = R nl (r)y lm (θ, ϕ) zu wählen. Weil die Radialfunktion rotationsinvariant ist, wird sie im Folgenden nicht mehr berücksichtigt. Abbildung 1: Elektron im 2p Zustand (a) vor der Drehung und (b) danach. Für die Berechnung der rotierten Wellenfunktion kann man eine einfache Gleichung angeben. Weil sich die Wellenfunktion Ψ(r) an einem Punkt r vor der Rotation R und die rotierte Wellenfunktion Ψ (r ) eines rotierten Punktes r nicht unterscheiden, gilt: mit r = Rr folgt für die Wellenfunktion Ψ (r) insgesamt: Ψ(r) = Ψ (r ) (.1) Ψ (r) = Ψ(R 1 r) (.2) 6

Der Hamiltonoperator Ĥ für ein Teilchen im Potential V (r) ist so wie auch das Quadrat des Drehimpulsoperators ˆL 2 rotationsinvariant. Lediglich die magnetische Quantenzahl m l ändert sich. Beispiele Die rotierte Wellenfunktion kann als eine Superposition der ursprünglichen Wellenfunktionen dargestellt werden: Ψ nlm(r) = m D l m m(r)ψ nlm (r) (.) (Dm l m (R) sind die Einträge einer (2l + 1) (2l + 1)-Matrix.) 1. Befindet sich das Elektron im Grundzustand (s-zustand, l = 0), dann ist die Wellenfunktion Y 00 = ( 1 4π ) 1 2 kugelsymmetrisch und es handelt sich um die triviale Darstellung (Dm l m (R) = 1). 2. Ist das Elektron hingegen in einem Zustand mit n = 2, l = 1 und m = 0, dann gilt also: Ψ 210(r) = m D 1 m 0(R)Ψ 21m (r) (.4) Im 2p-Zustand ist der Winkelanteil der rotierten Wellenfunktion als eine Linearkombination der Kugelflächenfunktionen Y 11 = sin θ exp(iϕ) 8π Y 10 = 8π cos θ Y 1, 1 = sin θ exp( iϕ) 8π (.5) gegeben. Betrachtet man nun eine Rotation R(β) um die y-achse, dann gilt analog zu (2.2): z = z cos β x sin β x (.6) = x cos β + z sin β Die z-komponente des Punktes (R 1 r) kann man mit Kugelkoordinaten schreiben als: (R 1 r) z = z cos β + x sin β = r(cos β cos θ + sin β sin θ cos ϕ) (.7) 7

In der neuen Wellenfunktion ist der Ausdruck (cos θ) also durch (cos β cos θ + sin β sin θ cos ϕ) zu ersetzen. Mit dem Zusammenhang folgt: Y 1, 1 Y 11 = 2 8π sin + e iϕ θ(eiϕ ) 2 = 2 sin θ cos ϕ 8π (.8) Ψ 210 = cos βψ 210 + sin β 2 (Ψ 2,1, 1 Ψ 211 ) (.9) Die Matrixelemente sind also gegeben durch: D 1 00 = cos β D 1 10 = D 1 10 = sin β 2 (.10) Interessiert man sich weiter für die Lösungen zu den Zuständen mit m = 1 und m = 1 müssen alle verbliebenen Einträge der Matrix berechnet werden. Ψ 21 1(r) Ψ 210(r) Ψ 211(r) = D 1 1 1 D0 1 1 D1 1 1 D 10 1 D00 1 D10 1 D 11 1 D01 1 D11 1 Ψ 21 1 (r) Ψ 210 (r) Ψ 211 (r) (.11) 8

Literaturverzeichnis H.F. Jones, Groups, Representations and Physics, IOP 1990 Goldhorn, Heinz und Kraus, Moderne mathematische Methoden der Physik, Band 2, Springer 2010 S. Bosch, lineare Algebra, Springer 2006 H. Boerner, Darstellungen von Gruppen, Springer 1967 9