Gleichverteilung auf dem Kreis

Ähnliche Dokumente
(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

Folgen und Reihen von Funktionen

Folgen und Reihen. Thomas Blasi

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik für Physiker, Informatiker und Ingenieure

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

Mathematik für Anwender I

( Mathematik verstehen 6, Kapitel 7,S.116 ff) Eine Folge ( ) kann man auch als eine f: auffassen, die jeder von 0

GRUNDLAGEN MATHEMATIK

1 Folgen und Stetigkeit

Numerische Verfahren und Grundlagen der Analysis

Folgen und Reihen Folgen

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

Übungen zu Einführung in die Analysis

3.3 Konvergenzkriterien für reelle Folgen

19.2 Mittelwertsatz der Differentialrechnung

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Lösungen zum Übungsblatt 7

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Mathematik macht Freu(n)de im Wintersemester 2018/19

11 Logarithmus und allgemeine Potenzen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

Konvergenz im quadratischen Mittel - Hilberträume

10. Isolierte Singularitäten

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

Prof. Dr. Stefan Luckhaus WS 2013/14. Übungsserie 1. Mathematik für Wirtschaftswissenschaftler

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Abbildung 14: Winkel im Bogenmaß

Vorlesungen Analysis von B. Bank

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Gewinnt die Eins immer den Wettbewerb der führenden Ziffern?

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

DIOPHANTISCHE APPROXIMATION. Teilnehmer: Gruppenleiter: Mitglied im DFG-Forschungszentrum Mathematik für Schlüsseltechnologien

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

5 Stetigkeit und Differenzierbarkeit

Analysis I. Guofang Wang Universität Freiburg

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Heinrich-Hertz-Oberschule, Berlin

Irrationale Zahlen. Ausarbeitung zum Proseminar Modul 4c Unendlichkeit. angefertigt von. Felix Schultes. Dozentin: Fr.

Einige Gedanken zur Fibonacci Folge

8 KAPITEL 1. GRUNDLAGEN

TECHNISCHE UNIVERSITÄT MÜNCHEN

6 Reelle und komplexe Zahlenfolgen

3.2 Konvergenzkriterien für reelle Folgen

3 Folgen und Stetigkeit

Funktionsgrenzwerte, Stetigkeit

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

TECHNISCHE UNIVERSITÄT MÜNCHEN

11. Folgen und Reihen.

Das O-Tutorial. 1 Definition von O, Ω, Θ, o und ω

Kommutativität. De Morgansche Regeln

Billard und Zahlentheorie

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

Wirtschaftsmathematik

Kapitel 3. Reihen und ihre Konvergenz

Analysis I. Guofang Wang Universität Freiburg

1 Folgen und Stetigkeit

2.3 Exponential- und Logarithmusfunktionen

Einführung in die Analysis

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Grenzwerte und Stetigkeit

c < 1, (1) c k x k0 c k = x k0

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

Die Ziffern der Fibonacci-Zahlen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Analysis I - Ferienkurs

7 Integralrechnung für Funktionen einer Variablen

Analysis I. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

1 Reihen von Zahlen. Inhalt:

4 Messbare Funktionen

1,2,3,4,5,... Dabei ist die Reihenfolge wichtig, jede Zahl hat also ihre feste Position. Die Folge 2,1,4,3,... ist eine andere als 1,2,3,4,...

differenzierbare Funktionen

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

$Id: reihen.tex,v /06/12 10:59:50 hk Exp $ unendliche Summe. a 1 + a 2 + a 3 +.

schreiben, wobei p und q ganze Zahlen sind.

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

Folgen, Reihen, Grenzwerte u. Stetigkeit

Erwartungswert als Integral

Unendliche Reihen. . n

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

10 Kriterien für absolute Konvergenz von Reihen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Lösungen zur Übungsserie 9

Inverse Fourier Transformation

Transkript:

Gleichverteilung auf dem Kreis Teilnehmer: Thoralf Dietrich Duc Son Le Markus Penner Alexander Schirmer Tim Venzke Gruppenleiter: Elke Warmuth Heinrich-Hertz-Oberschule, Berlin Immanuel-Kant-Oberschule, Berlin Goethe-Oberschule, Berlin Herder-Oberschule, Berlin Immanuel-Kant-Oberschule, Berlin Humboldt-Universität zu Berlin Mitglied im DFG-Forschungszentrum Matheon Mathematik für Schlüsseltechnologien Was bedeutet es, dass eine Zahlenfolge gleichverteilt mod ist? Wo findet man die Gleichverteilung wieder? Was sind Benford-Folgen? Ist die die bevorzugte führende Ziffer bei empirischen Daten? Wenn ja, würde man diese Daten bei auffallender Abweichung von der Benford-Verteilung anzweifeln und überprüfen müssen? Nach diesem Prinzip könnten Steuerangaben nach ihrem Wahrheitsgrad beurteilt werden. Das und auch die Frage des Nachweises dieser Eigenschaften sollen in der folgenden Arbeit genauer beantwortet werden. 59

Die Definition der Gleichverteilung Wir führen zunächst den Begriff des gebrochenen Anteils einer reellen Zahl ein, der im Folgenden wichtig sein wird. Für eine reelle Zahl x bezeichnet [x] die größte ganze Zahl, die kleiner oder gleich x ist. Die Differenz aus dem ganzen Anteil und der Zahl ergibt den gebrochenen Anteil {x}. x = [x] + {x} Beispiel: 3, 4 = [ 3, 4] + { 3, 4} = 4 +, 86 Wir beschäftigen uns mit Folgen reeller Zahlen (a n ). In der folgenden Definition zählt K α,β (n) die Anzahl der ins Intervall [α, β) fallenden gebrochenen Anteile unter den ersten n Folgengliedern. Definition.. Eine Folge reeller Zahlen (a n ) heißt gleichverteilt mod (u.d. mod ), falls für alle α, β (, ), α < β gilt: K α,β (n) = β α (.) Die Definition besagt, dass für eine Folge (a n ), die u.d. mod ist, für beliebige Intervalle derselben Länge der Anteil der ins Intervall fallenden gebrochenen Anteile der Folgenglieder gleich ist, wenn die Anzahl der betrachteten Anfangsfolgenglieder gegen Unendlich strebt. Das muss auch bei beliebiger Intervallgröße gelten. Geometrisch betrachtet bedeutet dies, dass man die Folgenglieder auf einen Kreis mit dem Umfang u = aufwickelt. Nach dem Aufwickeln der unendlich vielen Folgenglieder ist der Kreisumfang überall gleich dicht bedeckt. Die in der Definition beschriebene Eigenschaft lässt sich nur schwer nachweisen, da man für jedes α und β zeigen muss, dass der Grenzwert der relativen Häufigkeiten der gebrochenen Anteile gleich β α ist. Deshalb haben wir Kriterien untersucht, mit denen wir das einfacher nachprüfen können. Im Folgenden sollen zwei dieser Kriterien erläutert werden. 2 Die Weyl-Kriterien Die beiden folgenden Kriterien haben wir uns aus der Arbeit [5] von Hermann Weyl (885 955) angeeignet. 6

Satz 2.. Die Folge (x n ) reeller Zahlen ist genau dann gleichverteilt mod, wenn für alle reellwertigen stetigen Funktionen f mit D f [; ] gilt: f({x i }) = i= Beweis. Sei c [a;b) (x) die Funktion, die definiert ist als c [a;b) (x) = { falls x [a; b) falls x [a; b). Dann kann die Gleichung (.) geschrieben werden als f(x)dx. (2.) c [a;b) ({x i }) = i= c [a;b) (x)dx (2.2) Für das Folgende geben wir nur eine Beweisskizze an, die die wesentliche Beweisidee verdeutlicht. Auf die Ausführung der einzelnen Schritte verzichten wir. Jede stetige Funktion im Intervall [; ] kann mit Hilfe von Treppenfunktionen gleichmäßig beliebig gut angenähert werden. Treppenfunktionen kann man als endliche Linearkombinationen von Funktionen des Typs c [a;b) (x) auffassen. Deshalb gilt (2.2) auch für alle Treppen- und somit auch für alle stetigen Funktionen. Damit haben wir bewiesen, dass Satz 2. eine notwendige Bedingung liefert. Um zu sehen, dass die Bedingung auch hinreichend ist, reicht es aus zu zeigen, dass die Gleichung 2.2 gilt. Das erreicht man, weil man eine Funktion vom Typ c [a;b) gleichmäßig beliebig gut durch eine stetige Funktion approximieren kann. Satz 2.2. Die Folge (x n ) ist genau dann gleichverteilt mod, wenn e 2πmix k = für alle m, m Z. (2.3) k= Beweis. Sowohl anschaulich als auch rechnerisch ist klar: e 2πmix dx = für alle m, m Z. Begründung: Anschaulich wird um den Kreis integriert, sodass sich alle Terme wegheben und rechnerisch wird dies mit der eulerschen Formel klar: e iϕ = cos(ϕ) + i sin(ϕ). 6

Damit ist bewiesen, dass Satz 2.2 eine notwendige Bedingung beinhaltet, denn e 2πmix k ist eine stetige Funktion und somit folgt nach Satz 2. die Gleichung (2.3). Wir zeigen nun, dass Satz 2.2 auch eine hinreichende Bedingung liefert, indem wir zeigen, dass für jede stetige Funktion die Bedingung aus Satz 2. erfüllt ist. Nach einem Satz von Weierstrass kann jede beliebige stetige Funktion mit Periode mit Hilfe von trigonometrischen Polynomen Ψ(x) angenähert werden, wobei Ψ(x) als Linearkombination von Funktionen des Typs e 2πmix, m Z, ausgedrückt werden kann. Es gilt also: Für alle positiven ε existiert ein trigonometrisches Polynomen Ψ(x), so dass sup f(x) Ψ(x) ε. (2.4) x Mit Hilfe der Dreiecksungleichung und der Eigenschaft des Betrages im Zusammenhang mit Integralen haben wir: f(x)dx f({x i }) n i= (f(x) Ψ(x))dx + f(x) Ψ(x) dx+ Ψ(x)dx n Ψ(x)dx n Ψ({x i }) + n i= Ψ({x i }) + n i= (f({x i }) Ψ({x i }) i= f({x i }) Ψ({x i }. Der erste und der dritte Term auf der rechten Seite sind kleiner als ε wegen (2.4), der zweite Term wird für genügend großes n auch kleiner als ε wegen der Voraussetzung von Satz 2.2. Wir wollen nun das zweite Weyl-Kriterium anwenden. Beispiel. Für welche c ist (x n ) mit x n = c n gleichverteilt mod?. Für rationale c lässt sich c als p darstellen. Dann ist für m = q beim Weylq Kriterium der Term e 2πmixn immer gleich eins. Somit ist auch e 2πmix k =. k= Damit haben wir gezeigt, dass für rationale Zahlen c die Folge (c n) nicht gleichverteilt mod ist. Anschaulich entstehen beim Aufwickeln auf den i= 62

Kreis maximal q Häufungspunkte. Als Beispiel betrachten wir einen Stammbruch c =. Dann werden nur die Werte q angenommen. q, q, 2 q, 3 q,..., q q = q 2. Bleibt noch der Fall für irrationale c. Es gilt für geometrische Reihen folgende Formel, welche mit der Dreiecksungleichung abgeschätzt werden kann: n e 2πimck = e 2πim(n+)c n e 2πimc 2 n e 2πimc k= Da der rechte Term mit wachsendem n gegen Null geht, konvergiert auch das arithmetische Mittel gegen Null. Damit ist das zweite Weyl-Kriterium erfüllt und die Folge (x n ) gleichverteilt mod. 3 Benfordsche Folgen Mit dem Weyl-Kriterium sind wir nun in der Lage nachzuprüfen, wann eine Folge gleichverteilt mod ist. Nun ist es Zeit, mit diesem Wissen die Verbindung zu einem der hauptsächlichen Aspekte unseres Themas herzustellen, dem Benford schen Gesetz. Dieses macht eine Aussage darüber, dass bei bestimmten Zahlenfolgen die unterschiedlichen Anfangsziffern verschieden häufig auftreten. Diejenigen Zahlenfolgen, die dieser Verteilung der Anfangsziffern genügen, nennen wir Benford-Folgen: Definition 3.. Eine Folge (a n ) reeller Zahlen heißt Benford-Folge, wenn ( L i (n) = log + ) i =, 2,..., 9, (3.) i wobei L i (n) = #{a k k n und die erste Ziffer von a k ist i} Mit anderen Worten: L i (n) zählt die Anzahl der Folgenglieder mit führender Ziffer i unter den ersten n Folgengliedern. Die Bedingung der Definition bedeutet somit, dass sich die relativen Häufigkeiten der Anfangsziffern im Grenzwert wie log ( + i ) verhalten. Die folgende Grafik stellt die Benford-Verteilung dar. 63

Quelle: www.wdr.de/tv/quarks/sendungsbeitraege/26/7/9_zahlen.jsp Die entscheidende Verbindung zur Gleichverteilung mod wird durch den folgenden Satz hergestellt: Satz 3.. Falls die Folge (log(a n )) gleichverteilt mod ist, so ist die Folge (a n ) eine Benford-Folge. Beweis. Zum Beweis des Satzes überlegen wir uns zunächst, was es bedeutet, die erste Ziffer i zu besitzen. Letztendlich bedeutet das nichts anderes, als dass die entsprechende Zahl zwischen dem i-fachen und dem i + -fachen einer Zehnerpotenz liegt. In Formeln gesprochen, a n hat die erste Ziffer i genau dann, wenn: j Z i j a n < (i + ) j j Z j + log i log a n < j + log(i + ) log i {log a n } < log(i + ) Nun kann man die Voraussetzung der Gleichverteilung mod der Folge (log(a n )) anwenden und schlussfolgern, dass der Grenzwert des Anteils der Folgenglieder von (a n ) im Intervall [log i, log(i + )) genau ( ) ( i + log(i + ) log(i) = log = log + ) i n ist. Da wir oben gesehen haben, dass dieser Anteil genau dem Anteil L i(n) in der n Definition 3.. entspricht, haben wir damit nachgewiesen, dass (a n ) eine Benford- Folge ist. 64

Um in diesem Satz sogar eine Äquivalenz zu erhalten, müssten wir die Bedingung an Benford-Folgen verstärken, damit wir den Schritt im Beweis auch umkehren können. Hierfür reichen die Bedingungen an die diskreten Intervalle zwischen log(i) und log(i + ) nicht aus, man muss stattdessen nicht nur die Bedingung an die Anfangsziffer fordern, sondern dieselbe Bedingung für beliebige Folgen von Anfangsziffern. Folgen, die diese Bedingung erfüllen, heißen starke Benford- Folgen, sollen hier aber nicht genauer betrachtet werden. Stattdessen wollen wir uns ein praktisches Beispiel einer Benford-Folge ansehen: Satz 3.2. Die Fibonacci-Folge (f n ) definiert durch die Rekursion f n+2 = f n+ +f n für n sowie die Startwerte f = f 2 = ist eine Benford-Folge. Beweis. Zum Beweis wollen wir zeigen, dass die Folge der Logarithmen der Fibonacci-Zahlen gleichverteilt mod ist, woraus sich mit dem vorigen Satz die Behauptung ergibt. Nun kann man zunächst aus der rekursiven Darstellung eine explizite Formel herleiten. Im Falle der Fibonacci-Folge ergibt sich f n = A x n + B y n, wobei x = 5+ und y = 5 die Nullstellen des Polynoms z 2 z und A und 2 2 B Konstanten sind, die so gewählt sind, dass Ax + By = und A x 2 + B y 2 =, also die Anfangsbedingungen erfüllt sind. Der Trick ist nun, zu erkennen, dass y < gilt und somit y n = folgt. n Somit ist für große n das Folgenglied f n sehr gut approximiert durch A x n. Wir benötigen für den weiteren Beweis folgendes Lemma: Lemma. Wenn die Folge (x n ) gleichverteilt mod ist, und (y n ) eine Folge mit dann ist auch (y n ) gleichverteilt mod. (x n y n ) =, (3.2) n Beweis. Mit der Stetigkeit der Exponentialfunktion folgt aus der Bedingung (3.2) auch n (e2πixn e 2πiyn ) =. (3.3) Jetzt muss man noch einen anschaulich klaren Sachverhalt benutzen (der hier nicht streng bewiesen werden soll): Wenn eine Folge gegen einen Grenzwert konvergiert, so konvergiert die Folge der arithmetischen Mittel gegen denselben Grenzwert. Damit gewinnen wir aus (3.3) auch (e 2πix k e 2πiy k ) =. k= 65

Da aus dem Weyl-Kriterium für (x n ) bereits folgt, gilt somit auch e 2πix k = k= e 2πiy k =, k= woraus wiederum mit dem Weyl-Kriterium folgt, dass auch (y n ) gleichverteilt ist. Damit ist das Lemma bewiesen. Wir hatten oben bereits (f n A x n ) = (B y n ) = gezeigt. Nun muss man daraus folgern, dass auch (log(f n) log(a x n )) =, n um eine Aussage über (log(f n )) treffen zu können. Das geht z.b. so: A x n f n = f n A x n f n = für n. Daraus folgt log n ( ) A x n = Mit dem 2. Logarithmengesetz erhalten wir die Aussage, die wir oben haben wollten: n (log(a xn ) log(f n )) =. Es ist log(a x n ) = log A + n log(x). Da log(x) irrational ist (was hier nicht gezeigt werden soll), ist n log(x) gleichverteilt mod. Da ein konstanter Summand log A an der Gleichverteilung nichts ändert (anschaulich wird der Kreis nur gedreht), folgt mit unserem Lemma, dass (log f n ) gleichverteilt ist und damit die Behauptung des Satzes. f n Literatur [] P. Diaconis, The distribution of leading digits and uniform distribution mod, Ann. Prob. 5, 977, 72 8. 66

[2] J. L. Brown and R. L. Duncan, Modulo One Uniform Distribution of Certain Fibonacci-Related Sequences, The Fibonacci Quarterly, 973, 277 294. [3] N. Hungerbühler, Benfords Gesetz über führende Ziffern: Wie die Mathematik Steuersündern das Fürchten lehrt, ETH Zürich, EducETH, 27. [4] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, 97. [5] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77, 96, 33 352. 67

68