SOLAR TECHNOLOGIES FOR THE TRANSFORMATION OF OUR ENERGY SYSTEM

Ähnliche Dokumente
TURNING POTENTIAL INTO REALITY

A Future German Energy System Techno-Economic Optimization and Analysis

Holistic Modelling and Analysis of a Future German Energy System

Holistic modeling and analysis of a future German energy system Integration of renewables and energy efficiency solutions

THE GLOBAL ENERGY TRANSFORMATION

TOWARDS A RENEWABLE ENERGY ECONOMY

DIE ZUKUNFT DER PHOTOVOLTAIK WER WIRD VOM»2. GOLD-RAUSCH«PROFITIEREN?

Comprehensive Modelling and Analysis of a Future German Energy System with a Dominant Supply from Renewable Energies

DEUTSCHE SOLARENERGIE - INITIATIVE

DIE BEDEUTUNG DER SOLARENERGIE FÜR DIE GLOBALE ENERGIEVERSORGUNG

The Solar Revolution New Ways for Climate Protection with Solar Electricity

Erneuerbare Energieversorgung in Gundelfingen

Integrating storages in energy regions and local communities a range of storage capacities

ERNEUERBARE ENERGIEN - WIE WEIT IST DIE ENERGIEWENDE?

The Integration of Renewable Energy Sources Into the Distribution Grid

Perspektiven der Solarindustrie in Deutschland

Integration of Wind into Future Energy Systems

DIE SOLARENERGIE ALS PFEILER UNSERER KÜNFTIGEN, NACHHALTIGEN ENERGIEVERSORGUNG

Role of photovoltaics in the future energy mix: What comes after the current regulations?

Measures to increase renewable energy penetration in grids by integration of storage

Innovative Energy Systems

GIS-based Mapping Tool for Urban Energy Demand

Sustainable Mobility: Analyzing the Supply Chain for TUM s Electric Vehicle MUTE

The valence of flexible green electricity generation units DI Dr. Bernhard Stürmer University College of Agricultural and Environmental Pedagogy

ISEA RWTH Aachen Electric Bus Simulation

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie

Energieeffizienz und Erneuerbare Energien Programme der EZ -- ein Zwischenstand

エナジー リッチ ジャパン. Dr. Harry Lehmann. Archetypen einer 100% EE Versorgung E N E R G Y R I C H J A P A N

ELEKTRISCHE UND THERMISCHE ENERGIESPEICHER IM SMART GRID

Solarfarming Switzerland/Canada

How P2G plays a key role in energy storage. Jorgo Chatzimarkakis, Secretary General

Von der Manufaktur zur Gigawatt-Produktion

Aluminium-air batteries: new materials and perspectives

Energy efficiency in buildings and districts Key technologies within a case study of the Young Cities Project, Iran

Die Zukunft der Solarbranche in Deutschland

The way forward. Policy and Development of Renewable Energies in Germany. Martin SCHÖPE

-weishaupt- November 12, Wolf Point Ballroom 350 W. Mart Center Drive, Chicago, IL. Christoph Petri. Technical Sales, Chicago-Area

Wasserstoff aus Erneuerbaren Energien ermöglicht die sektorenübergreifende Energiewende

Pilot Project Biogas-powered Micro-gas-turbine

German Government s Scenario to Supply 80% of Power Consumption by Renewable Energy in 2050 Dr. Kurt Rohrig Fraunhofer Institut für Windenergie

Mercedes-Benz Energiespeicher Home. Mercedes-Benz Energy Storage Home.

etogas GmbH Stephan Rieke: Power to Gas: Eine konkrete Option zur Integration von erneuerbaren Energien auch für die Schweiz

Possible Contributions to Subtask B Quality Procedure

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL - COM(2014)520 final. Grundlageninformation zu

Bosch Power Tec Clean Energy Week Energy Storage

Internationale Energiewirtschaftstagung TU Wien 2015

Connecting the dots on Germany s Energiewende and its impact on European energy policy

German Government s Scenario to Supply 80% of Power - Consumption by Renewable Energy in 2050 Dr. Kurt Rohrig Fraunhofer Institut für Windenergie

Erneuerbare Energien: die zentrale Herausforderung für die Energiepolitik im 21. Jahrhunderts

Stromgestehungskosten und Stand der Photovoltaik

100% Erneuerbare Energien für Strom und Wärme in Deutschland

REGIONALE ENERGIESPEICHERKONZEPTE

Low Carbon energy intensive industries

EINSPEISEMANAGEMENT: GRUNDLAGEN, ANALYSE- UND PROGNOSEMÖGLICHKEITEN

Forschungsaktivitäten und Kooperationen der Internationalen Energieagentur mit österreichischer Beteiligung Martina Ammer, 6.

エナジー リッチ ジャパン. Dr. Harry Lehmann E N E R G Y R I C H J A P A N

Solar Air Conditioning -

Biogas technologies in Germany - Feedstocks and Technology -

Part % EE. uba.de. Limits to growth. Source: Harry Lehmann, 1994

Pump Storage Requirements and Comparison with other Technologies

Welcome to Düsseldorf

Die zukünftige Rolle von Kohle im internationalen Energiemix International Market Realities vs. Climate Protection?

Energy balance of the integrated route quo vadis?

. Rolle der PV. For Our Environment

An insight into downstream developments: Energy efficiency in gas heating appliances

DKE Jahrestagung Frankfurt, 4. Dezember 2000

PHOTOVOLTAIK ALS ZENTRALE SÄULE UNSERES KÜNFTIGEN, ERNEUERBAREN ENERGIESYSTEMS

Bohrkopf ändern Gestänge Ein-u. Ausbau

Bosch Rexroth - The Drive & Control Company

WE SHAPE INDUSTRY 4.0 BOSCH CONNECTED INDUSTRY DR.-ING. STEFAN AßMANN

Leading the innovation in the traditional field of Constructions. C. Chiti, Technical Director Knauf Italy

Housing Policies for a Growing City

Erneuerbare Energien als Treiber einer ganzheitlichen globalen Transformation und die Rolle der Biomasse

Concepts for cities in times of climate change

BAYNES HYDROPOWER SCHEME ON THE LOWER CUNENE. June 2009

Power, space heat and refurbishment: Tools and methods to include energy in urban planning. Thomas Hamacher

Renewable Resources: An Option for the Future?

Ein Energiesystem basierend auf Erneuerbaren Energien volkswirtschaftliche Kosten

Geode LINKING THE GAS, ELECTRICITY AND HEATING GRIDS: CHP. Dr. Götz Brühl. Br

Climate Change and Air Quality

rsoc plant Efficient design and operation behavior

Update drive system technologies in modern public traffic

Bosch Thermotechnik. Thermotechnology

Ein- und Zweifamilienhäuser Family homes

The German Gas Network Development Plan A contribution towards the effective implementation of the German Energiewende

Balancing renewable energies the European Challenge

Corporate Digital Learning, How to Get It Right. Learning Café

Walter Kroy. Ludwig Bölkow Foundation. Munich. September 2007

Wärme und Strom aus Wald und Feld europäische Erfahrungen und globale Perspektiven. Dr. Heinz Kopetz. Nasice 5. September 2014

Power-to-Heat: Das ehemalige Kraftwerk Karoline

Simulation of a Battery Electric Vehicle

Nachhaltigkeitsfragen der Verstromung fester Biomasse: Was wird auf EU-Ebene diskutiert?

Die globale Bedeutung von fokussierter Bioenergie-Forschung in Österreich

Technical Thermodynamics

Renaissance der Atomenergie Mythos oder Wirklichkeit?

Das wievielte Mal nehmen Sie an den World Sustainable Energy Days teil? How often have you participated in the World Sustainable Energy Days?

( World / Welt ) Year / Jahr

UDR System. Efficient Fermentation Technology with Fixed Bed Digester

SCHLAUE LÖSUNGEN FÜR IHRE ANWENDUNGEN SMART SOLUTIONS FOR YOUR APPLICATIONS

Transkript:

SOLAR TECHNOLOGIES FOR THE TRANSFORMATION OF OUR ENERGY SYSTEM Eicke R. Weber Fraunhofer Institute for Solar Energy Systems ISE and University of Freiburg, Germany Fraunhofer-Chile Solar Seminar Centro de Innovacion UC Anacleto Angelini Santiago, Chile, May 27, 2015

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3 rd Industrial Revolution! Limited availability of fossil fuels Fossil fuels get scarce 2

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3 rd Industrial Revolution! Limited availability of fossil fuels Danger of drastic climate change: Global warming The world gets warmer 3

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3 rd Industrial Revolution! Limited availability of fossil fuels Temperature fluctuations in the last 100kys Danger of drastic climate change: Global warming Loss of climate stability Anthropocene Time before present present [kys] For reasons unknown, the last ca. 10,000 ys were extraordinary stable: Holocene 4

A Radical Transformation of our Energy System is Needed Jeremy Rifkin: We are starting the 3 rd Industrial Revolution! Limited availability of fossil fuels Temperature fluctuations in the last 100kys Danger of drastic climate change Risk of nuclear disasters Growing dependency on imports from politically unstable regions New since recently: Increasing economic opportunities! Time before present present [kys] For reasons unknown, the last ca. 10,000 ys were extraordinary stable: Holocene 5

CO 2 free energy resources Nuclear energy - non-renewable feedstock, dangers during operation, final storage unsolved: no sustainable solution for the global energy problem! 6

CO 2 free energy resources 7 Nuclear energy - non-renewable feedstock, dangers during operation, final storage unsolved: no sustainable solution for the global energy problem Clean coal technologies - require carbon sequestration and long-term storage, energy inefficient, may pose danger of accidental CO 2 release Wind low cost, but: fluctuating production, suitable sites limited Hydro - can be switched on instantaneously, suitable for storage, maximum production desirable, but: suitable sites limited Biofuels - interesting as liquid fuel for traffic, but: low efficiency of photosynthesis, production energy intensive, competition with food plants Geothermal - excellent where easily accessible (example: Iceland) Solar energy (Photovoltaics, Solarthermal) - unlimited energy resource PV: continuous price reductions through innovation, savings of scale

World EnergyRessources renewable finite World Energy Ressources (TWyear) SOLAR 23,000 per year 60-120 per year Waves 0.2-2 per year 3-11 per year OTEC WIND Natural Gas 215 Total 240 Total 2010 World energy use: 16 TWy per year 2 6 per year Biomass Petroleum 2050: 28 TW TIDES 0.3 per year 3 4 per year HYDRO 0.3 2 per year Geothermal 90-300 Total Uranium R. Perez et al. 900 Total reserve 8 COAL

renewable finite World Energy Ressources (TWyear) SOLAR 23,000 per year 60-120 per year Waves 0.2-2 per year 3-11 per year OTEC WIND Natural Gas 330 Total 310 Total 2010 World energy use 16 TWy per year 2 6 per year Biomass Petroleum 2050: 28 TW TIDES 0.3 per year 3 4 per year HYDRO 0.3 2 per year Geothermal 90-300 Total Uranium R. Perez et al. 900 Total reserve 9 COAL

Cornerstones for the Transformation of our Energy System to efficient use of finally 100% renewable energy Energy System 2.0 Energy efficiency: buildings, production, transport Massive increase in renewable energies: photovoltaics, solar and geo thermal, wind, hydro, biomass... Fast development of the electric grid: transmission and distribution grid, bidirectional Small and large scale energy storage systems: electricity, hydrogen, methane, methanol, biogas, solar heat, hydro... Sustainable mobility as integral part of the energy system: electric mobility with batteries and hydrogen/fuel cells 10

Fraunhofer Institute for Solar Energy Systems ISE Research for the Energy Transformation Largest European Solar Energy Research Institute about 1300 members of staff (incl. students) 18 % basic financing 82 % contract research, 24 % industry, 58 % public 86.1 M budget (2014, incl. investments) >10 % growth rate (until 2013) 11

Fraunhofer Institute for Solar Energy Systems ISE 12 Areas of Business Fotos Energy Efficient Buildings Silicon Photovoltaics III-V and Concentrator Photovoltaics Dye, Organic and Novel Solar Cells Photovoltaic Modules and Power Plants Solar Thermal Technology Hydrogen and Fuel Cell Technology Energy Efficient Power Electronics Zero-Emission Mobility Storage Technologies System Integration and Grids Electricity, Heat, Gas Energy System Analysis 12

Electricity generation from renewable energy Development in Germany 1990 2013 Year 2013 Total* 25.4% 152.6 PV 4.7% 30 35.9 GW Bio 8.0% 48 Wind 8.9% 53 34.7 GW Hydro 3.5% 21 * Gross electricity demand 13

Example: Scenario for 100% Renewable Energy Supply till 2050 in Germany Key Features: Strong decrease of heat demand from buildings (energy renovations, zero-energy houses Increase of combined-cycle heat/power plants Thermal storage for heating and cooling Coupling of electricity grid and gas pipelines through production of regenerative hydrogen and methan Introduction of e-mobility with batteryand fuel cell powered cars Use of liquid biofuels, especially for heavy trucks and air traffic 14

Price Learning Curve of Solar Energy (c-si Photovoltaics) - Driven by Innovation & Market Introduction! Preis über kumulierter Kapazität in GW Learning Rate: Each time the cumulative c-si PV production doubled, the price went down by 20 % - by a factor of 10 in 25 years! Solar Electricity Today: 8-10 ct/kwh in Germany, half in sun-rich countries! Source: Navigant Consulting; EUPD PV module prices (since 2006), Graph: ISE 2014 15

PV Market Growth (IEA 2014) Rapid introduction of PV globally is fueled by availability of costcompetitive, distributed energy In 2050 between 4.000 and 30.000 GW p PV will be installed! By 2015, less than 200 GW p have been installed! We are just at the beginning of the global growth curve! Source: IEA 2014 16

Crystalline Silicon Technology Portfolio c-si PV is not a Commodity, but a High-Tech Product! material quality diffusion length base conductivity device quality passivation of surfaces low series resistance light confinement cell structures PERC: Passivated Emitter and Rear Cell MWT: Metal Wrap Through IBC-BJ: Interdigitated Back Contact Back Junction HJT: Hetero Junction Technology 17 material quality Industry Standard 14% PERC 15% BC- HJT IBC-BJ HJT MWT- PERC 16% module efficiency 21% 20% 19% 18% 17% device quality Adapted from Preu et al., EU-PVSEC 2009

World Market Outlook: Experts are Optimistic Example Sarasin Bank, November 2010 market forecast (2010): 30 GW p in 2014, 110 GW p in 2020 annual growth rate: in the range of 20 % and 30 % 2014: ca. 45 GW p, 50 % above forecast! Growth rate Total Newly new installed installations (right) (right scale) Annual growth rate (left(left) scale) Source: Sarasin, Solar Study, Nov 2010 18

Global PV Production Capacity and Installations Module Capacity (GW) Excess Capacity (GW) Outlook for the development of supply and demand in the global PV market. 19 Production Capacity Installations Excess Capacity Source: Lux Research Inc., Grafik: PSE AG

High-Efficiency III/V Based Triple-Junction Solar Cells 20 Slide: courtesy of F. Dimroth

World Record Solar Energy Conversion Efficiency: 46 % for a Wafer-Bonded Four-Junction Solar Cell! 21

Solar Thermal Systems Solar cooling and process heat for all sectors Methodology: Map the application potentials Component testing of durability Integration of solar thermal into processes agro-industry: freezing, drying, fermentation, sterilization, washing, mining industry: e.g. leaching, electro-winning, water, Energy efficiency concepts Results: Affordable and flexible technology Local supply chain and engineering (value and jobs) Minimized technical and financial risks Optimal business models 22

Combined CSP-CPV power plant One of a number of concepts for ALMA: 1MW CPV, 1MW CSP-turbine, 18hrs storage, 24hrs stable elctricity Combination of solar generators: CPV -> electricity supply for the day CSP+Storage -> supply for the night Results: Yearly solar yield: 10.4 GWh Operation hours: 8640 h Cost of electricity: ca.14 $ct/kwh Electricity from Diesel: >20 $ct/kwh! 23

Optimization of Germany s future energy system based on hourly modeling Comprehensive analysis of the overall system Electricity generation, storage and end-use Fuels (including biomass and synthetic fuels from RE) REMod-D Renewable Energy Model Deutschland Slide courtesy Hans-Martin Henning 2014 Mobility (batteryelectric, hydrogen, conv. fuel mix) Heat (buildings, incl. storage and heating networks) Processes in industry and tertiary sector 24

Optimization of Germany s future energy system based on hourly modeling erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien PV Wind On Wind Off Wasserkraft Atom-KW Steink.-KW Braunk.-KW Öl-KW 147 GW 120 GW 32 GW 5 GW 0 GW 7 GW 3 GW 0 GW 143 217 112 21 0 26 12 0 103 Elektrolyse 33 GWel 82 82 H2-Speicher 0 5 Batterien 4 9 Pump-Sp-KW 7 24 GWh 60 GWh Brennstoffe 394 Erdgas Biomasse Treibstoff Verkehr Sabatier 0 Methan-Sp. 0.0 GWgas 0 335 220 0 0 6 Gasturbine 1 GW GuD-KW 3 GW 0 3 60 7 108 4 KWK-GuD 27 35 GWel 20 W-Speicher 173 GWh WP zentral 20 20 7 GWth 40 Gebäude 59 Solarthermie 13 20 GWth Wärmenetze mit GuD-KWK REMod-D Renewable Energy Model Deutschland Slide courtesy Hans-Martin Henning 2014 23 13 14 Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 57 4 ungenutzter Strom (Abregelung) 3 4 26 KWK-BHKW 23 25 GWel Solarthermie 6 3 W-Speicher 15 W-Speicher 7 GWth 27 GWh Verkehr (ohne 173 GWh 5 Schienenverkehr/Strom) 8 WP zentral 23 16 Wasserstoff-basierter Verkehr 7 GWth Gas-WP 34 37 Gebäude 82 Traktion 41 44 Gebäude 15 GWth 41 H2-Bedarf 82 59 Batterie-basierter Verkehr Solarthermie 13 Einzelgebäude mit Gas-Wärmepumpe Traktion 41 55 20 GWth Wärmenetze mit Strombedarf 55 BHKW-KWK Brennstoff-basierter Verkehr 4 220 Traktion 55 Brennstoffe 220 el. WP Sole 51 14 W-Speicher Traktion gesamt 137 41 2 22 GWth 103 GWh % Wert 2010 100 % 14 14 Mini-BHKW 23 4 W-Speicher 6 GWel 46 GWh Solarthermie 9 GWth 8 45 Gebäude 60 Brennstoff-basierte Prozesse in Industrie und Gewerbe 4 gesamt 445 Solarthermie 3 22 Gebäude Einzelgebäude mit Sole-Wärmepumpe 420 Solarthermie 25 4 GWth 26 Brennstoffe 420 Einzelgebäude mit Mini-BHKW 4 6 Wärmebedarf gesamt 388 el. WP Luft 43 11 W-Speicher Solarthermie 12 6 W-Speicher Raumheizung Warmwasser ungenutzt 19 GWth 87 GWh 14 GWth 56 GWh 290 98 2 11 10 Solarthermie 8 GWth 7 39 Gebäude 50 73 Gaskessel 32 GWth 71 76 Gebäude 86 0.6 Geothermie 2 GWth 6 Gebäude 6 Einzelgebäude mit Luft-Wärmepumpe Einzelgebäude mit Gaskessel Wärmenetze mit Tiefen-Geothermie 25

Electricity generation erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien PV Wind On Wind Off Wasserkraft Atom-KW Steink.-KW Braunk.-KW Öl-KW 147 GW 120 GW 32 GW 5 GW 0 GW 7 GW 3 GW 0 GW 143 217 112 21 0 26 12 0 Slide courtesy Hans-Martin Henning 2014 103 Elektrolyse 33 GWel 82 82 H2-Speicher 0 13 14 5 Batterien 4 9 Pump-Sp-KW 7 24 GWh 60 GWh Biomasse Sabatier 0 Methan-Sp. 0.0 GWgas 0 23 Brennstoffe 394 Erdgas Treibstoff Verkehr 335 220 Photovoltaics 0 147 GW el 0 6 Gasturbine 1 GW KWK-GuD 27 35 GWel 20 W-Speicher 173 GWh WP zentral 20 20 7 GWth 40 Gebäude 59 Solarthermie 13 20 GWth Wärmenetze mit GuD-KWK Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 57 4 120 GW ungenutzter Strom (Abregelung) 3 4 el 26 KWK-BHKW 23 25 GWel Solarthermie 6 3 W-Speicher 15 W-Speicher 7 GWth 27 GWh Verkehr (ohne 173 GWh 5 Schienenverkehr/Strom) 8 WP zentral 23 16 Wasserstoff-basierter Verkehr 7 GWth Gas-WP 34 37 Gebäude 82 Traktion 41 44 Gebäude 15 GWth 41 H2-Bedarf 82 59 Batterie-basierter Verkehr Solarthermie 13 Einzelgebäude mit Gas-Wärmepumpe Traktion 41 55 20 GWth Wärmenetze mit Strombedarf 55 BHKW-KWK Brennstoff-basierter Verkehr 4 220 Traktion 55 Brennstoffe 220 el. WP Sole 51 14 W-Speicher Traktion gesamt 137 41 2 22 GWth 103 GWh % Wert 2010 100 % Medium and large size CHP 14 14 Mini-BHKW 23 4 W-Speicher 6 GWel 46 GWh Solarthermie 8 45 Gebäude Brennstoff-basierte Prozesse in 4 9 GWth 60 Industrie und Gewerbe gesamt 445 Solarthermie 3 22 Gebäude Einzelgebäude mit Sole-Wärmepumpe 60 GW el 420 Solarthermie 25 4 GWth 26 Brennstoffe 420 Einzelgebäude mit Mini-BHKW 4 6 Wärmebedarf gesamt 388 el. WP Luft 43 11 W-Speicher Solarthermie 12 6 W-Speicher Raumheizung Warmwasser ungenutzt 19 GWth 87 GWh 14 GWth 56 GWh 290 98 2 11 10 Solarthermie 8 GWth 7 39 Gebäude 50 73 Gaskessel 32 GWth 71 76 Gebäude 86 0.6 Geothermie 2 GWth 6 Gebäude 6 Einzelgebäude mit Luft-Wärmepumpe GuD-KW 3 GW 0 3 Onshore Wind (connected to district heating) Einzelgebäude mit Gaskessel 60 7 108 Offshore Wind 32 GW el 4 Wärmenetze mit Tiefen-Geothermie 26

Storage erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien PV Wind On Wind Off Wasserkraft Atom-KW Steink.-KW Braunk.-KW Öl-KW 147 GW 120 GW 32 GW 5 GW 0 GW 7 GW 3 GW 0 GW 143 217 112 21 0 26 12 0 Slide courtesy Hans-Martin Henning 2014 27 Stationary batteries 103 Brennstoffe 394 Erdgas Elektrolyse 0 33 GWel 82 335 Biomasse Total 24 GWh (e.g. 8 Mio 82 6 H2-Speicher Treibstoff 220 0 Verkehr units with 3 kwh each) Sabatier 0 Methan-Sp. 0.0 GWgas 0 23 13 5 Batterien 4 9 Pump-Sp-KW 7 24 GWh 60 GWh 0 Gasturbine 1 GW Strombedarf gesamt (ohne Strom für Wärme und MIV) 375 57 4 ungenutzter Strom (Abregelung) 3 4 26 KWK-BHKW 23 25 GWel Solarthermie 6 3 W-Speicher 15 W-Speicher 7 GWth 27 GWh Verkehr (ohne 173 GWh 5 Schienenverkehr/Strom) 8 WP zentral 23 16 Wasserstoff-basierter Verkehr 7 GWth Gas-WP 34 37 Gebäude 82 Traktion 41 44 Gebäude 15 GWth 41 Electrolysers H2-Bedarf 82with total 59 Batterie-basierter Verkehr Solarthermie 13 Einzelgebäude mit Gas-Wärmepumpe 41 55 20 Wärmenetze mit capacity GWth Strombedarf of 33 55 GW el BHKW-KWK 4 Brennstoff-basierter Verkehr 220 55 (needed Brennstoffe for mobility) 220 el. WP Sole 51 14 W-Speicher Traktion gesamt 137 41 2 22 GWth 103 GWh % Wert 2010 100 % 14 14 Mini-BHKW 23 4 W-Speicher 6 GWel 46 GWh Solarthermie 8 45 Gebäude Brennstoff-basierte Prozesse in 4 9 GWth 60 Industrie und Gewerbe gesamt 445 Solarthermie 3 22 Gebäude Einzelgebäude mit Sole-Wärmepumpe 420 Solarthermie 25 4 GWth 26 Brennstoffe 420 Einzelgebäude mit Mini-BHKW 4 6 Wärmebedarf gesamt 388 el. WP Luft 43 11 W-Speicher Solarthermie district 12 6 W-Speicher heating Raumheizungsystems Warmwasser ungenutzt 19 GWth 87 GWh 14 GWth 56 GWh 290 98 2 11 10 Total 350 GWh (e.g. 150 Solarthermie 7 39 Gebäude 73 Gaskessel 71 76 Gebäude 0.6 Geothermie 6 Gebäude 8 GWth 50 32 GWth 86 2 GWth 6 Einzelgebäude mit Luft-Wärmepumpe GuD-KW 3 GW Heat buffers 14 in buildings Total 320 GWh (e.g. 7 Mio units with 800 Litres each) 0 3 Einzelgebäude mit Gaskessel 108 4 60 KWK-GuD 27 Pumped storage 35 GWel 20 W-Speicher 173 GWh 7 WP zentral 20 20 power plants 7 GWth 40 Gebäude 59 42 units Solarthermie 13 with a 20 GWth Wärmenetze mit GuD-KWK total of 60 GWh Large scale heat storage in units with 50.000 m³ each) Wärmenetze mit Tiefen-Geothermie

Investments vs. saved fuel cost in bill. p.a. Fuel price increase 2 % cumulatively avoided fuel cost 1072 bill. 1 % 851 bill. 0 % 679 bill. cumulative investments 515 bill. Slide courtesy Hans-Martin Henning 2014 28

RE-Power Generation in Grids Support for Energy Sector in Chile Ressources Data base Power plants Transmission capacities Demand profiles Technology models of Renewable Energies Optimizer Tool RE Technology Mix (Invest & Operation) Site evaluation: Demand vs. resource Technology-Mix Wind, PV, CSP, Gasturbines,.. Operation Strategies power plants 29

Solar Technologies for the Transformation of our Energy System The global energy transformation is the challenge of our generation, it will be the first step of the needed transformation to sustainability. A near-100% renewable energy system that is safe, cost-effective and sustainable is possible, at similar cost as today s energy supply. Solar technologies will be the key pillar of our future energy system This includes solar thermal systems, solar photovoltaics, solar water desalination, and solar fuels for mobility We are just at the beginning of this development, there are great economic opportunities ahead for countries and companies devoted to these technologies Fraunhofer ISE is proud to support solar developments in Chile with the new Center for Solar Energy Technologies CSET, to be inaugurated tomorrow, Mai 28, 2015! 30

Thank you for your Attention! Fraunhofer Institute for Solar Energy Systems ISE Eicke R. Weber, Hans-Martin Henning and ISE coworkers www.ise.fraunhofer.de eicke.weber@ise.fraunhofer.de, hans-martin.henning@ise.fraunhofer.de 31