Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente



Ähnliche Dokumente
Kurzanleitung. Auswertung, Fehlerrechnung und Ergebnisdarstellung. Praktikum Physikalisch-Chemische Experimente

Anleitung. zur. Anfertigung der Versuchsprotokolle. Praktikum Physikalisch-Chemische Übungen für Pharmazeuten

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

QM: Prüfen -1- KN

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Stationsunterricht im Physikunterricht der Klasse 10

Physikalisches Praktikum

Elektrischer Widerstand

Erstellen von wissenschaftlichen Protokollen

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: Weitere Informationen oder Bestellungen unter

Repetitionsaufgaben: Lineare Funktionen

Im Jahr t = 0 hat eine Stadt Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Lineare Gleichungssysteme

DAS ABI-PFLICHTTEIL Büchlein

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

Info zum Zusammenhang von Auflösung und Genauigkeit

Formelsammlung zur Kreisgleichung


In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Protokoll zum Physikalischen Praktikum Versuch 9 - Plancksches Wirkungsquantum

7 Rechnen mit Polynomen

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Gleichungen und Ungleichungen

Informationsblatt Induktionsbeweis

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Lösung. Prüfungsteil 1: Aufgabe 1

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen


Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

1. Allgemeine Hinweise

4. Erstellen von Klassen

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x y = x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Handbuch Fischertechnik-Einzelteiltabelle V3.7.3

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

5. Lineare Funktionen

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Anlage eines neuen Geschäftsjahres in der Office Line

Professionelle Seminare im Bereich MS-Office

Praktikum 3 Aufnahme der Diodenkennlinie

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Lineare Gleichungssysteme

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Mathematischer Vorbereitungskurs für Ökonomen

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am Gruppe X

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

3. LINEARE GLEICHUNGSSYSTEME

Korrelation (II) Korrelation und Kausalität

Statistische Thermodynamik I Lösungen zur Serie 1

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Musterlösung zu Serie 14

Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Titration von Speise-Essig

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

So gehts Schritt-für-Schritt-Anleitung

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Dokumentation. estat Version 2.0

Die Größe von Flächen vergleichen

1.1 Auflösungsvermögen von Spektralapparaten

Nullserie zur Prüfungsvorbereitung

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Berechnung der Erhöhung der Durchschnittsprämien

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Sichere Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere . der

Skalierung des Ausgangssignals

Mit Papier, Münzen und Streichhölzern rechnen kreative Aufgaben zum Umgang mit Größen. Von Florian Raith, Fürstenzell VORANSICHT

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Physik III - Anfängerpraktikum- Versuch 302

Repetitionsaufgaben: Lineare Gleichungen

1 Mathematische Grundlagen

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Erster Prüfungsteil: Aufgabe 1

Anleitung zum GUI Version 2.x

Kaufmännische Berufsmatura 2011

1. Einführung. 2. Alternativen zu eigenen Auswertungen. 3. Erstellen eigener Tabellen-Auswertungen

Daten sammeln, darstellen, auswerten

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Taschenbuch Versuchsplanung Produkte und Prozesse optimieren

AUTOMATISIERTE HANDELSSYSTEME

1.3 Die Beurteilung von Testleistungen

Arbeitspunkt einer Diode

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Transkript:

Kurzanleitung zur Auswertung, Fehlerrechnung und Ergebnisdarstellung im Praktikum Physikalisch-Chemische Experimente Dr. Markus Braun Institut für Physikalische und Theoretische Chemie Goethe-Universität Frankfurt März 2011

Das Versuchs-Protokoll Das Versuchsprotokoll umfasst immer: 1. Deckblatt: - amen der PraktikantInnen (ProtokollverfasserIn unterstreichen) (evtl. auch e-mail Adressen, insbesondere in der vorlesungsfreien Zeit) - Praktikum: PC I, PC II, PC I (L3), PC II (L3), PC Biophysik, PC ebenfach - Versuchsnummer - Versuchstitel - Stand des Protokolls (Erstabgabe, 1. Korrektur oder 2. Korrektur) - Datum der Erstellung 2. Einleitung: Welche Fragestellung wird in diesem Versuch bearbeitet und mit welchen experimentellen Mitteln wird die praktische Arbeit durchgeführt. 3. Experimentelles: Ausführliche Beschreibung der Durchführung des Versuchs mit einer Diskussion der bei der Durchführung aufgetretenen Schwierigkeiten. 4. Resultate: Präsentation der selbst gemessenen Versuchsergebnisse (Originaldaten) in Form von beschrifteten Graphen bzw. Tabellen. Dazu eine klare Darstellung des vollständigen Gangs der Auswertung. 5. Fehlerbetrachtung: Fehlerrechnung mit sämtlichen zur Berechnung erforderlichen Graphen (Fitkurven), Formeln und Werten. 6. Diskussion: Die Ergebnisse des Versuchs sollen wissenschaftlich belastbar diskutiert werden. Dies umfasst unter anderem eine Bewertung der Fehlerquellen (statistische bzw. systematische Fehlerquellen) und die Diskussion der Versuchsergebnisse in Hinblick auf Literaturwerte. 7. Anhang: - Tagesprotokoll - Kopie der Versuchsanleitung - bereits korrigierte Versionen des Protokolls Das gesamte Protokoll soll in einer wissenschaftlich adäquaten Ausdrucksweise verfasst sein (keine Umgangssprache). Typischerweise verwendet man die neutrale Erzählperspektive (keine Ich-Erzählperspektive).

Fehlerbetrachtung Die Messunsicherheit (Messfehler) einer experimentell bestimmten Größe ist ein wichtiger Bestandteil des Messergebnisses, da diese das Vertrauensintervall angibt, in dem der eigentliche (unbekannte) Wert liegen kann. Bei der Diskussion von Fehlern (Fehlerquellen) im Experiment sind daher grundsätzlich zwei wichtige Arten von Fehlerquellen zu unterscheiden: statistische oder systematische Fehler. Bei der Diskussion der Fehler soll nicht versucht werden Messfehler möglichst klein zu halten, es soll vielmehr eine möglichst ehrliche Abschätzung der Fehler und deren Ursachen erfolgen. Grundsatz: Im Zweifelsfall soll ein Fehler lieber überschätzt als unterschätzt werden. Systematische Fehler: Diese Fehler fassen alle Unzulänglichkeiten eines experimentellen Aufbaus zusammen, welche reproduzierbar eine Abweichung des gemessenen Werts vom (unbekannten) wahren Wert einer Größe in nur eine Richtung ergeben. Das bedeutet, dass ein Wert immer als zu hoch oder immer als zu niedrig bestimmt wird. Ursachen sind zum Beispiel: - falsch geeichte Messinstrumente, Waagen, Kolben, Pipetten,... - PraktikantInnen, die nicht pipettieren können, einen Meniskus falsch ablesen,... -... Solche Fehlerquellen führen auch bei einer wiederholten Messung zu identischen, aber falschen Ergebnissen. Das mehrmalige Wiederholen des Experiments führt somit nicht zu einer Verbesserung der Präzision. wahrer Wert wahrer Wert Abbildung 1: Schwankung von Messwerten: (links) die Messwerte weichen systematisch vom wahren Wert ab; (rechts) die Messwerte zeigen eine statistische Verteilung um den zu erwartenden wahren Messwert.

Statistische Fehler: Bei mehrmaliger Wiederholung desselben Experiments können leicht unterschiedliche Ergebnisse erhalten werden. Dies lässt sich zurückführen auf: - die Schwankungen äußerer Bedingungen wie z.b. Temperatur, Luftdruck, Luftfeuchtigkeit... - die Experimentatoren: richtiges, aber ungenaues Ablesen von Skalen, Toleranzen beim Pipettieren, Ablesen/Einstellen eines Meniskus,... - die Ablesegenauigkeit von Messgeräten (Digitalisierung) -... Um eine Abschätzung der Größe des statistischen Fehlers zu bekommen, werden in manchen Versuchen die Experimente mehrmals (-mal) wiederholt. Dies führt zu einer Verbesserung der Messgenauigkeit. Der Schätzer des Erwartungswerts x für das -mal wiederholte Experiment mit den Einzelergebnissen x i ergibt sich als arithmetischer Mittelwert x : x = 1 x i Die (empirische) Standardabweichung σ wird bestimmt durch: σ = 1 1 (x x i) 2 Der Fehler des geschätzten Erwartungswerts ergibt sich als: Δx = σ Ein Beispiel soll dies verdeutlichen: Zu messen sei die Schwingungsdauer eines Pendels mit der Stoppuhr. Infolge der Reaktionszeit beim Starten und Stoppen der Uhr kommt es zu zufälligen (statistischen) Messabweichungen. Folgende Messreihe mit 13 Messwerten x i wurde gemessen: Messung i 1 2 3 4 5 6 7 8 9 10 11 12 13 x i in s 2,6 2,3 2,5 2,3 2,6 2,4 2,2 2,3 2,4 2,5 2,6 2,8 2,7

Der Mittelwert ergibt sich zu: 13 x = 1 13 x i = 2,476923 Die empirische Standardabweichung σ der Einzelmessung x i ist: und die Unsicherheit des Mittelwerts: 13 σ = 1 12 (2,476923 x i) 2 = 0,178670 Δx = 0,178670 13 = 0,049554 Man erhält somit aus der Messreihe die Schwingungsdauer zu x = (2,476923 ± 0,049554) s. Dieses Ergebnis ist soweit korrekt berechnet, aber noch nicht korrekt unter Beachtung gültiger Stellen angegeben (siehe unten). Darstellung der Ergebnisse achdem eine experimentelle Größe x und der zugehörige Fehler Δx bestimmt wurden, müssen diese noch korrekt als Ergebnis mit der passenden Genauigkeit (gültigen Stelle) angegeben werden. Das Ergebnis aus dem Beispiel oben gibt man folgendermaßen an: Schwingungsdauer x = (2,48 ± 0,05) s Es gilt: Die Genauigkeit (gültige Stellen) des Fehlers Δx legt fest, mit welcher Genauigkeit das Ergebnis x angegeben werden darf. Für die Angabe der Ergebnisse im Praktikum werden folgende Regeln angewandt. Regel 1: Messunsicherheiten werden auf eine signifikante Stelle aufgerundet. Ausnahme: Ist die erste signifikante Stelle eine 1, rundet man auf zwei signifikante Stellen auf.

Bemerkung: als signifikante Stelle bezeichnet man die hochwertigste Stelle einer Zahl, die ungleich ull ist (die erste signifikante Stelle ist in folgender Beispieltabelle unterstrichen). Beispieltabelle: berechneter Messfehler aufgerundeter Messfehler 0,004428097 0,005 3,2835366 4 232,456723 300 besser: 3 10 2 0,13890 0,14 0,0987467 0,10 0,00016831145 0,00017 73,2 80 besser: 8 10 1 0,045674 10-12 0,05 10-12 12,98 13 Regel 2: Ergebnisse werden auf dieselben signifikanten Stellen wie die zugehörige Messunsicherheit gerundet und angegeben. Beispieltabelle: gerundeter Messfehler Messwert Ergebnis 0,005-10,0975-10,098 ± 0,005 4 23,86 24 ± 4 300 1222,3 1200 ± 300 besser: (12 ± 3) 10 2 0,14-0,5090-0,51 ± 0,14 0,10 0,00167 0,00 ± 0,10 0,00017 0,031145 0,03115 ± 0,00017 80 98573,2 98570 ± 80 besser: (9857 ± 8) 10 1 0,05 10-12 8,674 10-12 (8,67 ± 0,05) 10-12 13 2,98 3 ± 13 Bei der Angabe der Ergebnisse dürfen auch die Dimensionen (Einheiten) nicht vergessen werden. Physikalische Größen besitzen neben ihrem numerischen Wert auch eine Dimension. Außer wenn es in der Anleitung anders verlangt wird, sollten im Protokoll die Ergebnisse immer in SI-Einheiten (französisch: Système international d unités) angegeben werden.

Fehlerfortpflanzung Oft wird in Experimenten aus mehreren unabhängig bestimmten Größen eine daraus abgeleitete Größe als Ergebniswert berechnet. Als Beispiel diene das ideale Gas-Gesetz: p V = n R T Aus der unabhängigen Bestimmung der Stoffmenge n (z.b. durch Wiegen), Temperatur T (Thermometer) und Druck p (Barometer) kann das Gasvolumen V berechnet werden. Als allgemeine Formulierung kann man für den Messwert y abhängig von Variablen schreiben: y = y(x 1, x 2, x 3,, x ) Ändert man die Variablen x i um h i so wird der Messwert y (in 1. äherung: Taylor-Reihe) zu: y = y(x 1 + h 1, x 2 + h 2, x 3 + h 3,, x + h ) = y(x 1, x 2, x 3,, x ) + y h x i i Interpretiert man die Werte h i als Messfehler σ i der Variablen x i und berechnet nun die Varianz σ y von y, so ergibt sich daraus das Allgemeine Fehlerfortpflanzungsgesetz (siehe Lehrbücher zur Statistik). Unter der Annahme, dass die Fehler von Einzelmessungen nicht korreliert sind, erhält man daraus das bekannte Gauß sche Fehlerfortpflanzungsgesetz : Δy = σ y = y 2 x i Beispiel: Ideales Gasgesetz. Experimentell bestimmt wurden die Stoffmenge n, die Temperatur T und der Druck p. Berechnet werden soll das Gasvolumen V nach der Formel: V(n, T, p) = n R T p Der Fehler der Volumenbestimmung hängt dabei von den Messfehlern der drei Einzelmessungen Δn, ΔT und Δp ab. ach der Gauß schen Fehlerfortpflanzung ergibt sich die Messunsicherheit für das Volumen zu: ΔV = V 2 n Δn 2 + V 2 T ΔT 2 + V 2 2 2 2 p R T Δp 2 = p n R Δn 2 + p n R T ΔT 2 + p 2 Δp 2 σ i 2

Graphische Auswertung Aus der gemessenen Abhängigkeit einer Messgröße von einem experimentellen Parameter können oft charakteristische Koeffizienten für den beobachteten Prozess erhalten werden. Beispiel: Bei einer Reaktionskinetik 1. Ordnung (exponentielles Zeitgesetz) kann die Reaktionsrate k bestimmt werden, indem man die Konzentration des Edukts c in Abhängigkeit des Parameters Zeit t bestimmt. Konzentration lineare Auftragung 0,0 Konzentration logarithmische Auftragung c / (mol/l) 1,0 0,5 c = A exp ( - k t ) ln(c) / (mol/l) -0,5-1,0-1,5-2,0 Steigung: - k ln (c) = - k t + ln(a) 0,0 0 10 20 30 40 50 t / (s) -2,5 0 10 20 30 40 50 t / (s) Abbildung 2: Graphische Darstellung des Reaktionsverlaufs bei einer Reaktionskinetik 1. Ordnung: (links) Auftragung der Konzentration c gegen die Zeit t; (rechts) Auftragung des natürlichen Logarithmus der Konzentration ln(c) gegen die Zeit t. In vielen Fällen ist es möglich die gemessenen Daten so aufzutragen, dass idealerweise ein lineares Verhalten erwartet wird. Trägt man z.b. den natürlichen Logarithmus der Messdaten aus dem oben genannten Beispiel als Funktion der Zeit auf, erwartet man ein lineares Verhalten: die Steigung der resultierenden Gerade ist dann die gesuchte Reaktionsrate k.

Konzentration lineare Auftragung Gleichung Gewichtung Fehler der Summe der Quadrate y = a + b*x Keine Gewichtu ng 0,26726 Pearson R -0,99518 Kor. R-Quadrat 0,99019 Wert Standardfehler Schnittpunkt mit -0,0157 0,02038 D der Y-Achse Steigung -0,04991 6,98561E-4 c / (mol/l) 1,0 0,8 0,6 0,4 0,2 0,0 0 10 20 30 40 50 t / (s) ln(c) / (mol/l) 0,0-0,5-1,0-1,5-2,0-2,5 Steigung: k = 0,0499 ± 0,0007 Konzentration logarithmische Auftragung Lineare Anpassung 0 10 20 30 40 50 t / (s) Abbildung 3: Graphische Darstellung experimenteller Daten für eine Reaktionskinetik 1. Ordnung: (links) Auftragung der Konzentration c gegen die Zeit t; (rechts) Auftragung des natürlichen Logarithmus der Konzentration ln(c) gegen die Zeit t zusammen mit der Fitgerade (rot) zur Bestimmung der Reaktionsrate k. Die Rate k und der zugehörige Fehler von k können nun beispielsweise über eine rechnergestützte Anpassung (linearer Fit) einer Geradengleichung an die Messdaten in Programmen wie z.b. Origin (Windows) oder gnuplot (Linux) bestimmt werden.

Lineare Regression Die Bestimmung der optimalen Geradensteigung und des Achsenabschnitts einer Ausgleichsgerade kann mit Hilfe der linearen Regression erfolgen. Dazu wird als Kriterium die least square Methode gewählt. Die Messwertpaare (x i ; y i ) sollen einem linearen Zusammenhang y = a + b x genügen. Hierbei sollen die Parameter a (Achsenabschnitt) und b (Geradensteigung) so gewählt werden, dass der mittlere quadratische Abstand der Messwerte von der Ausgleichsgerade (Summe der Fehlerquadrate: SFQ) minimiert wird. Dies wird durch folgenden Zusammenhang ausgedrückt: SFQ = (y i (a + b x i )) 2 min Diese Minimumbedingung wird mathematisch dadurch realisiert, dass die ersten Ableitungen nach a bzw. nach b verschwinden müssen. Das heißt: und SFQ a y i (a + b x i ) 2 = 2 y i (a + b x i ) = = 2 y i [ a] b x i = 0 SFQ b y i (a + b x i ) 2 = 2 y i (a + b x i ) x i = 2 = 2 x i y i a x i b x i = 0

Das resultierende Gleichungssystem aus den beiden obigen Gleichungen lässt sich nun einfach nach den unbekannten Regressionsparametern a und b auflösen. Man erhält somit als Bestimmungsgleichungen für Achsenabschnitt a und Geradensteigung b: und b = 1 x iy i 1 x i 1 y i 1 x i 2 1 2 = xy x y x x i 2 x 2 a = 1 y i b 1 x i = y b x Der Fehler der beiden Regressionsparameter ist natürlich von der Messunsicherheit Δy der Einzelmessungen y i abhängig. Aus der Anwendung der Gauß schen Fehlerfortpflanzung (hier ohne Rechnung) erhält man die zugehörigen Fehler als: und 1 Δb = 1 (Δy)2 1 x i 2 1 2 = (Δy)2 x x i 2 x 2 1 Δa = (Δy)2 1 x i 2 1 x i 2 1 x i 1 2 = (Δy)2 x 2 x 2 x 2 Unter der Voraussetzung dass alle Messwerte y i gleiche Fehler y i = y haben kann man die mittlere quadratische Abweichung der Einzelmesswerte y i verwenden: (Δy) 2 = 1 2 y i (bx i + a) 2 Hier steht 2 im enner da die Zahl der unabhängigen Messwerte minus 2 (abhängige Relationen über a und b) ist.

Zeichnerische Bestimmung eine Ausgleichsgerade Alternativ kann auch eine einfache Fehlerabschätzung der Geradensteigung zeichnerisch per Hand durch sogenannte Min/Max-Geraden erfolgen: A) Die Messdaten (x i ; y i ) werden (mit dem Messfehler) geeignet skaliert gezeichnet. B) Die gesuchte Ausgleichsgerade geht durch den Schwerpunkt (x s ; y s ) der Daten (unter Annahme gleicher Messfehler für den gesamten Datensatz). Dabei gilt: x s = 1 und y s = 1 y i x i. Die Ausgleichsgerade soll so abgeschätzt werden, dass sie im Mittel möglichst allen Punkten nahe kommt und innerhalb der Messfehlerintervalle für alle Messwerte liegt. C) Zwei weitere Geraden gleicher Steigung werden parallel nach unten bzw. oben eingezeichnet, so dass sich mindestens 70% aller Messwerte im Bereich innerhalb dieser beiden Geraden befinden. Durch zwei dazu senkrechte Striche am Anfang und Ende des Messbereichs (also der entsprechende Messwert) wird das sogenannte Streubereichrechteck fertiggestellt. D) Durch die Eckpunkte des Streubereichrechtecks werden Diagonalen gezogen. Dies sind die gesuchten Min/Max-Geraden. Deren Steigungen dienen zur Abschätzung des Messfehlers der Ausgleichsgeraden.

16 A 16 B 12 12 Schwerpunkt Y 8 Y 8 4 4 0 0-2 0 2 4 6 8 10 12 14 16-2 0 2 4 6 8 10 12 14 16 X X Max-Gerade C D 16 16 12 Schwerpunkt 12 Min-Gerade Y 8 Y 8 4 4 0 0-2 0 2 4 6 8 10 12 14 16 X -2 0 2 4 6 8 10 12 14 16 X Bemerkung: Diese zeichnerische Methode der linearen Regression ist durch die Rechnergestützte Datenerfassung und Auswertung heutzutage kaum mehr von Bedeutung und soll hier nur zur Vollständigkeit erwähnt werden. Wenn möglich (und in der Versuchsanleitung nicht anders verlangt) soll die Bestimmung einer Geradensteigung und deren Fehler mit einer geeigneten Software erfolgen. Herzlichen Dank an Dr. Peter Blüm (Uni Karlsruhe) und Dr. Ina Sieckmann-Bock (Uni Freiburg), deren Skripte die Erstellung dieser Kurzanleitung stark vereinfacht haben.