Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel



Ähnliche Dokumente
Beispiele zur UE Statistik 1 bei Nagel

Statistische Thermodynamik I Lösungen zur Serie 1

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester Juli 2005

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Beispiele zur UE Statistik 1 bei Nagel

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

i x k k=1 i u i x i v i 1 0, ,08 2 0, ,18 3 0, ,36 4 0, ,60 5 1, ,00 2,22 G = n 2 n i=1

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B


Beispiel Zusammengesetzte Zufallsvariablen

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

1.3 Die Beurteilung von Testleistungen

Schleswig-Holstein Kernfach Mathematik

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

R ist freie Software und kann von der Website.

Überblick über die Tests

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Statistik für Studenten der Sportwissenschaften SS 2008

W-Rechnung und Statistik für Ingenieure Übung 11

Statistik im Versicherungs- und Finanzwesen

4. Erstellen von Klassen

Tutorial: Homogenitätstest

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Korrelation (II) Korrelation und Kausalität

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50, ,5 51,7 48,8

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Zufallsgrößen. Vorlesung Statistik für KW Helmut Küchenhoff

STATISTIK. Erinnere dich

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

Statistische Auswertung:

Repetitionsaufgaben: Lineare Gleichungen

13.5 Der zentrale Grenzwertsatz

Statistik I für Betriebswirte Vorlesung 11

3.3. Aufgaben zur Binomialverteilung

Beispiel für metrische Daten

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Daten sammeln, darstellen, auswerten

R. Brinkmann Seite Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Risikoeinstellungen empirisch

Musterlösung zu Serie 14

Forschungsstatistik I

Einfache Varianzanalyse für abhängige

Die Größe von Flächen vergleichen

Die Optimalität von Randomisationstests

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Klausur zur Vorlesung Multivariate Verfahren, SS Kreditpunkte, 90 min

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

AUTOMATISIERTE HANDELSSYSTEME

Zeichen bei Zahlen entschlüsseln

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

einfache Rendite

Lineare Funktionen. 1 Proportionale Funktionen Definition Eigenschaften Steigungsdreieck 3

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Statuten in leichter Sprache

Mathematischer Vorbereitungskurs für Ökonomen

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

Professionelle Seminare im Bereich MS-Office

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Einfache statistische Auswertungen mit dem Programm SPSS

Statistik II für Betriebswirte Vorlesung 2

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Tag der Mathematik 2012

Fachhochschule Düsseldorf Wintersemester 2008/09

Expertenrunde Gruppe 1: Wiederholungsgruppe EXCEL (Datenerfassung, Darstellungsformen, Verwertung)

Berechnung der Erhöhung der Durchschnittsprämien

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010

Statistik I für Betriebswirte Vorlesung 5

7 Rechnen mit Polynomen

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

TECHNISCHE UNIVERSITÄT MÜNCHEN

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = ,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

Verband der TÜV e. V. STUDIE ZUM IMAGE DER MPU

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

Lösung. Prüfungsteil 1: Aufgabe 1

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

QM: Prüfen -1- KN

Stochastische Eingangsprüfung,

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

Aufgabensammlung Bruchrechnen

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Übungsaufgaben Prozentrechnung und / oder Dreisatz

Für 2 bis 4 Spieler ab 8 Jahren. Spielregeln

Die Binomialverteilung

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Wir machen neue Politik für Baden-Württemberg

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Transkript:

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum in einem 6x6 - Punkteraster darzustellen. Was sind die folgenden Ereignisse? (a) A: Die Augenzahl der beiden Würfel ist ident. (b) B: Die Augenzahl der beiden Würfel unterscheidet sich um 1. (c) C: Die Augenzahl der beiden Würfel unterscheidet sich um 2. (d) Was sind die Wahrscheinlichkeiten dafür? 2. In einer Urne sind 6 Kugeln, die mit den Zahlen 1 bis 6 beschriftet sind. Zwei Kugeln werden ohne Zurücklegen gezogen. Versuchen Sie, den Stichprobenraum Ω in einem 6x6 - Punkteraster darzustellen. Was sind die folgenden Ereignisse? (a) A: Die Augenzahl der beiden Würfel ist ident. (b) B: Die Augenzahl der beiden Würfel unterscheidet sich um 1. (c) C: Die Augenzahl der beiden Würfel unterscheidet sich um 2. (d) Was sind die Wahrscheinlichkeiten dafür? (e) Was hätte sich geändert, wenn die Ziehung mit Zurücklegen der Kugeln durchgeführt worden wäre. 3. 12% aller Männer verfolgen regelmäßig die Formel 1 im Fernsehen, bei der Fußball-Champions-League sind es 30%. 6% verfolgen beide Sportereignisse. (a) Wieviel Prozent der Männer verfolgen zumindest eine der beiden Sportveranstaltungen? (b) Wieviel Prozent der Männer verfolgen keine der beiden Sportveranstaltungen? 4. In einer Ortschaft wurden alle arbeitenden und arbeitsuchenden Personen erhoben und eine Aufteilung bezüglich Geschlecht ergab folgende Tabelle: Weiblich Männlich Beschäftigt 553 857 Arbeitslos 45 36 Die Ereignisse A, B, W, M seien für zufällig ausgewählte Personen wie folgt definiert: A... die Person ist arbeitslos B... die Person ist beschäftigt W... die Person ist weiblich M... die Person ist männlich (a) Berechnen Sie die Wahrscheinlichkeiten für das Eintreten der jeweiligen Ereignisse. (b) Berechnen Sie p(a W ) und p(w A). Sind A und W unabhängig? (c) Geben Sie die Frauenarbeitslosigkeit als bedingte Wahrscheinlichkeit an. (d) In Ö1 wurde in einem Journal-Panorama über die Region Braunau der folgende Satz geäußert: Die Arbeitslosenrate liegt bei 8% und ist bei Frauen und Männern in etwa gleich, nämlich ca. 4%. Was ist an dieser Aussage vom statistischen Standpunkt aus ein Schwachsinn? 1

5. In einem Unternehmen wird ein Produkt an drei unterschiedlich alten Maschinen gefertigt; die alte Maschine I wird nur mehr bei Produktionsengpässen eingesetzt, die zweitälteste Maschine (II) wird noch regelmäßig eingesetzt, die neueste Maschine (III) ist aber schneller und verlässlicher. Dies kommt in der folgenden Übersicht zum Vorschein. Maschine Produktionsanteil (in %) Ausschussrate (in %) I 10 5 II 40 2 III 50 1 (a) Man bestimme die Ausschussrate der Produktion. (b) Mit welcher Wahrscheinlichkeit wurde ein defektes Stück an der alten Maschine produziert? 6. In einer Bevölkerung beträgt die Wahrscheinlichkeit, älter als 70 Jahre zu werden, 0.9 und die Wahrscheinlichkeit, älter als 80 zu werden, 0.4. Wie groß ist die Wahrscheinlichkeit, dass eine Person, die soeben 70 Jahre alt wurde, ihren 80. Geburtstag noch erlebt? 7. Eine Zeitschrift hat in Altersgruppen unterschiedliche Leseranteile, die in folgender Tabelle enthalten sind. Altersgruppe Bevölkerungsanteil (in %) Leseranteil (in %) 15-29 25 8 30-49 35 7 50 + 40 4 (a) Wie hoch ist der Leseranteil in der Gesamtbevölkerung? (b) Mit welcher Wahrscheinlichkeit stammt ein Leser der Zeitschrift aus der jüngsten Altersgruppe? 8. In einer Stadt werden Diebstähle von Fahrzeugen untersucht. In Abhängigkeit vom Fahrzeugtyp sind Daten zu Diebstahl und Aufklärungsrate in folgender Tabelle enthalten. Fahrzeug Anteil an Aufklärungs- Diebstählen (in %) rate (in %) Auto (incl. LKW) 25 18 Motorrad, Mofa 10 27 Fahrrad 65 9 (a) Wie hoch ist die Aufklärungsrate insgesamt bei Fahrzeugdiebstählen? (b) Eine Polizeistreife ertappt einen Dieb direkt beim Diebstahl eines Fahrzeugs. Mit welcher Wahrscheinlichkeit wollte der Dieb ein Auto stehlen? 9. In einem Zeitungsartikel lautete ein Zwischentitel: Jede vierte Frau ist Führungskraft. Welche zwei bedingten Wahrscheinlichkeiten wurden dabei wohl verwechselt? 10. Was wird in R nach dem letzten Befehl der jeweiligen Befehlssequenz angezeigt? (a) a <- c(2, 4, -6) b <- a**2 b (b) a <- -10:10 sum(a) (c) a <- 0:5 aa <- a*a aa[5] 2

2 Diskrete Zufallsvariablen und ihre Momente 1. Gegeben Sei eine diskrete Verteilung auf den Punkten 1,2,3 und 4. Die Wahrscheinlichkeiten der einzelnen Punkte sind p 1 = 0.1, p 2 = 0.5, p 3 = 0.15 und p 4 =?. (a) Berechnen und skizzieren Sie die (kumulative) Verteilungsfunktion! (b) Berechnen Sie Erwartungswert und Varianz! 2. Zwei Zufallsvariablen X 1 und X 2 folgen derselben Wahrscheinlichkeitsverteilung: x 1 2 3 F (x) 0.3 0.8 1 Es seien X 1 und X 2 unabhängig und X = X 1 + X 2. (a) Berechnen und skizzieren Sie die (kumulative) Verteilungsfunktion von X! (b) Berechnen Sie Erwartungswert und Varianz von X! 3. Ein Würfel wird zweimal geworfen, die Augenzahlen der beiden Würfe sind X 1 und X 2. Man bildet M = max(x 1, X 2 ). (a) Welche Werte kann M annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden und bestimmen Sie die Verteilungsfunktion von M! (b) Berechnen Sie den Erwartungswert von M! 4. In England und Amerika wurde auf Jahrmärkten das folgende Glücksspiel (Chuck a luck) gerne gespielt: Ein Spieler wählt eine Zahl zwischen 1 und 6 und wirft dann drei Würfel. Zeigen alle drei Würfel die angesagte Zahl, erhält er drei Pfund (bzw. Dollar); zeigen zwei Würfel diese Zahl, erhält er zwei Pfund (Dollar); zeigt ein Würfel diese Zahl, erhält er ein Pfund (Dollar). Nur wenn kein Würfel diese Zahl anzeigt, muss der Spieler ein Pfund zahlen. (a) Der Gewinn des Spielers ist eine Zufallsvariable G. Welche Werte kann G annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden und bestimmen Sie die Verteilungsfunktion von G! (b) Berechnen Sie den erwarteten Gewinn des Spielers! 5. Eine Münze wird dreimal geworfen. X ist die Zufallsvariable dafür, wie oft Kopf gefallen ist. Beschreiben Sie X durch die Verteilungsfunktion und passende Kennzahlen! 6. In einem neu eröffneten Einkaufszentrum wird als Attraktion folgendes Glücksspiel veranstaltet: Zu jeder vollen Stunde (täglich von 11 bis 18 Uhr, also 8-mal) wird am zentralen Platz des Einkaufszentrums eine Person zufällig ausgewählt, die ein Glücksrad (mit den Zahlen 1 bis 10) drehen kann. Jede Zahl gewinnt einen Sachpreis, die 10 gewinnt zusätzlich 500 Euro. (a) Sei X die Anzahl Spieler, die an einem Tag den Geldpreis gewinnen. Berechnen Sie Erwartungswert und Varianz von X! (b) Wie groß ist die Wahrscheinlichkeit, dass an einem Tag mindestens 2 Spieler einen Geldpreis gewinnen? (c) Sei Y die Summe Geldes, die an einem Tag von den Teilnehmern an diesem Spiel gewonnen wird. Berechnen Sie Erwartungswert und Varianz von Y! 7. Eine Würfel wird solange geworfen, bis eine Augenzahl kleiner 3 erscheint. Es sei X die Anzahl der Fehlversuche, die bis zum Wurf einer Augenzahl kleiner 3 notwendig waren. (a) Welche Werte kann X annehmen? Berechnen Sie die Wahrscheinlichkeit dafür, dass mindestens 2 Fehlversuche auftreten! (b) Berechnen Sie E(X)! 3

8. Eine Münze wird solange geworfen, bis die Seite Kopf erscheint. Es sei X die Anzahl der Versuche, die notwendig sind, bis Kopf erscheint. (a) Welche Werte kann X annehmen? Berechnen Sie die Wahrscheinlichkeiten dafür, dass diese Werte angenommen werden! (b) Berechnen Sie E(X)! 9. Für eine binomialverteilte Zufallsvariable X gilt: E(X) = 5 V ar(x) = 4. Welche Werte haben die Parameter n und p der Binomialverteilung? 10. Für eine Zufallsvariable X gelte: E(X) = 10 V ar(x) = 9. (a) Für welchen Wert von a in Y 1 = X a gilt: E(Y 1 ) = 0? (b) Für welchen Wert von b in Y 2 = X/b gilt: V ar(y 2 ) = 1? (c) Für welche Werte von a und b in Y = X a b gilt: E(Y ) = 0 und V ar(y ) = 1? 11. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) x <- 0:3 fx <- c( 1, 3, 3, 1)/8 Fx <- cumsum(fx) cbind( x, fx, Fx) EX <- sum(x*fx) EX (b) x <- seq(10, 40, 10) fx <- c( 0.4, 0.3, 0.2, 0.1) Fx <- cumsum(fx) cbind( x, fx, Fx) EX <- sum(x*fx) VarX <- sum(x**2*fx) - EX**2 (c) # 10 x wuerfeln n <- 10 p <- 1/6 k <- 0:n # anzahl 6er pk <- choose(n, k) * (p**k) * ((1-p)**(n-k)) (d) # 30 x muenzwurf n <- 30 p <- 1/2 k <- 0:n # anzahl kopf pk <- dbinom( k, n, p) barplot(pk) 4

3 Asymptotik und stetige Zufallsvariablen 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 Abbildung 1: Dichten und Verteilungen 1. X sei gleichverteilt auf dem Intervall [0, 7]. Berechnen Sie: (a) p(x < 1) (b) p(x > 6) (c) p(x 5) (d) p(x 3) 2. Eine Münze wird 100-mal geworfen. X ist die Zufallsvariable dafür, wie oft Kopf gefallen ist. (a) Welcher Verteilung folgt X? Berechnen Sie E(X) und V ar(x). (b) Was kann nach der Tschebyscheff Ungleichung für den folgenden Ausdruck abgeleitet werden? p( X 50 > 10) (c) Welcher Wert gilt exakt für den obigen Ausdruck? (d) Was kann nach der Tschebyscheff Ungleichung zu folgender Frage gesagt werden? Mit welcher Wahrscheinlichkeit werden mindestens 35 aber höchstens 65 Köpfe geworfen? 3. In Abbildung 1 sind oben Dichtefunktionen und unten Verteilungsfunktionen abgebildet, nicht notwendig direkt untereinander. Ordnen Sie Dichte- und Verteilungsfunktionen richtig zu. 4. In Abbildung 2 sind die Dichtefunktionen von Normalverteilungen abgebildet. Ihre Varianzen sind entweder 1 oder 4. Geben Sie jeweils die Parameter µ und σ für die drei Plots an! 5. In Abbildung 3 sind die Dichtefunktionen von Exponentialverteilungen abgebildet. Ihre Parameter sind 1, 1/2 und 1/3. Geben Sie jeweils die Parameter für die drei Plots an! 5

Dichte 1 Dichte 2 Dichte 3 4 2 0 2 4 4 2 0 2 4 4 2 0 2 4 Abbildung 2: Normalverteilungen Dichte 1 Dichte 2 Dichte 3 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 Abbildung 3: Exponentialverteilungen 6

6. Die Dichtefunktion f einer Zufallsvariablen X ist durch 0 : x < 0 f(x) = ax : 0 x 4 0 : x > 4 gegeben. (a) Bestimmen Sie a so, dass f tatsächlich eine Dichtefunktion ist! (b) p(x 3) (c) p(x > 6) (d) p(1 X < 3) (e) Berechnen Sie den E(X)! Plot 1 Plot 2 Plot 3 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0 5 10 15 0 5 10 15 0 5 10 15 Abbildung 4: Chi-Quadrat-Verteilungen 7. Abbildung 4 zeigt die Dichtefunktionen für χ 2 -Verteilungen mit 3, 5 und 7 Freiheitsgraden. (a) Welcher Plot gehört zu welcher χ 2 -Verteilung? (b) Wie groß sind die jeweiligen Erwartungswerte und Varianzen? (c) Bei wieviel Freiheitsgraden ist die Varianz kleiner als der Erwartungswert? 8. Von einer Chi-Quadrat-verteilten Zufallsvariablen X ist bekannt, dass E(X 2 ) = 80. Bestimmen Sie die Freiheitsgrade von X! 9. Abbildung 5 zeigt die Dichtefunktionen für t-verteilungen mit 3, 5 und 10 Freiheitsgraden. (a) Welcher Plot gehört zu welcher t-verteilung? (b) Wie groß sind die jeweiligen Erwartungswerte und Varianzen? (c) Bei wieviel Freiheitsgraden ist die Varianz <1? 10. Der Intelligenzquotient IQ in der Bevölkerung ist normalverteilt mit µ = 100 und σ = 10, also IQ N(100, 100). (a) Mit welcher Wahrscheinlichkeit liegt der IQ einer zufällig ausgewählten Person über 110? (b) Wie ist IQ s = (IQ 100)/10 verteilt? (c) Wie ist die Summe von zwei zufällig ausgewählten Personen verteilt? (d) Wie ist der mittlere IQ von 4 zufällig ausgewählten Personen verteilt? Mit welcher Wahrscheinlichkeit liegt dieser mittlere IQ über 110? 7

Plot 1 Plot 2 Plot 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3 3 2 1 0 1 2 3 Abbildung 5: t-verteilungen (e) Wie ist der mittlere IQ von 25 zufällig ausgewählten Personen verteilt? Mit welcher Wahrscheinlichkeit liegt dieser mittlere IQ über 110? 11. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Standardnormalverteilung N(0,1) x <- seq(0, 3, 0.1) Fx <- pnorm(x) cbind( x, Fx) (b) Normalverteilung N(mu, sigma**2) mu <- 10 sigma <- 3 x <- seq(0, 3, 0.1) Fx <- pnorm(x, mean=mu, sd=sigma) cbind( x, Fx) (c) Normalverteilung N(mu, sigma**2) mu <- 100 sigma <- 10 x <- seq(0, 1, 0.1) Qx <- qnorm(x, mean=mu, sd=sigma) cbind( x, Qx) (d) Exponentialverteilungen x <- seq(0, 3, 0.2) Ex1 <- pexp(x, rate=2) Ex2 <- pexp(x, rate=1/2) cbind( x, Ex1, Ex2) (e) IQ - Beispiel iq <- 110 piq110 <- 1 - pnorm(iq, mean = 100, sd = 10) 8

4 Schätzen 1. Gegeben ist die gemeinsame Wahrscheinlichkeitsfunktion (Dichtefunktion) von zwei diskreten Zufallsvariablen X und Y : Y 1 2 3 X 1 1/24 2/24 3/24 2 2/24 4/24 6/24 3 1/24 2/24 3/24 (a) Bestimmen Sie die gemeinsame Verteilungsfunktion! (b) Bestimmen Sie die eindimensionalen Randverteilungen, also auch die Wahrscheinlichkeitsfunktionen von X und Y! (c) Sind X und Y unabhängig? (d) Bestimmen Sie die Kovarianz von X und Y! 2. Gegeben ist die gemeinsame Wahrscheinlichkeitsfunktion (Dichtefunktion) von zwei diskreten Zufallsvariablen X und Y : Y 1 2 3 X 1 0.2 0 0.1 2 0.1 0.1 0.1 3 0 0.2 0.2 (a) Bestimmen Sie die gemeinsame Verteilungsfunktion! (b) Bestimmen Sie die eindimensionalen Randverteilungen, also auch die Wahrscheinlichkeitsfunktionen von X und Y! (c) Sind X und Y unabhängig? 3. Von zwei Zufallsvariablen X und Y sind die Varianzen mit V ar(x) = 4 und V ar(y ) = 6 gegeben. Weiters ist V ar(x + Y ) = 14 bekannt. Wie groß ist die Kovarianz σ XY? 4. Für die Renditen X 1 und X 2 von zwei Wertpapieren gelte: V ar(x 1 ) = 4 V ar(x 2 ) = 6 σ XY = 2 (a) Die einseitigen Veranlagungen (zu 100% auf eines der beiden Wertpapiere) P = 1X 1 + 0X 2 bzw. P = 0X 1 + 1X 2 führen zu Portfolios, deren Varianz V ar(p ) leicht zu bestimmen sind. (b) Wie groß ist die Varianz von: P = 0.3X 1 + 0.7X 2? (c) Spezialaufgabe: Wie wäre die Aufteilung zwischen X 1 und X 2 in einem Portfolio mit minimaler Varianz? Also α so, dass P = αx 1 + (1 α)x 2 mit V ar(p ) min. 5. Von einer Zufallsvariablen X wissen wir: X Exp(τ) E(X) = 2 (a) Welchen Wert nimmt τ an? (b) Wie groß ist V ar(x)? 9

(c) Die Verteilungsfunktion einer exponentialverteilten Zufallsvariablen kann mit F (x) = 1 e x/τ angegeben werden. Wie groß ist der Median von X? 6. In Abbildung 6 sind Verteilungsfunktionen abgebildet. Bestimmen Sie jeweils grafisch den Median! Verteilung 1 Verteilung 2 Verteilung 3 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 1 0 1 2 3 4 5 70 80 90 100 110 120 130 Abbildung 6: Verteilungsfunktionen 10

5 Testen 1. Die Morde in New Jersey im Jahr 2003 nach Wochentagen aufgegeliedert, gibt die folgende Tabelle wieder: So Mo Di Mi Do Fr Sa 53 42 51 45 36 37 65 Man führe einen Test durch, ob für Morde jeder Wochentag gleich wahrscheinlich ist. 2. An einem Department werden Prüfungsmodalitäten geändert. Die Vertretung der Studierenden erhebt bei einigen Prüfungen die erreichten Noten und kommt zu folgender Verteilung: Noten 1 2-4 5 frühere Anteile (in %) 15 60 25 Stichprobe (absolut) 4 31 5 Hat sich durch die neuen Prüfungsmodalitäten eine Veränderung in der Notenverteilung ergeben? 3. In regelmäßigen Abständen tauchen Ergebnisse von Meinungsumfragen zur sog. Sonntagsfrage auf. Im hypothetischen Land Demokrastan hat eine Meinungsumfrage (n = 500) vier Wochen vor der Wahl folgendes Ergebnis gebracht: Partei absolut letzte Wahl (%) AP 220 40 BP 140 30 CP 95 20 DP 45 10 (a) Kann man auf eine Veränderung in der Parteipräferenz schließen? (b) Wird man auf eine Veränderung bei der Partei CP schließen? 4. Eine Sportwissenschaftlerin untersucht die Laufwege von Fußballspielern. Bei sechs Außenverteidigern beobachtete sie in sechs Spielen der nationalen Meisterschft folgende Laufstrecken (in km): 13 12 14 10 11 12 (a) Bestimmen Sie Mittelwert und Standardabweichung in der Stichprobe! (b) Kann man aufgrund der Stichprobe schließen, dass die durchschnittliche Laufleistung von Außenverteidigern über 11km liegt? 5. Was kann man aus dem folgenden R-Output ablesen? One Sample t-test data: laufl t = 1.7321, df = 5, p-value = 0.07191 alternative hypothesis: true mean is greater than 11 95 percent confidence interval: 10.83661 Inf sample estimates: mean of x 12 6. Die Log-Returns einer Aktie sind über einen längeren Zeitraum betrachtet durchschnittlich x = 0.022, die Standardabweichung ist s = 0.019 (n = 77). (a) Kann man aufgrund der Stichprobe schließen, dass die Log-Returns positiv sind? (b) Kann man aufgrund der Stichprobe schließen, dass im Durchschnitt die Log-Returns über 2% sind? 11

7. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Morde in New Jersey morde <- c(53, 42, 51, 45, 36, 37, 65) chisq.test(morde) (b) Sonntagsfrage umfrage <- c(240, 120, 95, 45) zuletzt <- c(0.4, 0.3, 0.2, 0.1) chisq.test(umfrage, p = zuletzt) (c) Laufleistungen laufl <- c(13, 12, 14, 10, 11, 12) lauflmw <- mean(laufl) lauflsd <- sd(laufl) testst <- sqrt(6)*(lauflmw - 11) / lauflsd pwert <- 1 - pt(testst, df=5) (d) Laufleistungen Kurzversion laufl <- c(13, 12, 14, 10, 11, 12) t.test(laufl, mu=11, alternative="greater") 12

6 Regression In den folgenden Beispielen wird angenommen, dass die Fehler U 1,..., U n i.i.d. mit Erwartungswert 0 und Varianz σ 2 > 0 sind. Weiters nehmen wir an, dass X t nicht zufällig sind, dass X t 0 für ein t = 1,..., n und dass X t X s für mindestens ein Paar t s gilt. 1. Betrachten Sie das lineare Regressionsmodell Y t = a + U t, t = 1,..., n. (a) Bestimmen Sie den Kleinst-Quadrate Schätzer für a. (b) Ist der Kleinst-Quadrate Schätzer unverzerrt? 2. Betrachten Sie das homogene lineare Regressionsmodell Y t = bx t + U t, t = 1,..., n. (a) Bestimmen Sie den Kleinst-Quadrate Schätzer für b. (b) Ist der Kleinst-Quadrate Schätzer unverzerrt? 3. Von einem einfachen Regressionsmodell kennen wir: erklärende Var x 2-3 0 w abhängige Var y???? Residuen e -1 v 1 1 Man bestimme v und w! 4. In einem Regressionsmodell Y t = a + b t + c t 3 + u t für t = 1, 2,..., 16 seien U i iid mit U i N(0, 9). Unter H 0 : b = c = 0 ist die Teststatistik des F-Tests F (r, s). Man bestimme r und s! 5. Betrachten Sie das lineare Regressionsmodell Y t = a + bx t + U t t = 1,..., 6. Gegeben seien die folgenden Daten: x: 1 2 3 4 5 6 y: 2 1 4 3 6 5 (a) Erstellen Sie ein Streudiagramm (x-y-diagramm)! (b) Berechnen Sie die Kleinst-Quadrate-Schätzer â und ˆb! (c) Veranschaulichen Sie die Einpassung der Regressionsgeraden im Streudiagramm! (d) Ermitteln und interpretieren Sie die Stichprobenkorrelation r x,y. 6. Wir nehmen das Beispiel von vorhin und verändern X t und Y t leicht. (a) Welchen Effekt für â und ˆb hätte eine Addition von 10 bei Y t? (b) Welchen Effekt hätte diese Addition für r x,y? (c) Welchen Effekt für â und ˆb hätte eine Multiplikation mit 5 bei Y t? (d) Welchen Effekt hätte diese Multiplikation für r x,y? (e) Welchen Effekt für â und ˆb hätte eine Addition von 2 bei X t. (f) Welchen Effekt hätte diese Addition für r x,y? (g) Welchen Effekt für â und ˆb hätte eine Multiplikation mit 4 bei X t? (h) Welchen Effekt hätte diese Multiplikation für r x,y? 13

7. Was bewirken jeweils die folgenden R - Befehlssequenzen? (a) Ausgangsbeispiel x <- 1:6 y <- c(2, 1, 4, 3, 6, 5) yx <- lm(y~x) summary(yx) plot(x,y) abline(yx) (b) Transformationen y + 10 y10 <- y + 10 y10x <- lm(y10~x) summary(y10x) (c) Transformationen y * 5 y5 <- y * 5 y5x <- lm(y5~x) summary(y5x) (d) Transformationen x + 2 x2 <- x + 2 yx2 <- lm(y~x2) summary(yx2) (e) Transformationen x * 4 x4 <- x * 4 yx4 <- lm(y~x4) summary(yx4) 14