An insight into downstream developments: Energy efficiency in gas heating appliances

Ähnliche Dokumente
The Solar Revolution New Ways for Climate Protection with Solar Electricity

Integration of Wind into Future Energy Systems

GIS-based Mapping Tool for Urban Energy Demand

Bosch Thermotechnik. Thermotechnology

Internationale Energiewirtschaftstagung TU Wien 2015

Energieeffizienz im internationalen Vergleich

Connecting the dots on Germany s Energiewende and its impact on European energy policy

Energy efficiency in buildings and districts Key technologies within a case study of the Young Cities Project, Iran

Querschnittstechnologien inkl. Geothermie F&E Schwerpunkte und deren Implementierungsstrategie

Measures to Reduce Fuel GHG Emissions. Christoph Bender Managing Director Mineralölwirtschaftsverband

Welcome to Düsseldorf

Role of photovoltaics in the future energy mix: What comes after the current regulations?

Innovative Energy Systems

Ein- und Zweifamilienhäuser Family homes

Bosch Power Tec Clean Energy Week Energy Storage

DKE Jahrestagung Frankfurt, 4. Dezember 2000

Possible Contributions to Subtask B Quality Procedure

Sustainable Mobility: Analyzing the Supply Chain for TUM s Electric Vehicle MUTE

Energieeffizienz und Erneuerbare Energien Programme der EZ -- ein Zwischenstand

The way forward. Policy and Development of Renewable Energies in Germany. Martin SCHÖPE

Pilot Project Biogas-powered Micro-gas-turbine

Council on Tall Buildings. and Urban Habitat

How P2G plays a key role in energy storage. Jorgo Chatzimarkakis, Secretary General

Kosten und Strategien des Klimaschutzes

Dienstleistungen Services

STAHL Setting the course for tomorrow. Energy efficiency in steelmaking The blast furnace Fit for the future?

GrInHy Grüner Wasserstoff in der Stahlherstellung. Salzgitter, Simon Kroop

Intelligent heating in smart buildings

TOTAL DEUTSCHLAND GMBH WASSERSTOFF TANKSTELLEN. Agnès Baccelli Berlin,

Aluminium-air batteries: new materials and perspectives

The valence of flexible green electricity generation units DI Dr. Bernhard Stürmer University College of Agricultural and Environmental Pedagogy

Copyright by Max Weishaupt GmbH, D Schwendi

Biodiesel: A new Oildorado?

Handwerk Trades. Arbeitswelten / Working Environments. Green Technology for the Blue Planet Clean Energy from Solar and Windows

Holistic Modelling and Analysis of a Future German Energy System

Geothermal power generation by GEOCAL

-weishaupt- November 12, Wolf Point Ballroom 350 W. Mart Center Drive, Chicago, IL. Christoph Petri. Technical Sales, Chicago-Area

Solar Air Conditioning -

RENEWABLE ENERGIES IN ENERGY SCENARIOS FOR GERMANY

Smart Cities. Herausforderungen für Energiestädte? Reinhard Jank Volkswohnung GmbH Karlsruhe. Winterthur, 16. November 2012

Solar Energy for Process Heat: Workshop report from the Sol-Ind Swiss project

Die zukünftige Rolle von Kohle im internationalen Energiemix International Market Realities vs. Climate Protection?

Integrating storages in energy regions and local communities a range of storage capacities

2 Grad globale Erwärmung: Was bedeutet das für unser Klima?

ELEKTRISCHE UND THERMISCHE ENERGIESPEICHER IM SMART GRID

Biogas technologies in Germany - Feedstocks and Technology -

Simulation of a Battery Electric Vehicle

Pump Storage Requirements and Comparison with other Technologies

The Demand for Environmental Information: Why Do We Rely on Life Cycle Assessment Data?

Update drive system technologies in modern public traffic

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCIL - COM(2014)520 final. Grundlageninformation zu

Ökoenthusiasmus oder lukrativer Nebenverdienst? Wirtschaftlichkeit der Mikro-KWK. Berliner Energietage, 17. Mai 2004 Lambert Schneider

Erste Niedersächsische Energietage in Hannover 31. Oktober November 2007

Geistes-, Natur-, Sozial- und Technikwissenschaften gemeinsam unter einem Dach. Programmes for refugees at Bielefeld University

Holistic modeling and analysis of a future German energy system Integration of renewables and energy efficiency solutions

Das wievielte Mal nehmen Sie an den World Sustainable Energy Days teil? How often have you participated in the World Sustainable Energy Days?

Erneuerbare Energieversorgung in Gundelfingen

Die Energiewende: Status quo und zukünftige Entwicklungen

AG Energiebilanzen, ENTSO-E, BDEW & Co.

Geode LINKING THE GAS, ELECTRICITY AND HEATING GRIDS: CHP. Dr. Götz Brühl. Br

NOVARTIS CAMPUS a VISION

Produzierendes Gewerbe Industrial production

Low Carbon energy intensive industries

Energy R&D Public Expenditure in Austria 2011

The Integration of Renewable Energy Sources Into the Distribution Grid

Renewable Energies: Dipl.-Ing. Armin Raatz. CEO MUT-Engineering, Kassel. Renewable energies: take chances

Waste Management in the EU

Future market penetration of electric cars, and implications on recycling rates of batteries and on electric mobility power mix

ROLE OF BIOENERGY AND LCMW UTILIZATION IN THE EU COUNTRIES AND REGIONS

rsoc plant Efficient design and operation behavior

Chemical heat storage using Na-leach

CO 2 -Reduktion in der Industrie: Grüner Wasserstoff im Hüttenwerk

The German Energy Transformation: Long-term policy making and the role of LCA

Wolfgang Karl Göhner

Anforderungen des Klimaschutzes an die CO 2 -Sequestrierung

Perspektiven mit Stahl Perspectives with Steel. Efficient hot metal and steel production in Europe

Energy balance of the integrated route quo vadis?

:54:31. results WP2 and WP3. BUDI 4th meeting Lyon. LandesEnergieVerein Steiermark. Draft of the energy certificate

Fachgespräch Carbon Bubble

Wasserstoff aus Erneuerbaren Energien ermöglicht die sektorenübergreifende Energiewende

Dynamic Hybrid Simulation

Housing Policies for a Growing City

ETP RHC Basisdokumente. Biomasse F&E Schwerpunkte und deren Implementierungsstrategie 21/11/2013

MobiliTec Forum. Li-ion Batteries for Electrified Mobility - Quo vadis?

Status of Energy from. and Alternatives to Grate Incineration in EU. Meeting 2008

Distributional Effects of Energy Transition: Impacts of Renewable Electricity Support in Germany

Forschungsaktivitäten und Kooperationen der Internationalen Energieagentur mit österreichischer Beteiligung Martina Ammer, 6.

CHP Market in Germany

Europäische Strategie für die Wärmewende: Status und Ausblick. Federica Sabbati Secretary General European Heating Industry

Pushing ahead with climate protection and the move towards green energy

ERNEUERBARE ENERGIEN - WIE WEIT IST DIE ENERGIEWENDE?

LI-ION BATTERIES FOR NEXT GENERATION EV

Integration of a CO 2 separation process in a coal fired power plant

GfK INSIGHT SUMMIT Herzlich Willkommen! Be Connected: Mit innovativen Ansätzen den vernetzten Konsumenten erreichen.

BAYNES HYDROPOWER SCHEME ON THE LOWER CUNENE. June 2009

Concepts for cities in times of climate change

Leading the innovation in the traditional field of Constructions. C. Chiti, Technical Director Knauf Italy

RTA Climatic-Wind-Tunnel Vienna

SCHLAUE LÖSUNGEN FÜR IHRE ANWENDUNGEN SMART SOLUTIONS FOR YOUR APPLICATIONS

Global climate protection in Stuttgart. - mitigation and adaptation -

Transkript:

An insight into downstream developments: Energy efficiency in gas heating appliances Werner Weßing, Head of Efficient Home and Building Technology Kraków, 24/25 May 2012

Contents 1. Requirements on the global energy market 2. Target in Europe: Increase share of renewable energies 3. Environmental targets in Germany 4. Market structure in Germany 5. Research subjects at E.ON Ruhrgas 6. Intercomparison of appliance technologies 7. Conclusion 2

Static lifetime in years Reichweite in Jahren Temperature deviation (relative to 1961-90) in K Global Unit Gas 1. Requirements on the global energy market CO2 reductions Primary energy reductions (e.g. improved thermal insulation) Increase in renewable energy use (e.g. appliances, biomethane, hydrogen) Predicted long-term rise in global temperatures caused by increasing levels of carbon emissions 1600 1400 1444 Reserve Reserve + Ressource 1200 1000 800 763 600 400 391 200 209 62 69 62 157 0 Kernbrennstoffe Nuclear fuels Kohle Coal Natural Erdgas gas Erdöl Oil Static lifetime of (global) conventional energy sources Global warming according to IPCC scenario A1B: 2046-2065, Source: IPCC Source: BGR / EWI / Prognos 3

2. Target in Europe: Increase share of renewable energies Source: IE Leipzig Share of energy from renewable sources in gross final energy consumption in 2008 and targets for 2020 4

3. Political requirements in Germany 100% 80% 2020 2030 2040 2050 60% 40% 20% 20% 18% 40% 30% 55% 45% 70% 50% 60% 80% 0% Phase 1 Phase 2 Phase 3 Phase 4 Reduzierung Reduction in des primary Primärenergieverbrauchs energy consumption (Bezugsjahr (relative to 2008 2008) levels) Bruttoendenergieverbrauch, Gross final energy consumption (renewable share) erneuerbarer Anteil CO2-Reduzierung reduction (Bezugsjahr (rel.to 1990 level) 1990) For the heat market in Germany (buildings and technology) from 2010 to 2050: total capital expenditure ~ 2,200 billion capital expenditure per year: 55 billion 5

Willingness to pay Global Unit Gas 4. 'New' customer groups Differentiated offers required Today Many different groups with very individual requests Lifestyle customers Ecologicallyminded customers Price-sensitive customers Yesterday Uniform group Personal commitment Source: SW Bonn Energie und Wasser 6

Anzahl [Stück] Quantity [units] Global Unit Gas 4. Building statistics Heat market is dominated by existing building stock 634 TWh 511 TWh Accumulated heating demand of new buildings until 2030: only 5%! existing buildings 2008 2030 Very old boilers 7.000.000 6.000.000 Source: Prof. Kleemann Total: 9.2 million boilers >14 years 5.000.000 4.000.000 3.000.000 2.000.000 33 and und over älter 32-29 28-22 21-14 1.000.000 Source: Chimney sweep statistics for 2009 (excl. condensing boiler systems) 0 11-25 25-50 50-100 >100 alle 7 Leistung Rating [kw]

5. "Appliance technology" responsibilities of the Gas Utilisation Department at E.ON Ruhrgas Applications & Renewables Local Power Generation Condensing type Gas & Solar GHP Initiative MicroCHP Fuel Cell Smart Home Appliance tests: Laboratory tests Field tests to determine energy efficiency aspects environmental aspects gas property aspects economic aspects 8

5. Gas heat pump field tests 66 test sites in total 9

5. Micro-CHP field tests 176 test sites in total 10

6. Intercomparison of appliance technologies (Standard appliances for single-family homes) Gas-fired condensing appliance Gas-fired condensing appliance plus solar Electric heat pump (air/water) Electric heat pump (brine/water) η th : 0,92-0,98 *) η th : 0,98 1,02 *) SPF: 2,2 2,9 ~ 2,65 SPF: 3,2 4,0 ~ 3,70 *) H I,n Images: Viessmann, Vaillant, Buderus; data: ITG Dresden 11

6. Intercomparison of appliance technologies (New appliances for single-family homes) Micro-CHP Micro-CHP Gas heat pump Gas heat pump Sterling combustion engine Adsorption, <10kW Absorption, <40kW Adsorption Desorption η th : 0,80 0,82 *) η th : 0,60 *) Viessmann η th : 1,20 1,50 *) Robur η e : 0,11 0,13 η e : 0,23 Images: Viessmann, Vaillant, Robur; data: ITG Dresden 12

CO2-Emissionen in kg CO2/a Global Unit Gas 6. Intercomparison of appliance technologies (Standard and new appliances for single-family homes) CO2 COemissions 2 -Emissionen in SFH im EFH building Bestand, stock 2010 in 2010 Energieträger Energy sources bei gasbetriebenen for gas-operated systems: Systemen: natural Erdgas, biomethane Bioerdgas (20% and und 100% share) Anteil) Erdgas 20% Bioerdgas 100% Bioerdgas 14.000 Minderung der CO 2 -Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050 Ausgangszustand Öl 12.000 10.000 8.000 Ausgangszustand Gas - 40% approx. 36% reduction 6.000-55% 4.000-40% - 55% - 70% - 80% 2.000-70% 0 Öl-/Gas- Altkessel GBW GBWSOL GBWSOL,HMikro-KWKMikro-KWKMikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7 η th =0,99 η th =1,08 η th =1,18 η th =0,80 η th =0,82 η th =0,60 JAZ=2,65 JAZ=3,70 η th =1,20 η th =1,30 η th =1,40 η th =1,50 η th =1,60 η th =1,70 η th =1,80 η el =0,11 η el =0,13 η el =0,23 System * ) Bilanziell negative CO 2 -Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch Source: ITG Dresden * ) - 80% 13

6. Intercomparison of appliance technologies (Standard and new appliances for single-family homes) Non-renewable primary energy demand in SFH building stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share) approx. 35% reduction Source: ITG Dresden 14

Anteil erneuerbarer Energien Global Unit Gas 6. Intercomparison of appliance technologies (Standard and new appliances for single-family homes) Share Anteil of erneuerbarer renewable energies Energien in im SFH EFH building Bestand stock Energy sources for gas-operated systems: natural gas, biomethane (20% and 100% share) Energieträger bei gasbetriebenen Systemen: Erdgas, Bioerdgas (20% und 100% Anteil) Erdgas 20% Bioerdgas 100 % Bioerdgas Entwicklung des Anteils erneuerbaren Energien bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine 80% bis 2020 bis 2030 bis 2040 bis 2050 70% 60% 60% 50% 40% 45% 30% 30% 20% 18% 10% 0% GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7 η th =0,99 η th =1,08 η th =1,18 η th =0,80 η th =0,82 η th =0,60 JAZ=2,65 JAZ=3,70 η th =1,20 η th =1,30 η th =1,40 η th =1,50 η th =1,60 η th =1,70 η th =1,80 η el =0,11 η el =0,13 η el =0,23 System Source: ITG Dresden 15

CO2-Emissionen in kg CO2/a Global Unit Gas 6. Intercomparison of appliance technologies (Standard and new appliances for single-family homes) CO2 COemissions 2 -Emissionen in SFH im EFH building Bestand, stock 2020 in 2020 Energieträger Energy sources bei gasbetriebenen for gas-operated systems: Systemen: natural Erdgas, biomethane Bioerdgas (20% and und 100% share) Anteil) Erdgas 20% Bioerdgas 100% Bioerdgas 14.000 Ausgangszustand Öl Minderung der CO 2 -Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050 12.000 10.000 8.000 Ausgangszustand Gas - 40% approx. 46% reduction 6.000-55% 4.000-40% - 55% - 70% - 80% 2.000-70% 0 Öl-/Gas- Altkessel GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7 η th =0,99 η th =1,08 η th =1,18 η th =0,80 η th =0,65 JAZ=2,80 JAZ=3,90 η th =1,20 η th =1,30 η th =1,40 η th =1,50 η th =1,60 η th =1,70 η th =1,80 η el =0,15 η el =0,25 System * ) Bilanziell negative CO 2 -Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch Source: ITG Dresden * ) * ) - 80% 16

CO2-Emissionen in kg CO2/a Global Unit Gas 6. Intercomparison of appliance technologies (Standard and new appliances for single-family homes) CO2 COemissions 2 -Emissionen in SFH im EFH building Bestand, stock 2030 in 2030 Energieträger Energy sources bei gasbetriebenen for gas-operated systems: Systemen: natural Erdgas, biomethane Bioerdgas (20% and und 100% share) Anteil) Erdgas 20% Bioerdgas 100% Bioerdgas 14.000 Ausgangszustand Öl Minderung der CO 2 -Emissionen bis 2050 entsprechend dem Enrgiekonzept der Bundesregierung, Zeitschine Ausgangszustand bis 2020 bis 2030 bis 2040 bis 2050 12.000 10.000 8.000 Ausgangszustand Gas - 40% Increased biomethane share required to reach target 6.000-55% 4.000-40% - 55% - 70% - 80% 2.000-70% 0 Öl-/Gas- Altkessel GBW GBWSOL GBWSOL,H Mikro-KWK Mikro-KWK L/W-EWP S/W-EWP GWP 1 GWP 2 GWP 3 GWP 4 GWP 5 GWP 6 GWP 7 η th =0,99 η th =1,08 η th =1,18 η th =0,80 η th =0,65 JAZ=3,00 JAZ=4,10 η th =1,20 η th =1,30 η th =1,40 η th =1,50 η th =1,60 η th =1,70 η th =1,80 η el =0,15 η el =0,25 System * ) Bilanziell negative CO 2 -Emissionen, da Gutschrift für Stromerzeugung größer als Emissionen durch Biogasverbrauch Source: ITG Dresden * ) - 80% 17

6. Intercomparison of appliance technologies (only gas ) (Standard and new appliances for single-family homes) Gas-fired condensing boiler +Low investment costs +Low total annual costs +Final and primary energy savings in comparison to old boiler - No integration of renewables if operated with natural gas Source: ITG Dresden Gas-fired condensing boiler + solar thermal energy +Tangible share of renewables +Higher final and primary energy savings in comparison to old boiler - Higher investment costs than for gas-fired condensing boiler - Higher total annual costs than for gas-fired condensing boiler Micro-CHP system +Credit for the electricity generated +Considerable primary energy savings in comparison to old boiler - Ecological benefits to become smaller with expected change of electricity generation structures - Higher investment costs than for gas-fired condensing systems - Higher total annual costs than for gas-fired condensing systems - No integration of renewable energies if operated with natural gas Gas heat pump +High share of renewable energies +Higher final and primary energy savings in comparison to old boiler +Lowest CO2 emission levels +Economic efficiency expected to improve for increasing levels of utilisation - Investment costs still high - Market presence currently low - Further technical improvements required 18

7. Conclusion New gas technologies (micro-chp, gas heat pumps) are about to come into the market in Germany on a major scale. These technologies meet environmental requirements in the long term. Compared with the current state of the art, some further technical developments and a reduction in capital expenditure are required and achievable. 19

Ökologische Bewertung von GWP (CO2-Emissionsfaktoren) Kohlendioxidemissionsfaktoren in kg CO 2 /kwh Energieträger 2010 2020 2030 Mittlerer CO 2 - Emissionsfaktor über 20 Jahre Strom 0,573 0,505 0,338 0,456 Erdgas 0,226 0,226 0,226 0,226 Bioerdgas, 100% Biogas 0,073 0,050 0,050 0,062 Bioerdgas, 20% Biogas 0,195 0,191 0,191 0,191 Bioerdgas, 25% Biogas 0,188 0,182 0,182 0,185 20