Stochastische Prozesse

Ähnliche Dokumente
Stochastische Prozesse

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Grundlagen der Mathematik I Lösungsvorschlag zum 12. Tutoriumsblatt

6. Übung zur Linearen Algebra II

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

4. Musterlösung. Problem 1: Kreuzende Schnitte **

Elemente der Mathematik - Sommer 2016

Bedingte Entropie. Bedingte Entropie. Bedingte Entropie. Kapitel 4: Bedingte Entropie I(X;Y) H(X Y) H(Y) H(X) H(XY)

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Netzwerkstrukturen. Entfernung in Kilometer:

3. Lineare Algebra (Teil 2)

Definition des linearen Korrelationskoeffizienten

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

18. Dynamisches Programmieren

1 Finanzmathematik. 1.1 Das Modell. Sei Xt

4.6 Das Pumping-Lemma für reguläre Sprachen:

Informatik II. Minimalpolynome und Implikanten. Minimalpolynome. Minimalpolynome. Rainer Schrader. 27. Oktober Was bisher geschah: Definition

Prof. Dr. P. Kischka WS 2012/13 Lehrstuhl für Wirtschafts- und Sozialstatistik. Klausur Statistische Inferenz

2 Zufallsvariable und Verteilungen

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

8. MARKOVKETTEN 127. Abbildung 8.1: Reduzible und periodische Markovkette. p ji IIP[X n 1 = j] = [(IIP[X n 1 = j]) j E P ] i. j=0

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

Diskrete Mathematik 1 WS 2008/09

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Spiele und Codes. Rafael Mechtel

-70- Anhang: -Lineare Regression-

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Erwartungswert, Varianz, Standardabweichung

1 Definition und Grundbegriffe

Musterlösung zu Übung 4

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Weitere NP-vollständige Probleme

Übung zu Erwartungswert und Standardabweichung

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Lineare Optimierung Dualität

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Die Transzendenz der Eulerschen Zahl e

Grundbildung Lineare Algebra und Analytische Geometrie (LPSI/LS-M2) SoSe C. Curilla/ B. Janssens

Versicherungstechnischer Umgang mit Risiko

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

6. Modelle mit binären abhängigen Variablen

Standardnormalverteilung / z-transformation

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Zulassungsprüfung Stochastik,

1.Schularbeit 22.Okt A. A) Berechne ohne TI-92: Beachte: Für die Beispiele 1 und 2 sind alle notwendigen Rechenschritte anzugeben.

Nernstscher Verteilungssatz

1 Mehrdimensionale Analysis

Streuungs-, Schiefe und Wölbungsmaße

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

Grundgedanke der Regressionsanalyse

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

Gruppe. Lineare Block-Codes

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lösungen der Aufgaben zu Kapitel 2

Bemerkungen zum LCG Rupert Hartung,

Aufgabenkomplex 2: Umrechung von Einheiten, Ungleichungen, Komplexe Zahlen

Resultate / "states of nature" / mögliche Zustände / möglicheentwicklungen

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/ ω Additionstheorem: 2 sin 2 2

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

Online Algorithmen. k-server randomisiert Teil II

Transkript:

INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell) Seen n ener Urne zu Begnn r rote und s schwarze Kugeln. Es wrd jewels zufällg ene Kugel gezogen und danach de gezogene Kugel, c Kugeln derselben und d Kugeln der anderen Farbe zurückgelegt. Dabe seen c und d feste, ganze Zahlen mt c 1, d 0 und c+d 0. Es se R n bzw. S n de zufällge Anzahl der roten bzw. schwarzen Kugeln nach n Zehungen und X n := (R n, S n ), n N 0. a) Zegen Se, dass R n + S n r + s für alle n N 0 glt. b) Begründen Se, dass X := (X n ) n N0 ene homogene Markovkette st. Bestmmen Se dazu enen geegneten Zustandsraum E und ene geegnete Übergangswahrschenlchketsfunkton p bzw. Übergangsmatrx P von X. c) Bestmmen Se de wesentlchen und unwesentlchen Klassen n E bzgl. der Übergangsmatrx P. d) Se c = 1 und d = 1. Ist (R n ) n N0 ene Markovkette? Ist dese gegebenenfalls homogen? Welche Übergangsmatrx bestzt dann (R n ) n N0? e) Se jetzt c = 0 und d = 1. Ist (R n ) n N0 ene Markovkette? Ist dese gegebenenfalls homogen? Welche Übergangsmatrx bestzt dann (R n ) n N0? a) Snd vor der Zehung R n rote und S n schwarze Kugeln vorhanden, so snd nach der Zehung R n+1 = R n + c rote und S n+1 = S n + d schwarze Kugeln vorhanden, nsgesamt also R n+1 +S n+1 = R n +S n +c+d Kugeln, falls ene rote Kugel gezogen wrd, andernfalls R n+1 = R n + d rote und S n+1 = S n + c schwarze Kugeln, nsgesamt weder R n+1 + S n+1 = R n + S n + c + d Kugeln. Egal welche Kugel gezogen wrd, glt stets R n+1 + S n+1 = R n + S n + c + d R n + S n. b) R n und S n nehmen Werte n N 0 an (falls c 0 sogar nur n r, r+1,...} bzw. s, s+1,...). Ferner glt wegen a) R n + S n r + s. Geegnete Zustandsräume snd daher E := N 2 0 oder E := E r+s := (, j) N 2 0 : + j r + s}. Für den Fall c = 1 und d = 1 könnte man auch de endlche Menge E := (, j) N 2 0 : + j = r + s} wählen. (We her st der Zustandsraum E ener Markovkette n der Regel ncht endeutg festgelegt.) Wr

wählen her E = E r+s mt r + s 1. (Damt gehen wr dem Problem aus dem Weg, das Übergangsgesetz auch für (, j) = (0, 0) defneren zu müssen. Be der Modellerung von X gbt es mehrere Möglchketen. Enmal kann man we n [SI], Kap. 3 von gekoppelten Expermenten ausgehen (en recht mühsamer Weg), anderersets aber auch ene vernünftge Übergangsmatrx P vorgeben und Satz 2.22 anwenden. Wr wählen enen drtten Weg. Wr schleßen dabe den unnteressanten Fall c = d = 0, be dem sch der Zustand ne ändert, aus. Se U : E [0, 1) E defnert durch ( + c, j + d), falls y +j U((, j), y) :=, ( + d, j + c), falls y >. +j Bestzt de Zufallsvarable Y de Glechvertelung U(0, 1), so glt für (k, l) = ( + c, j + d), +j j P (,j)(k,l) := P(U((, j), Y ) = (k, l)) = für (k, l) = ( + d, j + c) und +j 0, sonst. Snd n der Urne aktuell rote und j schwarze Kugeln, so st gerade de Wahrschenlchket, ene rote und de Wahrschenlchket, ene schwarze Kugel zu +j zehen. j +j Ist (Y n ) n N ene Folge unabhängger, U(0, 1)-vertelter Zufallsvarable, so st wegen Satz 2.13 (X n ) n N0 mt X 0 := (r, s) und X n := U(X n 1, Y n ) ene homogene Markovkette mt Zustandsraum E und Übergangsmatrx P. c) Ist c = d = 0, so kommunzert jeder Zustand nur mt sch selbst. Es glt daher K((, j)) = (, j)} und alle dese Klassen snd wesentlch. Ist c = 1 und d = 1, so kommunzeren alle (, j) E m := (, j) E := + j = m} mt festem m r + s mtenander: (m, 0) (m 1, 1)... (0, m). Glt aber + j k + l, so glt weder (, j) (k, l) noch (k, l) (, j). Daher snd E r+s, E r+s+1,... de Klassen n E und alle dese Klassen snd wesentlch. In allen anderen Fällen glt c + d > 0 und daher glt für den Übergangsgraphen G P zu P mt Kantenmenge K, dass aus ((, j), (k, l)) K stets k + l > + j folgt. Heraus folgt, dass alle Klassen nur aus enem Element bestehen und dass dese Klassen unwesentlch snd. d) Ist c = 1 und d = 1, so glt stets R n + S n = r + s, also auch S n = r + s R n. Damt bestmmen sch R n und (R n, S n ) gegensetg endeutg. (R n ) n N0 st daher auch ene homogene Markovkette mt Zustandsraum 0,1,...,r+s} und Übergangsmatrx für k = 1, r+s P k = 1 für k = + 1, r+s 0, sonst. e) Se c = 0 und d = 1. De Gesamtzahl der Kugeln erhöht sch nach jeder Zehung um 1. Es glt daher R n + S n = r + s + n und damt S n = r + s + n R n. We n d) bestmmen sch endeutg, desmal be gegebener Stufe n, R n und (R n, S n ) gegensetg. Damt st auch (R n ) n N0 ene Markovkette. Dese st aber ncht homogen, da de Übergangswahrschenlchket P(R n+1 = R n = ) = r+s+n noch von n abhängt.

Aufgabe 8: Se X = (X n ) n N0 ene homogene Markovkette mt Zustandsraum E und Übergangsmatrx P und D E ene belebge, ncht leere Telmenge von E. se de Erstbesuchszet n D und für s E τ(ω) := τ D (ω) := nfn N 0 : X n (ω) D} h D s := P s (τ D < ) de Trefferwahrschenlchket, dass de Markovkette be Start n s jemals nach D gelangt. Zegen Se: a) Für de Trefferwahrschenlchketen glt ( ) h D 1, falls s D, s = k E P sk h D k, falls s D. b) Ist γ = (γ s ) s E R E + ene Lösung von ( ), d.h. γ s = 1 für s D und k E P sk γ k = γ s für s D, dann glt γ s h D s für alle s E. h D st also de klenste ncht negatve Lösung von ( ). a) Wegen τ D < } = X n D} und P s (X 0 = s) = 1 glt h D s = 1 für s D. Für s D glt dagegen P s (X 0 D) = 0 und damt ( ) h D s = P s X n D} = ( ) P s X n D} X 1 = k P s (X 1 = k) n=1 k E n=1 =P ( sk ) P k X j D} P sk = P sk h D k. k E Markovegenschaft = n=0 k E b) Für s D glt γ s = 1 = h D s und für s D glt für alle n N γ s = k 1 E P sk1 γ k1 = k 1 D P sk1 + k 1 D P sk1 γ k1 = P sk1 + + k 1 D k 1 D k 2 D k 1 D k 1 D P sk1 + k 1 D k 1 D P sk1 + k 1 D k 2 D + k 1,...,k n,k n+1 D j=0 γ k2 =... = k 2 D k 1,...,k n D,k n+1 D... P knkn+1 γ kn+1 0 k 2 D k 1,...,k n D,k n+1 D... P knk n+1... P knk n+1 = P s (X 1 D) + P s (X 1 D, X 2 D) P s (X 1 D,..., X n D, X n+1 D) = und damt auch γ s h D s. P s (τ D n + 1) P s (τ D < ) = h D s

Aufgabe 9: Se unter den Voraussetzungen von Aufgabe 8 für s E m D s := E s τ D de mttlere Erstbesuchszet n D. Zegen Se: a) Für de mttleren Erstbesuchszeten glt ( ) m D 0, falls s D, s = 1 + k D P sk m D k, falls s D. b) m D st de klenste ncht negatve Lösung des Glechungssystems ( ). a) Wegen P s (X 0 = s) = 1 glt P s (τ D = 0) = 1 und damt m D s = E s τ D = 0 für s D. Für s D hngegen glt P s (X 0 D) = 0 und damt τ D = 1 + nfn N 0 : X n+1 D} = 1 + τ D, =:τ D wobe τ D als Erstentrttszet n D für de homogene Markovkette (X n+1) n N0 nterpretert werden kann. Es glt daher m D s = E s τ D = 1 + E s τ D = 1 + = 1 + n= n=0 k E n= n=0 = 1 + k E n P s (τ D = n) n P s (τ D = n X 1 = k) P s (X 1 = k) =P sk n= P sk n=0 n P s (τ D = n X 1 = k) = 1 + k D P sk m D k, da man n ener Doppelsumme mt ncht negatven Summanden de Rehenfolge der Summaton vertauschen darf (Sonderfall des Satzes von Fubn). b) Se λ = (λ s ) s E mt 0 λ s ene wetere Lösung von ( ). Dann glt λ s = 0 = m D s für s D und für s D glt für alle n N λ s = 1 + P sk1 λ k1 = 1 + P sk1 + λ k2 =... = k 1 D k 1 D k 1 D k 2 D 1 + P sk1 +... P kn 1 k n k 1 D k 1 D k 2 D k 1,...,k n D +... P knkn+1 λ kn+1 1 + k 1 D P sk1 + k 1 D k 1,...,k n,k n+1 D 0 k 2 D k 1,...,k n D... P kn 1 k n 1 + P s (X 1 D) + P s (X 1 D, X 2 D) P s (X 1 D,..., X n D) = P s (τ D 1) + P s (τ D 2) P s (τ D n + 1),

also auch λ s P s (τ D n) n=1 = 1 P s (τ D = 1) + 2 P s (τ D = 2) P s (τ D = ) = E s τ D = m D s. Aufgabe 10: Peter und Paul werfen be enem Spelensatz von je 1 Euro ene (eventuell verfälschte) Münze solange, bs ener der beden Speler sen Anfangskaptal verloren hat. Der Gewnner erhält jewels den gesamten Spelensatz von 2 Euro. De Wahrschenlchket, dass Peter gewnnt, se n jedem Spel 0 < p < 1. Zu Begnn habe Peter 2 Euro und Paul 3 Euro. a) Beschreben Se den Spelverlauf mt Hlfe ener geegneten homogenen Markovkette. b) Berechnen Se n Abhänggket von p = 0.1, 0.2,..., 0.9 de Wahrschenlchket, dass Peter alles verlert. c) Berechnen Se mttlere Speldauer für de Fälle p = 0.1, 0.2,..., 0.9. a) En geegneter Zustand der Markovkette st das aktuelle Kaptal s von Peter. Möglche Werte snd 0, 1,..., 5, daher st E := 0, 1, 2, 3, 4, 5} en geegneter Zustandsraum. Se X n der zufällge Spelstand nach n Spelen. Nach Voraussetzung glt X 0 = 2. Se (Y n ) n N ene Folge unabhängger Zufallsvarable mt Werten n M := 1, 1} und mt P(Y n = 1) = p, also P(Y n = 1) = 1 p. Y n kann dann als zufällger Zugewnn von Peter nterpretert werden, solange das Spel noch ncht entscheden st. Setzt man k + m, falls 1 k 4, U(k, m) := k, falls k = 0 oder k = 5, so st durch X n := U(X n 1, Y n ), n N, gemäß Satz 2.13 ene geegnete homogene Markovkette mt Zustandsraum E und der Übergangsmatrx 1 0 0 0 0 0 1 p 0 p 0 0 0 P = 0 1 p 0 p 0 0 0 0 1 p 0 p 0 0 0 0 1 p 0 p 0 0 0 0 0 1 gegeben. Insbesondere glt P ss = 1 für s = 0 und für s = 5. Derartge Zustände heßen auch absorberend. b) Se D = 0}. Gesucht st de Wahrschenlchket h D s, dass de Markovkette be Start n s E jemals nach 0 gelangt, d.h. de Wahrschenlchket, dass (zumndest für s > 0) Peter alles verlert. Wegen Aufgabe 8 glt h D 0 = 1 und für s > 0 h D s = (P h D ) s, also wenn wr noch γ statt h D schreben, γ 1 = 1 p + pγ 2, γ 2 = (1 p)γ 1 + pγ 3, γ 3 = (1 p)γ 2 + pγ 4, γ 4 = (1 p)γ 3

wegen h D 5 = 0. Zu lösen st daher das lneare Glechungssystem 1 p 0 0 γ 1 1 p (1 p) 1 p 0 0 (1 p) 1 p γ 2 γ 3 = 0 0. 0 0 (1 p) 1 γ 4 0 Maple ergbt n Abhänggket von p de Lösung h D 2 = (1 p)(1 2p + 2p2 p 3 ) 1 3p + 4p 2 2p 3 + p 4 für de Wahrschenlchket, dass Peter alles verlert. Damt erhält man de gesuchten Wahrschenlchketen p h D 2 0.1 0.9986 0.2 0.9853 0.3 0.9348 0.4 0.8104 0.5 0.6000 0.6 0.3602 0.7 0.1717 0.8 0.0616 0.9 0.0123 c) Se jetzt D = 0, 5}. Be Errechen von D st das Spel entscheden. Gesucht st de mttlere Speldauer m D s, wenn Peter das Anfangskaptal s bestzt. Setzen wr λ := m D, so erfüllt nach Aufgabe 9 λ das lneare Glechungssystem 1 p 0 0 λ 1 1 (1 p) 1 p 0 1 Heraus ergbt sch spezell 0 (1 p) 1 p 0 0 (1 p) 1 m D 2 = λ 2 = Damt erhält man de gesuchten Dauern λ 2 λ 3 λ 4 2 2p + 4p 2 p 3 1 3p + 4p 2 2p 3 + p 4. p m D 2 0.1 2.4915 0.2 3.2111 0.3 4.1850 0.4 5.2607 0.5 6.0000 0.6 5.9953 0.7 5.3538 0.8 4.4868 0.9 3.6729 =. 1 1