Schriftliche Ausarbeitung des Referats

Ähnliche Dokumente
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Oberfläche von Körpern

Schrägbilder von Körpern Quader

Raum- und Flächenmessung bei Körpern

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Stereometrie. Rainer Hauser. Dezember 2010

Geometrie Modul 4b WS 2015/16 Mi HS 1

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie

Das Prisma ==================================================================

2. Die Satzgruppe des Pythagoras

Flächeninhalt, Volumen und Integral

1. Winkel (Kapitel 3)

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Alle Unterlagen finden Sie auch auf der Internetseite

9.3. Rotationsvolumina

UE Extremwertaufgaben 01

2.10. Aufgaben zu Körperberechnungen

Inhaltsverzeichnis. I Planimetrie.

Repetition Begriffe Geometrie. 14. Juni 2012

Stochastik. Kombinatorik. 1 n n! Man muss die Anzahl möglicher Anordnungen durch die Anzahl möglicher Anordnungen von (n-k) Objekte dividieren.

Themenerläuterung. Die wichtigsten benötigten Formeln

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)

1 Pyramide, Kegel und Kugel

Raumgeometrie - Zylinder, Kegel

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Mathematik Geometrie

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

suw m3 = abc. Quadervolumen: abh; Prismenvolumen 1/2abh = Gh.

Sekundarschulabschluss für Erwachsene

Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)

Integralrechnung und das Riemannintegral

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Zylinder, Kegel, Kugel, weitere Körper

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Die Definitionen des Rauminhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.

Sekundarschulabschluss für Erwachsene

Oktaeder. Bernhard Möller. 22. Dezember 2010

7 Anwendungen des Prinzips von Cavalieri in computergrafischer Darstellung

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Tag der Mathematik 2010

Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes

Didaktik der Elementargeometrie

Oberflächenberechnung bei Prisma und Pyramide

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Ein Quiz zur Wiederholung geometrischer Grundbegriffe. Ilse Gretenkord, Ahaus. Körper und ihre Eigenschaften Quizkarten

1 Grundwissen Pyramide

2.4A. Reguläre Polyeder (Platonische Körper)

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

3. Mathematikschulaufgabe

2. Strahlensätze Die Strahlensatzfiguren

Geometrie Stereometrie

Muster für den Schultest. Muster Nr. 1

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Minimalziele Mathematik

Beweis des Kugelvolumens und -oberfläche nach Archimedes

9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen

Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE

Wahlteil Geometrie/Stochastik B 1

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen der Übungsaufgaben III

Analysis: Extremwertaufgaben Analysis Übungsaufgaben zu Extremwertaufgaben (Optimierungsprobleme) Gymnasium J1

Schulinternes Curriculum im Fach Mathematik Hauptschule (Jahrgang 7-9) (zur Erprobung) Stand: 02/2016

Polyeder, Konvexität, Platonische und archimedische Körper

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Matur-/Abituraufgaben Analysis

Aufgaben zur Übung der Anwendung von GeoGebra

Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )

Dreieckskonstruktionen und Kongruenzsätze

Zylinder, Kegel und Kugel - Volumen und Oberfläche

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt

Brückenkurs Mathematik

Geometrische Körper Fragebogen zum Film - Lösung B1

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

Des Königs neues Zepter

Maturitätsprüfung Mathematik

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise. 4. Klasse. 1. Klasse. 3. Klasse. 5. Klasse. 2. Klasse

Trigonometrie und Planimetrie

Wenn wir in diesen Term für x = 2 einsetzen, entsteht eine Division durch Null!

MATHEMATIK. 1 Stundendotation. 2 Didaktische Hinweise G1 G2 G3 G4 G5 G6

EINFÜHRUNG IN DIE INTEGRALRECHNUNG

8.1 Vorstellen im Raum

Themenerläuterung. Die wichtigsten benötigten Formeln

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

Quadratische Funktionen

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Aufgaben zu Merkmalen und Eigenschaften von Körpern 1. 1 Allgemeine Merkmale vergleichen und beschreiben

Transkript:

Pädagogische Hochschule Ludwigsburg Jochen Weber/Sven Tittel 5. Semester /. Semester WS 00 / 00 Schriftliche Ausarbeitung des Referats im Rahmen des Fachdidaktischen Hauptseminars: Raumgeometrie und Funktionen unter der Leitung von Herrn Wölpert, Frau Vogel und Frau Bescherer. Referatsthema: Lernbereich / Fach: Satz von Cavalieri Mathematik Datum: 08.0.00 Zeit: vorgelegt von: 4.5 Uhr - 5.45 Uhr Sven Tittel und Jochen Weber

Inhalt. Kurzbiographie von Francesco Bonaventura Cavalieri...3. Vorstellung des Satzes von Cavalieri...3 3. Beweisführung...4 3. Anschauliche Begründung mit Hilfe von Bierdeckeln... 4 3. Anschauliche Begründung mit Computerprogramm Euklid... 4 3.3 Mathematischer Beweis am Beispiel Pyramide / Kegel... 5 4. Anwendungsbeispiele...8 4. Spezialfall: Berechnung des Volumens einer Pyramide... 8 4.. Vorbetrachtung... 8 4... Nach Zerlegung eines Würfels in 6 kongruente Pyramiden... 9 4..3. Nach Zerlegung eines dreiseitigen Prismas in 3 Pyramiden... 0 4.. Bestimmung des Kugelvolumens mit Hilfe des Satzes von Cavalieri...

. Kurzbiographie von Francesco Bonaventura Cavalieri Cavalieri wurde 598 in Mailand geboren. Er war ein italienischer Mathematiker und Astronom. Er war ein Schüler Galileis und Jesuit. Ab 69 war Cavalieri Professor in Bologna. 635 schrieb er sein Hauptwerk Geometria indivisiblibus continuorum nova quadam ratione promota, in dem er auch das Cavalierische Prinzip erläuterte. Das Cavalierische Prinzip war schon Archimedes bekannt, was sich in der Bestimmung des Kugelvolumens später zeigen wird. 63 beschäftigte sich der italienische Mathematiker mit der Inhaltsbestimmung des spärischen Dreiecks, 639 arbeitete er an der Flächenberechnung unter den höheren Parabeln. Am 30..647 starb Cavalieri in Bologna.. Vorstellung des Satzes von Cavalieri Stehen zwei Körper auf derselben Grundebene und schneidet jede dazu parallele Ebene beide Körper in flächeninhaltsgleichen Figuren, dann haben die beiden Körper gleiches Volumen. Zwei Körper sind demnach volumengleich, wenn sie folgende Bedingungen erfüllen:. die Grundflächen besitzen gleichen Inhalt und befinden sich in derselben Ebene. die Deckflächen haben ebenfalls gleichen Inhalt und liegen in der gleichen Ebene (d.h. die Körper sind höhengleich) 3. jede zur Grundebene parallele Ebene schneidet aus beiden Körpern inhaltsgleiche Flächen aus Frage: Was kann man daraus folgern? Die Körper müssen keine gleiche Form haben, entscheidend ist lediglich die Gleichheit der Flächeninhalte der Querschnitte in gleicher Höhe/ jeder Höhe.

3. Beweisführung 3. Anschauliche Begründung mit Hilfe von Bierdeckeln Aus runden Bierdeckeln werden zwei gleich hohe Kreiszylinderstapel gebaut. Da beide Stapel aus gleich vielen Bierdeckeln bestehen, haben sie gleiches Volumen. Man kann nun einen Kreiszylinderstapel verschieben. Es entsteht ein Körper, der immer noch dieselbe Höhe hat, wie der gerade Kreiszylinderstapel. Aufgrund des Satzes von Cavalieri hat der schiefe Körper immer noch gleiches Volumen, wie der Kreiszylinder. Diesen Sachverhalt kann man an diesem Beispiel auch mit bloßem Auge sehen, ohne das Prinzip von Cavalieri zu kennen. 3. Anschauliche Begründung mit Computerprogramm Euklid Mit Hilfe von Euklid, kann man auf anschauliche Weise das Prinzip von Cavalieri am Computer verdeutlichen. In der Konstruktion sind die Schnittebene sowie die Spitzen beider Körper verschiebbar. Des weiteren kann ein Berechnungsfeld eingeblendet werden, das den Flächeninhalt beider Schnittflächen ausgibt. Verschiebt man nun die Schnittebene wird ersichtlich, dass die Inhalte beider Schnittflächen immer gleich sind, auch wenn hierzu noch die Spitze einer Pyramide verschoben wird.

3.3 Mathematischer Beweis am Beispiel Pyramide / Kegel Der Satz von Dehn ( 90 ) besagt, dass zwei rauminhaltsgleiche Polyeder im Allgemeinen weder zerlegungs- noch ergänzungsgleich sind. Hieraus folgt, dass der Rauminhalt von Spitzkörpern in der Regel durch eine Intervallschachtelung bestimmt wird. Hierzu verwendet man umbeschriebene und einbeschriebene Treppenkörper aus Prismen oder Zylinder. Die Grundflächen der Treppenkörper sind ähnlich zur Grundfläche. Für ihren Flächeninhalt ergibt sich nach dem. Strahlensatz für k =,,...,n k * h Ak : AG = : h ² = n k² n²

Volumen V u der umbeschriebenen Treppenkörper ( n Stufen ): V = A h ² h ² h 3² h n² h * * + AG * * + AG * * +... + AG * * = AG * * * n ( ² + ² + 3² +... ² ) u G + Volumen Ve der einbeschriebenen Treppenkörper ( (n-) Stufen ) h ² Ve = AG * * h = AG * * * + A Das Volumen VPyr G h ² * * + A h * * n ( ² + ² + 3² +... + ( n )² ) G 3² +... + A n² G h ( n )² * * liegt zwischen dem Volumen V e der einbeschriebenen Treppenkörper und dem Volumen V u der umbeschriebenen Treppenkörper V e < V Pyr < V u. Betrachtet man nun den Grenzwert der Differenz lim ( Vu Ve ) = lim AG * h * = 0 n sieht man, dass eine Intervallschachtelung für das Volumen der Pyramide vorliegt. Über die Intervallschachtelung wird in der Schule die Integralrechnung eingeführt. Unter dem Integral versteht man also den Grenzwert der Unter- bzw. der Obersummen. Bevor wir uns diesen Grenzwert anschauen, sollte man folgende Summe s(n)=²+²+3²+...+n² betrachten, da diese für die Grenzwertbestimmung entscheidend ist. Betrachtung der Summe s(n) der ersten n Quadratzahlen: s(n) = ²+²+3²+...+n² s(n) N³ s(n)/n³ n³/3,00 0,33 4 5 8 0,63,67 3 9 4 7 0,5 9,00 4 6 30 64 0,47,33 5 5 55 5 0,44 4,67 6 36 9 6 0,4 7,00 7 49 40 343 0,4 4,33 8 64 04 5 0,40 70,67 9 8 85 79 0,39 43,00 0 00 385 000 0,39 333,33 506 33 0,38 443,67 44 650 78 0,38 576,00 3 69 89 97 0,37 73,33

4 96 05 744 0,37 94,67 5 5 40 3375 0,37 5,00 6 56 496 4096 0,37 365,33 7 89 785 493 0,36 637,67 8 34 09 583 0,36 944,00 9 36 470 6859 0,36 86,33 0 400 870 8000 0,36 666,67 44 33 96 0,36 3087,00 484 3795 0648 0,36 3549,33 3 59 434 67 0,36 4055,67 4 576 4900 384 0,35 4608,00 5 65 555 565 0,35 508,33 6 676 60 7576 0,35 5858,67 7 79 6930 9683 0,35 656,00 8 784 774 95 0,35 737,33 9 84 8555 4389 0,35 89,67 30 900 9455 7000 0,35 9000,00 30 5 Y-Axis Thousands 0 5 0 n n² s(n) n³ s(n)/n³ n³/3 5 0 3 4567 0 8 9 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 30 X-Axis Grenzwert der umbeschriebenen Volumenkörper für n : lim * (² + ² + 3² +... + n²) * A n³ G * h

Hierzu betrachten wir folgenden Grenzwert gesondert: n *( n + ) * (n + ) lim * (² + ² + 3² +... + n²) = lim * * n * ( n + ) *(n + ) = lim n³ n³ 6 6* n * n * n = lim *( + ) *( + ) = ** = 6 n n 6 3 Es folgt somit für den Grenzwert lim V = u * 3 A G * h Also hat man somit gezeigt, dass das Volumen der Pyramide V = * AG h ist. 3 Pyr * Wie oben schon erwähnt wurde auf diese Art und Weise die Integralrechnung in der Schule eingeführt. Man kann somit den Beweis auf eine Zeile reduzieren: V = h z= 0 h A ( z) dz = A ( z) dz, da A z) = A ( ) für 0 z h ist z= 0 ( z 4. Anwendungsbeispiele 4. Spezialfall: Berechnung des Volumens einer Pyramide 4.. Vorbetrachtung Es ist zu erst einmal nachzuweisen, dass alle Pyramiden mit gleicher Grundfläche und Höhe gleiches Volumen besitzen. Nach Cavalieri ist dies erfüllt, wenn in jeder Ebene parallel zur Grundfläche zwei Körper flächengleiche Querschnitte aufweisen.

Zum Nachweis: Jede Pyramide hat eine Spitze, welche als Zentrum einer räumliche zentrischen Streckung aufgefasst werden kann. Der Streckungsfaktor k beschreibt hierbei das Verhältnis der Höhe h (Abstand der Bildebene von der Spitze) zur Gesamthöhe h der Pyramide. Für die Flächen der Querschnitte gilt hierbei: h k = h h h Bildfläche = = k Ur / Grundfläche Die Inhalte paralleler Schnittflächen verhalten sich also wie die Quadrate der Abstände der Flächen von der Spitze. Nimmt man nun zwei Pyramiden mit gleich großen Grundflächen und Höhen so folgt: A A k * A * A A = = = k A da nach Voraussetzung A = A (Inhalt der Grundflächen) Die Bedingungen des Prinzips von Cavalieri sind also erfüllt. 4... Nach Zerlegung eines Würfels in 6 kongruente Pyramiden Die Zerlegung eines Würfels in 6 kongruente Pyramiden ergibt für die Inhalte der Grundflächen G jeder dieser Pyramiden und für die Höhen h G = a h = a. Für das Volumen V einer dieser Pyramiden folgt somit: V 3 Pyramide = VWürfel = a = ( a * a) = G * h 6 6 3 3 Da alle Pyramiden gleich sind, besitzen sie in jeder Höhe auch inhaltsgleiche Querschnitte nach Cavalieri sind sie somit auch Volumengleich.

4... Nach Zerlegung eines Würfels in 3 kongruente Pyramiden Die Zerlegung eines Würfels in 3 kongruente Pyramiden ergibt für den Flächeninhalt der Grundflächen G der Pyramiden G = a Die Höhe h beschreibt eine Seitenkante und ist demnach h = a Das Volumen V einer Pyramiden ergibt sich damit aus: V 3 Pyramide = VWürfel = a = ( a * a) = G * h 3 3 3 3 Für diese 3 kongruenten Pyramiden sind wiederum die Bedingungen des Cavalierischen Prinzips erfüllt. 4..3. Nach Zerlegung eines dreiseitigen Prismas in 3 Pyramiden Nach der Zerlegung eines Prismas erhält man zwei gleiche Pyramiden und eine Schiefe.

Vergleicht man die Pyramiden (S,P,Q,R) und (R,T,S,U) miteinander, wird ersichtlich, das ihre Grundflächen den selben Inhalt besitzen. Dies folgt aus der Tatsache, das bei einem Prisma Grund- und Deckfläche gleich sind. Also: A = A ( P, Q, R) ( T, S, U ) Die Höhen beider Prismen ist ebenfalls gleich, sie entsprechen jeweils einer Seitenkante des Prismas. h h = PS RU ( S, P, Q, R) = ( R, T, S, U ) = Nun vergleicht man die Pyramiden (T,R,U,S) und (T,Q,R,S) miteinander. Beide besitzen wiederum inhaltsgleiche Grundflächen. A = A ( T, R, U ) ( T, Q, R) Die Höhen sind auch gleich und werden durch die Punkte Z,S und Z,S bestimmt. Der Punkt Z befindet sich bei der Pyramide (T,R,U,S) innerhalb und bei der Pyramide (T,Q,R,S) außerhalb des Körpers. S ist die gemeinsame Spitze. h( T, R, U, S ) = h( T, Q, R, S ) = ZS = ZS Somit folgt, dass das Volumen von Pyramide (S,P,Q,R) gleich dem von Pyramide (R,T,S,U) ist, welches gleich dem von Pyramide (T,Q,R,S) ist. Also sind alle drei Pyramiden inhaltsgleich. V = V = V ( S, P, Q, R) ( R, T, S, U ) ( T, Q, R, S ) Dieses Ergebnis kann mit Hilfe des Computerprogramms Euklid nochmals verdeutlicht werden. Indem man die Spitze einer der beiden Pyramiden nach außen zieht erkennt man, das der Flächeninhalt der Schnittfläche gleich bleibt. Der Satz von Cavalieri bestätigt damit die Gleichheit und somit auch die allgemeine Volumenformel für Pyramiden. 4.. Bestimmung des Kugelvolumens mit Hilfe des Satzes von Cavalieri Das Verfahren zur Bestimmung des Kugelvolumens geht auf Archimedes zurück, was zeigt, dass Archimedes das Cavalierische Prinzip bereits schon gekannt hatte. Cavalieri ging von einem Kreiszylinder aus, dessen Höhe gleich dem Radius r ist und entfernte daraus einen Kreiskegel mit gleichem Radius und gleicher Höhe. Dies verglich er mit einer Halbkugel mit Radius r.

Zu Zeigen ist nun A() = A(), d.h. der Kreisring (A()) muss denselben Flächeninhalt haben wie der Schnittkreis bei der Halbkugel (A()). Flächeninhalt des Kreisringes: Flächeninhalt des Schnittkreises: A()= äußerer Kreisringinhalt innerer Kreisringinhalt = πr² - πx² = π*(r²-x²) Zunächst benötigt man hierzu den Radius des Schnittkreises: Nach dem Satz von Pythagoras gilt: a² = r²-x² A() = π*a² = π*(r²-x²) A() = A(), w.z.b.w. Nach dem Satz von Cavalieri haben also der Restkörper und die Halbkugel gleiches Volumen: Berechnung des Volumens des Restkörpers: VR = VZyl VKegel = π r² * r πr² * r = π * r³ 3 3 4 VR = VHK = π * r³ VK = * VHK = π * r³ 3 3