Integralrechnung und das Riemannintegral
|
|
|
- Margarete Sternberg
- vor 9 Jahren
- Abrufe
Transkript
1 Integralrechnung und das Riemannintegral Vorlesung zur Didaktik der Analysis Oliver Passon Oliver Passon Integralrechnung 1
2 Inhalt Historisches Archimedes (Parabel) Hippokrates ( Möndchen ) Cavalerie Aktuell Berechnung Hauptsatz Existenz Darboux Konstruktion Riemannsummen Zum Begriff der Integrierbarkeit und der elementaren Integrierbarkeit Zusammenfassung Oliver Passon Integralrechnung 2
3 Historisches Flächen- und Volumenberechnung vor Entwicklung der Analysis: Näherung von π durch Polygone Archimedes nähert mit einem 96-Eck π 223 = 71 (Exhaustionsmethode) 3, Oliver Passon Integralrechnung 3
4 Quadratur der Parabel durch Archimedes (Brief an Dositheos, ca. 250 v.u.z.) A A 4 = 3 1 = Parabel ABC = 4 3 In der Antike kannte man aber noch nicht die Begriffe unendliche Reihe" und Grenzwert". Archimedes zeigt daher durch eine doppelten Widerspruchsbeweis, dass die Fläche des Parabelsegments nicht größer, aber auch nicht kleiner als 4/3 der Dreiecksfläche sein kann. Oliver Passon Integralrechnung 4
5 Zur Quadratur der Parabel Oliver Passon Integralrechnung 5
6 Oliver Passon Integralrechnung 6
7 Die Möndchen des Hippokrates Die Dreiecke k x haben die Strecke x (=a, b oder c) als Durchmesser. Es gilt: Die gelben Möndchen haben zusammen die Fläche des roten Dreiecks. Diese Lösung legt nahe, dass auch eine Quadratur des Kreises gelingen Kann. Dass dieses klassische Konstruktionsproblem (mit Zirkel und Lineal) nicht durchgeführt werden kann, konnte allerdings er 1882 von Ferdinand von Lindemann gezeigt werden! Oliver Passon Integralrechnung 7
8 Antike Wurzeln der Integralrechnung? Die antike Lehre vom Flächeninhalt der klassischen Periode, wie wir sie systematisch ausgearbeitet im ersten und sechsten Buch der Elemente des Euklid (~340 - ~260) finden, unterscheidet sich wesentlich von der unsrigen insofern als in ihr der Vergleich von Flächen und nicht die Berechnung derselben im Vordergrund stand. Es wurde also mit den Flächen bzw. Figuren selbst gearbeitet und nicht mit Maßzahlen; als Methoden kommen Kongruenz und allgemeiner Zerschneiden und Zusammenfügen einerseits in Frage (im Buch I bei Euklid) zum andern aber auch Zurückführung auf Streckenverhältnisse (im Buch VI bei Euklid). Klaus Volkert in Die Möndchen des Hippokrates eine Möglichkeit zum Konstruieren und zum Arbeiten mit Flächen Oliver Passon Integralrechnung 8
9 Das Prinzip von Cavalieri Zwei Körper besitzen dasselbe Volumen, wenn ihre Schnittflächen in Ebenen parallel zu einer Grundebene in entsprechenden Höhen den gleichen Flächeninhalt haben. Anwendung: Pyramiden mit selber Grundfläche und Höhe haben die selbe Fläche. Grundidee: Zerlegung in infinitesimal dünne Scheiben Oliver Passon Integralrechnung 9
10 Cavalieri ( )hat sein Prinzip noch nicht streng beweisen Beachte: das Berechnen von Volumina wird auf Flächen zurückgeführt. Oliver Passon Integralrechnung 10
11 Integralrechnung (i) Existenz der Fläche beweisen (ii) Maßzahl der Fläche berechnen b S = f ( x) dx a Oliver Passon Integralrechnung 11
12 Kenntnisse aus Sek I 1. S positive Zahl 2. Kongruente Figuren haben die selbe Fläche 3. Für bekannte Figuren (Rechtecke, Dreiecke, ) sollten sich die bekannten Ergebnisse ergeben 4. Die Fläche disjunkter Figuren ist Summe der Einzelflächen. Oliver Passon Integralrechnung 12
13 Oliver Passon Integralrechnung 13 Berechnung der Maßzahl durch den Hauptsatz: F(x) sei die Fläche unter dem Graphen von 0 bis x, also S=F(b)-F(a) Sei f stetig und überall positiv Satz: Eine stetige Funktion nimmt auf einem kompakten Intervall Minimum und Maximum an ) ( ) ( lim ) ( ) ( lim lim ) ( ) ( ) ( ) ( ) ( ) ( max min max min max min a F a f f a b a F b F f f a b a F b F f a b f a F b F a b f a b a b a b =
14 Stellung des Hauptsatzes Bereits von Isaac Barrow (akademische Lehrer von Newton) wurde erkannt, dass Flächen- und Tangentenberechnung in gewisser Weise invers zueinander sind (nicht explizit formuliert). Erste Publikation durch James Gregory 1667 ( Geometriae pars universalis ). In seiner vollen Bedeutung erst durch Newton (1666 aufgezeichnet, 1686 publiziert) und Leibnitz (1677) erkannt. Cauchy liefert den ersten Beweis (1823 veröffentlicht). Oliver Passon Integralrechnung 14
15 Man definiert: f dx=f Aus den elementaren Flächeneigenschaften (1) bis (4) folgen Relationen vom Typ: Intervalladditivität Linearität: (af(x)+bg(x))= a f(x) +b g(x) Oliver Passon Integralrechnung 15
16 Beachte: Die Orientierung der Fläche ist durch die bisherige Beschränkung auf nicht-negative stetige Funktionen noch nicht eingeführt! Oliver Passon Integralrechnung 16
17 Beweis der Existenz der Fläche Das Riemannintegral kann auf zwei Wegen begründet werden: Unter- und Obersummen sowie Supremumsbegriff Riemannsummen und Grenzwertbegriff Oliver Passon Integralrechnung 17
18 1. Methode f sei beschränkte Funktion auf dem Intervall [a,b], die x i seien eine Zerlegung Z dieses Intervalls. Man definiert als Ober- Und Untersumme: Funktion von Z! sup= kleinste obere Schranke inf= größte untere Schranke Oliver Passon Integralrechnung 18
19 Man definiert das obere (untere) Darboux-Integral durch Betrachtung aller möglichen Zerlegungen: Sind unteres und oberes Darboux-Integral gleich, nennt man f Riemannintegrierbar Oliver Passon Integralrechnung 19
20 1. Methode in Worten : Beachte: Die Zerlegung findet in endlich viele Teilintervalle statt! Bei einer Riemannintegrierbaren Funktion kann man jedoch durch Unterteilung des Integrationsintervalles den Unterschied zwischen Ober- und Untersumme beliebig klein machen. Es gibt dann nur eine Zahl, die kleiner oder gleich jeder Obersumme und größer oder gleich jeder Untersumme ist, und diese Zahl ist das Riemannsche Integral. Oliver Passon Integralrechnung 20
21 2. Methode Betrachte nun eine Folge von Zerlegungen Z n, deren Feinheit Φ für n gegen 0 geht, sowie die zugehörigen Riemannsummen S n f heißt Riemannintegrierbar, falls für beliebige Zerlegungen mit der obigen Eigenschaft S n gegen die selbe Zahl konvergiert. Oliver Passon Integralrechnung 21
22 lim n b S = n f ( x) dx a Riemannsumme für Zerlegungen, deren Feinheit gegen Null geht Oliver Passon Integralrechnung 22
23 Wann ist eine Funktion Riemannintegrierbar? Ist eine reelle Funktion f auf [a,b] gleichmäßig stetig, so ist sie dort Riemann-integrierbar Ist f auf [a,b] definiert und beschränkt und hat f dort nur endlich viele Unstetigkeitsstellen, so ist f dort Riemann-integrierbar. Sind f, g auf [a,b] reellwertig und Riemannintegrierbar, so sind dort auch Riemannintegrierbar: f g, f, max(f,g), Oliver Passon Integralrechnung 23
24 Weitere Integralbegriffe: Dirichlet Funktion: Ist nicht Riemann-integrierbar, da alle Untersummen 0 und Obersummen 1 ergeben. Zudem liegen unendlich viele Unstetigkeitsstellen vor. Die Funktion ist jedoch Lebesgue-integrierbar (mit dem Ergebnis 0). Sprich: die rationalen Zahlen sind eine Lebesgue-Nullmenge. Oliver Passon Integralrechnung 24
25 Wann ist eine Funktion elementar integrierbar? Offensichtlich gibt es mehr integrierbare Funktionen, als differenzierbare Funktionen Aber: Es existiert keine Integrationsregel, die erlaubt, aus der Stammfunktion von f und g auf die Stammfunktion von f g zu schließen! 1 e x dx =??? x Ob es eine Substitution gibt, und wie man sie findet, darüber lassen sich keine allgemeinen Aussagen machen; vielmehr ist hier ein Punkt wo Übung und Geschicklichkeit gegenüber der systematischen Methode zu ihrem Recht kommen. (R. Courant) Oliver Passon Integralrechnung 25
26 Aber was soll elementar integrierbar überhaupt heißen? Elementare Funktionen: Polynome Sinus, Kosinus, Log, e-fkt Dies ist im Kern eine willkürliche Auswahl nach dem Gesichtspunkt der Nützlichkeit! Oliver Passon Integralrechnung 26
27 Wenn also das Ziel der Integralrechnung wäre, Funktionen elementar zu integrieren, so wären wir rasch am Ende dieser Kunst angelangt. Aber ein solches Ziel hat tatsächlich keine innere Berechtigung; im Gegenteil: Es haftet ihm etwas künstliches an. (R. Courant in Vorlesungen über Differential- und Integralrechnung Bd. 1 ) x 1 1 z dz Vielmehr sollte der Integrationsprozess als Prinzip zur Erzeugung neuer Funktionen aufgefasst werden. = ln x Ein Integral, dass nicht elementar ausgeführt werden kann, ist wie ein Bruch, der nicht gekürzt werden kann! Er definiert eine rationale Zahl Oliver Passon Integralrechnung 27
28 Zusammenfassung Das Problem der Integralrechnung reicht bis in die Antike zurück allerdings war die damalige Begriffswelt vollständig anders! Kaum erwähnt: Die Flächenberechnung ist nicht die einzige Anwendung der Integralrechnung (Stichwort: Integral als Mittelwert, etc.pp.) Aus heutiger Sicht fällt die Integralrechnung in 2 Teilprobleme: Existenz des Integrals Berechnung des Integrals Aus schulischer Sicht ist das mathematische Hauptproblem (die Existenz) schwer zu motivieren! Die konkrete Zerlegung in Treppenfunktionen ist kein Beweis der Existenz des Flächeninhalts! Dazu müssten beliebige Zerlegungen untersucht werden. Die handwerkliche Schwierigkeit konkrete Integrale tatsächlich durchzuführen, sollte nicht den Blick darauf verstellen, dass integrierbar eine schwächere Eigenschaft als differenzierbar ist! Oliver Passon Integralrechnung 28
Der Begriff des bestimmten Integrals
Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite
6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals
Kapitel 6 Das Riemann-Integral In diesem Abschnitt wollen wir einen Integralbegriff einführen. Dieser Integralbegriff geht auf Riemann 1 zurück und beruht auf einer naheliegenden Anschauung. Es wird sich
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
15. Bereichsintegrale
H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya
Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Wiederholungsklausur zur Analysis I
Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten
Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung
Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle
Differential- und Integralrechnung
Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik
Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.
Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung:
1 Rechenverfahren für THP (WS 2002) 3 Integralrechnung 3.1 Stammfunktion: In der Differentialrechnung: Gegeben: Funktion Gesucht: Ableitung Problem der Differentialrechnung: Bestimmung der Steigung vom
1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen
1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8
Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale
Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar
28. Integralrechnung im Mehrdimensionalen
28. Integralrechnung im Mehrdimensionalen 355 28. Integralrechnung im Mehrdimensionalen Wir haben nun das Studium der Differenzierbarkeit in mehreren Veränderlichen beendet und werden uns als Nächstes
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
Analysis I. 1. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge
Lösungsvorschlag zur Übungsklausur zur Analysis I
Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden
Präsenzübungen zur Analysis I Lehramt
Technische Universität Dortmund 12. Oktober 217 Matthias Schulte Blatt, WiSe 17/18 Aufgabe.1 (Elementare Beweistechniken). a) Zeige, dass 2 Q gilt! b) Es seien A,B Mengen. Zeige: A B = B \A = B. Aufgabe.2
Analysis I. 6. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.
ANALYSIS 3. Carsten Schütt WS 2008/9
1. Es sei f : R 3 R 3 durch f 1 (r, φ 1,φ 2 ) = r cos φ 1 f 2 (r, φ 1,φ 2 ) = r sin φ 1 cos φ 2 f 3 (r, φ 1,φ 2 ) = r sin φ 1 sin φ 2 gegeben. Für welche (r, φ 1,φ 2 ) ist f lokal invertierbar? Ist f global
Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I
Bachelor Informatik Mathematik Plus Titel Folien zur Vorlesung Mathematik Plus: Ergänzugen Mathematik I Hochschule Stralsund Fakultät Elektrotechnik und Informatik Prof. Dr. W. Kampowsky Bachelor Informatik
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
Vorlesungen Analysis von B. Bank
Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf
Checkliste zur Prüfungsvorbereitung in. Analysis
Checkliste zur Prüfungsvorbereitung in Analysis Hinweis: Diese Liste ist lediglich als Unterstützung bei der Wiederholung des bisherigen Lehrstoffs vorgesehen. Sie ist nicht dazu gedacht, einzelne Themen
2.6 Der Satz von Fubini
1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld
ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,
Aufgaben zu Kapitel 0
Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.
π und die Quadratur des Kreises
π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge
Nachklausur zur Analysis 1, WiSe 2016/17
BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe
Kapitel 8 Einführung der Integralrechnung über Flächenmaße
8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Lebesgue-Integral und L p -Räume
Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R
Vorkurs Mathematik. Übungen Teil IV
Vorkurs Mathematik Herbst 009 M. Carl E. Bönecke Skript und Übungen Teil IV. Folgen und die Konstruktion von R Im vorherigen Kapitel haben wir Z und Q über (formale) Lösungsmengen von Gleichungen der Form
Konstruktion reeller Zahlen aus rationalen Zahlen
Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am
Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )
Lösungen zu Übungsblatt 9
Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da
Lösungen der Übungsaufgaben von Kapitel 3
Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen
Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)
Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden
1 Integrale von Funktionen in mehreren Variablen
$Id: integral.tex,v 1.2 2009/10/28 20:24:48 hk Exp hk $ 1 Integrale von Funktionen in mehreren Variablen 1.1 Das Rieman Integral im R n Im letzten Semester hatten wir die Differentialrechnung auf Funktionen
Klausur zur Analysis I WS 01/02
Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Lösungen zur Klausur zur Analysis 1, WiSe 2016/17
BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:
f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.
Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und
Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31
Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,
Uneigentliche Integrale
Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.
D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +
Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I
Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also
A Differenzialrechnung
A Differenzialrechnung Seite 1 Stetigkeit und Differenzierbarkeit... 2 Nullstellensatz und Intervallhalbierung... Newton - Verfahren... 8 Funktionsverkettung... 1 5 Kettenregel... 11 Produktregel... 1
Vollständigkeit. 1 Konstruktion der reellen Zahlen
Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente
Grundlagen der Mathematik (BSc Maschinenbau)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen
Folgen und Reihen. Thomas Blasi
Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................
Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.
Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen
Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:
Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,
Analysis I. 12. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 2. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein angeordneter Körper. (2) Eine Folge in
HM I Tutorium 2. Lucas Kunz. 3. November 2016
HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................
Integration. Kapitel Stammfunktionen
Kapitel 5 Integration 5. Stammfunktionen Definition: Eine auf dem Intervall I differenzierbare Funktion F ist eine Stammfunktion der Funktion f : I R, wenn F (x) = f(x) für alle x I. Fakt : Sind F und
Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn
Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige
19.2 Mittelwertsatz der Differentialrechnung
19 Mittelwertsätze der Differentialrechnung mit Anwendungen 19.1 Satz von Rolle 19.2 Mittelwertsatz der Differentialrechnung 19.4 Globaler Wachstumssatz 19.6 Verallgemeinerter Mittelwertsatz der Differentialrechnung
SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.
SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden
1 Angeordnete Körper und Anordnung
1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
Mathematik 1 für Bauingenieure
Mathematik 1 für Bauingenieure Name (bitte ausfüllen): Prüfung am 3.3.2017 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben
Analysis für Informatiker und Statistiker Nachklausur
Prof. Dr. Peter Otte Wintersemester 213/14 Tom Bachmann, Sebastian Gottwald 14.3.214 Analysis für Informatiker und Statistiker Nachklausur Lösungsvorschlag Name:.......................................................
Mehrdimensionale Integralrechnung 1
Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.
Kapitel A. Konstruktion und Eigenschaften von Integralen
Kapitel A Konstruktion und Eigenschaften von Integralen Inhalt dieses Kapitels A000 Wie misst man Flächen- und Rauminhalt? Absolut integrierbare Funktionen Integration: Theorie und Anwendung A001 Bildquelle:
Vollständigkeit der reellen Zahlen
Vollständigkeit der reellen Zahlen Vorlesung zur Didaktik der Analysis Oliver Passon Vollständigkeit von R 1 take home message I Wollte man mit Zahlen nur rechnen, könnte man mit den rationalen Zahlen
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21 Quadraturverfahren R. Steuding
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
Konvergenz im quadratischen Mittel - Hilberträume
CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften
Lösungsblatt Aufgabe 1.32
Aufgabenstellung: Die Geschwindigkeit eines Körpers ist für t 1 durch v t = 10 10 gegeben. t 1. Schätze die Länge des im Zeitintervall [1 4] zurückgelegten Weges durch Ober- und Untersumme ab, wobei das
Mehrdimensionale Integration
Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der
Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit
Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das
A. Maß- und Integrationstheorie
A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei
