Einleitung: Experimentelle Hinweise auf die Quantentheorie

Größe: px
Ab Seite anzeigen:

Download "Einleitung: Experimentelle Hinweise auf die Quantentheorie"

Transkript

1 Kapitel 1 Einleitung: Experimentelle Hinweise auf die Quantentheorie c Copyright 2012 Friederike Schmid Historische Experimente ( historisch : Aus der Zeit, in der die Quantentheorie entwickelt wurde) Hinweise auf diskrete Strukturen in Atomen a) Atomspektren (19. Jahrhundert, Kirchhoff und Bunsen) Jedes Element hat ein charakteristisches Emissionsspektrum. Es werden bestimmte Frequenzlinien emittiert (großes Rätsel der Jahrhundertwende) b) Hohlraumstrahlung und Plancksches Strahlungsgesetz (1900) Hohlraum: (Schwarzkörperstrahlung) Klassisch erwartete Strahlungsintensität (Rayleigh- Jeans): di ν 2 dν Tatsächlich: Abknicken bei hohen Frequenzen 1 Prof. Dr. Friederike Schmid, Vorlesung Quantenmechanik (I), Universität Mainz, SS Letzte Änderung der PDF-Datei am

2 2 KAPITEL 1. EXPERIMENTELLE HINWEISE Erklärung durch Plancksche Hypothese: Licht wird in Quanten der Energie E = h ν emittiert und absorbiert. h = Plancksche Konstante: h = Js Zwischen Strahlung und Hohlraum besteht thermisches Gleichgewicht. Plancksche Strahlungsformel: di c) Franck-Hertz-Versuch (1914) ν3 e hν 1 dν Nachweis stationärer Atomzustände. Interpretation: Bereich (I): Je höher die Spannung, desto mehr Elektronen gewinnen genug kinetische Energie, dass sie die Anode erreichen können und nicht am Gatter abgefangen werden. Verluste durch elastische Stöße. Bereich (II): Einige Elektronen können einen Teil der Energie - ein festgelegtes Quantum - in inelastischem Stoß an Hg-Atome abgeben. Verbleibende kinetische Energie so klein, dass sie abgefangen werden. Verluste durch einen inelastischen Stoß. Bereich (III): Verluste durch zwei inelastische Stöße. etc. Folgerung: Atome nehmen Energie inelastisch nur in festen Quanten auf. d) Stern-Gerlach-Versuch (1921) Silberatomstrahl teilt sich im inhomogenen Magnetfeld auf. Richtungsquantelung des magnetischen Moments. (Kommt in Kapitel 4 nochmal)

3 1.1. HISTORISCHE EXPERIMENTE Hinweise darauf, dass Licht aus Teilchen besteht a) Photoeffekt (Hallwachs 1900, Erklärung nach Einstein 1905) Beobachtungen (Hallwachs) Falls Elektroskop positiv geladen Licht bewirkt nichts Falls Elektroskop negativ geladen: sichtbares Licht, egal wie intensiv, bewirkt nichts UV-Licht auf Eisenplatte bewirkt nichts Aber: Bereits schwacher UV-Strahl auf Zink entlädt Elektroskop Interpretation (Einstein) Licht besteht aus Quanten der Energie E = h ν (Photonen) Lichtphotonen treten einzeln mit Elektronen in Wechselwirkung Zum Freisetzen eines Elektrons ist Austrittsenergie V c notwendig. Falls Energie des Lichtquants ausreicht, das Elektron freizusetzen (E > V c ), entweicht es (das ist der Fall bei UV-Licht auf Zink). Andernfalls bleibt das Elektron gebunden (und die Energie wird anderweitig dissipiert). b) Compton-Effekt (1923) Licht ändert Frequenz bei der Streuung an Elektronen. Streuprozeß mit Energie- und Impulserhaltung Energie des Photons: E = h ν Impuls des Photons: p = h/λ Damit kann Compton-Effekt quantitativ verstanden werden. NB: Nach der speziellen Relativitätstheorie müssen Teilchen mit Lichtgeschwindigkeit masselos sein. Das sollte natürlich auch für Photonen zutreffen. Viererimpuls ( E c, p) hat Norm Null: p2 ( E c )2 = 0 p 2 = E2 c 2 = (hν)2 c 2 = h2 λ 2

4 4 KAPITEL 1. EXPERIMENTELLE HINWEISE Fazit aus 1.1.2: Lichtwellen, bzw. allgemeine elektromagnetische Wellen verhalten sich unter bestimmten Umständen so, als bestünden sie aus Teilchen. Andererseits sind es natürlich auch Wellen (d.h., sie zeigen Interferenzen etc.) Bemerkung: Streng genommen ist weder der Photoeffekt noch der Compton- Effekt wirklich ein Beweis für den Teilchencharakter des Lichts. Beide können auch innerhalb einer (Quanten-)Theorie erklärt werden, in der elektromagnetische Wellen noch als reine Welle behandelt werden. Dennoch gehören diese Versuche hierher, weil sie für die Entwicklung der Quantentheorie sehr wichtig waren Hinweise darauf, dass Materie Wellencharakter hat Zunächst: von de Broglie 1924 postuliert (in seiner Doktorarbeit!). Beziehungen E = h ν und p = h/λ sollen für alle Teilchen gelten. Experimentelle Hinweise: a) Davisson-Germer (1927) b) Thomson (1927) Bragg-Streuung von Elektronen an einem Nickel-Kristall Debye-Scherrer-Ringe von Elektronen hinter einer Metallfolie Interferenzen bei Streuung von Elektronen an periodischen Strukturen (Kristallen). Fazit von 1.1.2, 1.1.3: Welle-Teilchen-Dualismus Je nach Experiment haben Materie oder Licht entweder Teilchen- oder Wellencharakter. Nutzen dieser Betrachtungsweise: Erklärt Experimente, löst Probleme der Atomspektren (siehe Kapitel 2) Nachteil: Interpretation/Deutung bis heute umstritten. Man stößt auf Widersprüche, die nur schwer (oder gar nicht) aufgelöst werden können (siehe z.b. Kapitel 3).

5 1.2. MODERNERE EXPERIMENTE Modernere Experimente Zahlreich, hier nur ausgewählte Beispiele Zum Wellencharakter der Materie Interferenz von Fullerenen (Arndt, Nain,... Zeilinger 1999) Vorbemerkung: Doppelspaltversuch mit Elektronen Frage: Könnte man denselben Versuch mit Fußbällen machen? Fußball Impuls p = h/λ groß Wellenlänge λ klein praktisch vermutlich nicht zu sehen Nun zu Zeilingers Experiment (1999) Interferenzmuster wird sehr viel feiner als Fußball sein nicht gerade Fußbälle, aber C 60 -Moleküle - 60 Kohlenstoffatome, Durchmesser 1 nm interne Schwingungs- und Rotationsmoden - Masse nicht eindeutig (Kohlenstoffisotope) Aufbau: Entscheidend: Kollimatoren Strahl hat Divergenz von 10 µrad Zahlenvergleich: C 60 (1 nm): Schlitzgröße(50 nm) = Fußball : Tor. Auf dieser Skala wäre Abstand Quelle-Detektor = Abstand Erde-Mond.

6 6 KAPITEL 1. EXPERIMENTELLE HINWEISE Ergebnis: Interferenzmuster (a: Mit Gitter, b: Ohne Gitter) Späteres Experiment (selbe Gruppe, 2001) Streuung von C 60 an stehenden Lichtwellen Interferenzbilder

7 1.2. MODERNERE EXPERIMENTE Zum Teilchencharakter des Lichts Photonen-Korrelations-Experimente Aufbau (Hanbury, Brown, Twiss 1956) Beobachtungen Stellares Licht (auch sonst häufig) Korrelator misst die Anzahl n(τ) der Photonen, die im Abstand τ in Detektoren registriert werden. Photon bunching : Photonen korreliert, treffen häufig zusammen ein. Erklärung: Bose-Einstein-Statistik (siehe Kapitel 3) Aber: Klassische Erklärung wäre auch möglich (fluktuierendes elektromagnetisches Feld) Fluoreszenz einfacher Atome (auch künstlicher Atome : Quantendots) Photon antibunching (Kimble, Dagenais, Mandel 1977) kann klassisch nicht erklärt werden gilt endlich als Nachweis der Teilchennatur des Lichts. Erklärung im Photonenbild ganz einfach: Atom = Zwei-Niveau-System Fluoreszenz angeregtes Atom geht von Energie E 1 zu E 0 über, emittiert dabei ein Photon. Nachdem das geschehen ist, kann nicht sofort ein zweites emittiert werden.

8 8 KAPITEL 1. EXPERIMENTELLE HINWEISE 1.3 Wissensfragen 1. Erläutern Sie ein Experiment, daß auf den Teilchencharakter von Licht hindeutet. 2. Erläutern Sie ein Experiment, daß auf den Wellencharakter von Materie hindeutet. 3. Was ist ein Photon? Welche Energie und welchen Impuls hat ein Photon? 4. Welche Bedeutung hat die Plancksche Konstante und wie groß ist sie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Vorlesung 3: Das Photon

Vorlesung 3: Das Photon Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 011 Vorlesung 04 1.04.011 Physik IV - Einführung in die Atomistik Vorlesung 4 Prof. Thorsten Kröll 1.04.011 1 Versuch OH

Mehr

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?

Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

I. Geschichte der Röntgenstrahlen

I. Geschichte der Röntgenstrahlen I. Geschichte der Röntgenstrahlen Entdeckung durch Wilhelm Conrad Röntgen 1895 (erhält dafür 1. Nobelpreis 1901): Auslöser der (zufälligen) Entdeckung waren die zu dieser Zeit besonders intensiven Untersuchungen

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin

Bohrsches Atommodell / Linienspektren. Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, Humboldt-Universität zu Berlin Bohrsches Atommodell / Linienspektren Quantenstruktur der Atome: Atomspektren Emissionslinienspektren von Wasserstoffatomen im sichtbaren Bereich Balmer Serie (1885): 1 / λ = K (1/4-1/n 2 ) 656.28 486.13

Mehr

14. Teilchen und Wellen

14. Teilchen und Wellen Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation

Mehr

Vorlesung 3: Das Photon

Vorlesung 3: Das Photon Vorlesung 3: Das Photon Roter Faden: Eigenschaften des Photons Photoeffekt Comptonstreuung ->VL3 Gravitation Plancksche Temperaturstrahlung ->VL4 Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

Der lichtelektrische Effekt (Photoeffekt)

Der lichtelektrische Effekt (Photoeffekt) Der lichtelektrische Effekt (Photoeffekt) Versuchsanordnung Zn-Platte, amalgamiert Wulfsches Elektrometer Spannung, ca. 800 V Knappe Erklärung des Versuches Licht löst aus der Zn-Platte Elektronen aus

Mehr

14 Teilchen und Wellen

14 Teilchen und Wellen 14 Teilchen und Wellen 14.1 Teilchencharakter von elektromagnetischen Wellen 1411 14.1.1 Strahlung schwarzer Körper 14.1.2 Der Photoeffekt 14.1.3 Technische Anwendungen 14.2 Wellencharakter von Teilchen

Mehr

Der Welle-Teilchen-Dualismus

Der Welle-Teilchen-Dualismus Quantenphysik Der Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus http://bluesky.blogg.de/2005/05/03/fachbegriffe-der-modernen-physik-ix/ Welle-Teilchen-Dualismus Alles ist gleichzeitig Welle und Teilchen.

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte.

7.Lichtquanten. Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. 7.1 Der Photoeffekt 7.Lichtquanten Der Siegeszug der Wellentheorie war voll im Gang als Chr. Hallwachs 1888 auf anregung von H. Hertz folgende Entdeckung machte. Hg Lampe Zn Platte Elektroskop Ist die

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012

Experimentelle Betrachtung Theoretische Betrachtung. Photoeffekt. 9. April 2012 9. April 2012 Inhalt Experimentelle Betrachtung 1 Experimentelle Betrachtung 2 Einleitung Experimentelle Betrachtung Photoelektrischer Effekt beschreibt drei verschiedene Arten von Wechselwirkung von Photonen

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 12. Vorlesung 4.7.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Atom- und kernphysikalische. Grundlagen. 2.1 Einleitung

Atom- und kernphysikalische. Grundlagen. 2.1 Einleitung Atom- und kernphysikalische 2 Grundlagen 2.1 Einleitung Nachdem Einsichten über die Natur der elektromagnetischen Strahlung erste wichtige Impulse in Richtung einer neuen Theorie der Quantentheorie geliefert

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Fazit: Wellen haben Teilchencharakter

Fazit: Wellen haben Teilchencharakter Die Vorgeschichte Maxwell 1865 sagt elektromagnetische Wellen vorher Hertz 1886 beobachtet verstärkten Funkenüberschlag unter Lichteinstrahlung Hallwachs 1888 studiert den photoelektrischen Effekt systematisch

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839

Mehr

Einteilung der Vorlesung

Einteilung der Vorlesung Einteilung der Vorlesung VL1. Einleitung Die fundamentalen Bausteine und Kräfte der Natur VL2. Experimentelle Grundlagen der Atomphysik 2.1. Masse, Größe der Atome 2.2. Elementarladung, spezifische Ladung

Mehr

5. Kapitel Die De-Broglie-Wellenlänge

5. Kapitel Die De-Broglie-Wellenlänge 5. Kapitel Die De-Broglie-Wellenlänge 5.1 Lernziele Sie können die De-Broglie-Wellenlänge nachvollziehen und anwenden. Sie kennen den experimentellen Nachweis einer Materiewelle. Sie wissen, dass das Experiment

Mehr

2. Max Planck und das Wirkungsquantum h

2. Max Planck und das Wirkungsquantum h 2. Max Planck und das Wirkungsquantum h Frequenzverteilung eines schwarzen Strahlers Am 6. Dezember 1900, dem 'Geburtsdatum' der modernen Physik, hatte Max Planck endlich die Antwort auf eine Frage gefunden,

Mehr

Medizinische Biophysik 6

Medizinische Biophysik 6 Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer

Mehr

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1

VI. Quantenphysik. VI.1 Ursprünge der Quantenphysik, Atomphysik. Physik für Mediziner 1 VI. Quantenphysik VI.1 Ursprünge der Quantenphysik, Atomphysik Physik für Mediziner 1 Mikroskopische Welt Physik für Mediziner 2 Strahlung des Schwarzen Körpers Schwarzer Körper: eintretendes Licht im

Mehr

Welleneigenschaften von Elektronen

Welleneigenschaften von Elektronen Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen

Mehr

1. Auf dem Weg zur Quantentheorie Grundlegende Experimente und Erkenntnisse

1. Auf dem Weg zur Quantentheorie Grundlegende Experimente und Erkenntnisse 1. Auf dem Weg zur Quantentheorie Grundlegende Experimente und Erkenntnisse 1.1. Theorie der Wärmestrahlung Plancksche Strahlenhypothese Untersuchungen der Hohlraumstrahlung vor 1900 zeigten, dass das

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik

Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation. eine Einführung in die Quantenmechanik Von der kosmischen Hintergrundstrahlung zur Heisenbergschen Unbestimmtheitsrelation eine Einführung in die Quantenmechanik 1) Die Hohlraumstrahlung: Geburt der Quantenmechanik Die kosmische Hintergrundstrahlung

Mehr

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt

lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt lichen auf sehr engem Raum konzentriert ist und die positive Ladung trägt Kanalstrahlexperimente hatten schwere, positiv geladene Teilchen beim Wasserstoff nachgewiesen Aufgrund von Streuexperimenten postulierte

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das Bohr sche Atommodell: Strahlenabsorption, -emission, Elektromagentische Strahlung, Wellen, Wellenlänge, Frequenz, Wellenzahl. Postulate: * Elektronen bewegen

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

Quantenobjekte. M. Jakob. 16. September Gymnasium Pegnitz

Quantenobjekte. M. Jakob. 16. September Gymnasium Pegnitz Quantenobjekte M. Jakob Gymnasium Pegnitz 16. September 2015 Inhaltsverzeichnis 1 Wellen- und Teilchencharakter des Lichts (6 Std.) Wellencharakter Teilchencharakter Photonen Das Planck sche Wirkungsquantum

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Atome - Moleküle - Kerne

Atome - Moleküle - Kerne Atome - Moleküle - Kerne Band I Atomphysik Von Univ.-Professor Dr. Gerd Otter und Akad.-Direktor Dr. Raimund Honecker III. Physikalisches Institut der Rheinisch-Westfälischen Technischen Hochschule Aachen

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg

A. EINSTEIN und die Natur des Lichts. Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. EINSTEIN und die Natur des Lichts Lothar Ley Institut für Technische Physik Universität Erlangen-Nürnberg A. Einstein, Annalen der Physik, 17, 132 (1905) Über einen die Erzeugung und Verwandlung des

Mehr

Quantenphänomene und Strahlungsgesetze

Quantenphänomene und Strahlungsgesetze Quantenphänomene und Strahlungsgesetze Ludwig Prade, Armin Regler, Pascal Wittlich 17.03.2011 Inhaltsverzeichnis 1 Quantenphänomene 2 1.1 Ursprünge....................................... 2 1.2 Photoeffekt......................................

Mehr

2. Kapitel Der Photoeffekt

2. Kapitel Der Photoeffekt 2. Kapitel Der Photoeffekt 2.1 Lernziele Sie wissen, was allgemein unter dem Begriff Photoeffekt zu verstehen ist. Sie können den inneren Photoeffekt vom äusseren unterscheiden. Sie können das Experiment

Mehr

Welle-Teilchen-Dualismus

Welle-Teilchen-Dualismus Welle-Teilchen-Dualismus Andreas Pfeifer Proseminar, 2013 Andreas Pfeifer (Bielefeld) Welle-Teilchen-Dualismus 22. April 2013 1 / 10 Gliederung 1 Lichttheorie, -definition Newtons Korpuskulatortheorie

Mehr

Materiewellen und Welle-Teilchen-Dualismus

Materiewellen und Welle-Teilchen-Dualismus Materiewellen und Welle-Teilchen-Dualismus Vortrag zur Vorlesung Nanostrukturphysik Saarbrücken, den Vortragender: Tobias Baur > Welle-Teilchen-Dualismus Quantenobjekte sind gleichzeitig Wellen und Teilchen

Mehr

6.2 Schwarzer Strahler, Plancksche Strahlungsformel

6.2 Schwarzer Strahler, Plancksche Strahlungsformel 6. Schwarzer Strahler, Plancsche Strahlungsformel Sehr nappe Herleitung der Plancschen Strahlungsformel Ziel: Berechnung der Energieverteilung der Strahlung im thermischen Gleichgewicht bei der Temperatur

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse

Mehr

Festkörperelektronik 2008 Übungsblatt 1

Festkörperelektronik 2008 Übungsblatt 1 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 1. Übungsblatt 17. April 2008 Dozent:

Mehr

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung

Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik. Quantenmechanische Lösung Das Versagen der klassischen Physik Die Entwicklung der Quantenphysik Problem Thermisches Strahlungsspektrum Photoelektrischer Effekt, Compton Effekt Quantenmechanische Lösung Planck sche Strahlungsformel:

Mehr

Entwicklung der Atommodelle

Entwicklung der Atommodelle Entwicklung der Atommodelle Entwicklung der Atommodelle Demokrit 460 v Chr. Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

Mehr

Der Photoelektrische Effekt

Der Photoelektrische Effekt Der Photoelektrische Effekt Anna-Maria Klingenböck und Sarah Langer 16.10.2012 Inhaltsverzeichnis 1 Das Licht Welle oder Teilchen? 1 2 Eine einfache Variante 2 3 Versuchsaufbau 3 3.1 1. Versuch...............................

Mehr

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt

Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Ein Unterrichtsprojekt zur Quantenmechanik am Begabungsstützpunkt Andreas Kellerer (BSG Memmingen) Prof. Dr. Reinhold Rückl (Universität Würzburg) Die Rahmenbedingungen: Unterrichtsprojekt für den Kurs

Mehr

Moderne Physik. Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte. LC-Kreis - Schwingkreis. Sinusoszillator (HF-Generator)

Moderne Physik. Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte. LC-Kreis - Schwingkreis. Sinusoszillator (HF-Generator) LC-Kreis - Schwingkreis Moderne Physik Kondensator (C Kapazität) Spule (L Induktivität) Elektromagnetische Schwingungen und Wellen Photonen als Quantenobjekte I max I max U max U max Elektromagnetische

Mehr

Max Planck: Das plancksche Wirkungsquantum

Max Planck: Das plancksche Wirkungsquantum Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren

Mehr

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz

Versuch Q1. Äußerer Photoeffekt. Sommersemester Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch Q1 Äußerer Photoeffekt Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

file:///i /fernlehre skriptum/studienbrief3/inhalt.htm Atomphysik III Die Schwarzkörper-Strahlung - Einführung des Wirkungsquantums

file:///i /fernlehre skriptum/studienbrief3/inhalt.htm Atomphysik III Die Schwarzkörper-Strahlung - Einführung des Wirkungsquantums inhalt file:///i /fernlehre skriptum/studienbrief3/inhalt.htm Der Weg zur Quantenphysik Atomphysik III Viele Physiker glaubten am Ende des 19. Jahrhunderts, daß das physikalische Weltbild im Wesentlichen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Ein schwarzer Körper und seine Strahlung

Ein schwarzer Körper und seine Strahlung Quantenphysik 1. Hohlraumstrahlung und Lichtquanten 2. Max Planck Leben und Persönlichkeit 3. Das Bohrsche Atommodell 4. Niels Bohr Leben und Persönlichkeit 5. Wellenmechanik 6. Doppelspaltexperiment mit

Mehr

Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg

Quantenmechanik I. Jens Kortus TU Bergakademie Freiberg Quantenmechanik I Jens Kortus Jens.Kortus@physik.tu-freiberg.de TU Bergakademie Freiberg Literatur: Fließbach, Quantenmechanik, Spektrum Akademischer Verlag Nolting, Grundkurs Theoretische Physik, Quantenmechanik

Mehr

Einführung in die Quantenphysik

Einführung in die Quantenphysik Einführung in die Quantenphysik Klassische Optik Der lichtelektrische Effekt Effekte elektromagnetischer Strahlung Kopenhagen-Interpretation Elektronen Quantenphysik und klassische Physik Atomphysik Klassische

Mehr

Vorlesung 5: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation

Vorlesung 5: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation Vorlesung 5: Roter Faden: 5.1. Beugung und Interferenz von Elektronen 5.2. Materiewellen und Wellenpakete 5.3. Heisenbergsche Unschärferelation (Elektron: griechisch für Bernstein, der durch Reibung elektrostatisch

Mehr

9. Atomphysik und Quantenphysik 9.0 Atom (historisch)

9. Atomphysik und Quantenphysik 9.0 Atom (historisch) 9. Atomphysik und Quantenphysik 9.0 Atom (historisch) Atom: átomos (gr.) unteilbar. 5-4 Jh. v. Chr.: Demokrit und sein Lehrer Leukippos von Millet entwickeln Theorie der Atome Fragment 125 aus den Schriften

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden. Jürgen Stohner ZHW Winter 2007/8

Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden. Jürgen Stohner ZHW Winter 2007/8 Grundlagen der Quantenmechanik wie sie in der Spektroskopie benötigt werden Jürgen Stohner ZHW Winter 2007/8 Inhaltsübersicht Kap. 1 von Welle und Teilchen Einleitung Welleneigenschaften von Licht: Beugung

Mehr

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker

Quantenmechanik. Eine Kurzvorstellung für Nicht-Physiker Quantenmechanik Eine Kurzvorstellung für Nicht-Physiker Die Quantenvorstellung Der Ursprung: Hohlraumstrahlung Das Verhalten eines Von Interesse: idealen Absorbers Energiedichte in Abhängigkeit zur Wellenlänge

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 13. Übungsblatt - 31. Januar 211 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Der Mensch

Mehr

Von der Kerze zum Laser: Die Physik der Lichtquanten

Von der Kerze zum Laser: Die Physik der Lichtquanten Von der Kerze zum Laser: Die Physik der Lichtquanten Jörg Weber Institut für Angewandte Physik/Halbleiterphysik Technische Universität Dresden Was ist Licht? Wie entsteht Licht? Anwendungen und offene

Mehr

Quantenmechanik. Walter Greiner. Teill. Theoretische Physik. Ein Lehr- und Übungsbuch. Verlag Harri Deutsch. Band 4

Quantenmechanik. Walter Greiner. Teill. Theoretische Physik. Ein Lehr- und Übungsbuch. Verlag Harri Deutsch. Band 4 Theoretische Physik Band 4 Walter Greiner Quantenmechanik Teill Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen Lösungen 5., überarbeitete und erweiterte

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

14. Atomphysik. Inhalt. 14. Atomphysik

14. Atomphysik. Inhalt. 14. Atomphysik Inhalt 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Die Teilchenstrahlung

Die Teilchenstrahlung GoBack Die Teilchenstrahlung c Markus Baur October 19, 2010 1 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle, deren Bestandteil Photonen sind. 2 2 / 14 bisher bekannt: Das Licht ist eine Teilchenwelle,

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Hanbury Brown & Twiss Experiment. Quantenoptik

Hanbury Brown & Twiss Experiment. Quantenoptik Hanbury Brown & Twiss Experiment Die Geburtsstunde der Quantenoptik Stellares Michelson Interferometer k d k itöff ist Öffnungswinkel unter dem der Stern erscheint. x 1 x 2. l=d sin( ) ~ d Interferenz

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik

Welle-Teilchen- Dualismus. Miguel Muñoz Rojo Seminar zur Quantenphysik Welle-Teilchen- Dualismus Miguel Muñoz Rojo Seminar zur Quantenphysik I. Korpuskelcharakter von Wellen Gesetz von Planck Lichtelektrische Effekt Compton Effekt Gesetz von Planck Die Energie von einem Oszillator

Mehr

Curriculum Fach: Klasse: Hölderlin-Gymnasium Nürtingen. Physik

Curriculum Fach: Klasse: Hölderlin-Gymnasium Nürtingen. Physik Kursstufe (4-stündig) Curriculum Fach: Klasse: Physik Kerncurriculum Standard Inhalte Zeit Methoden Bemerkungen (Bildungsstandards nach S. 191, BP 2004) Das elektrische Feld (Elektrostatik) elektrische

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Grundlagen. Dies bedeutet, dass die Elektronenemission unabhängig von der Lichtintensität und unabhängig von der Bestrahlungsdauer. A.

Grundlagen. Dies bedeutet, dass die Elektronenemission unabhängig von der Lichtintensität und unabhängig von der Bestrahlungsdauer. A. Grundlagen Die Wissenschaft beschäftigte sich lange mit der Frage um die Natur des Lichts. Einerseits besitzt Licht viele Welleneigenschaften, weshalb es häufig als solche betrachtet wird. Doch andererseits

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Die Macht und Ohnmacht der Quantenwelt

Die Macht und Ohnmacht der Quantenwelt Die Macht und Ohnmacht der Quantenwelt Prof. Dr. Sebastian Eggert Tag der Physik, TU Kaiserslautern, 5. Dezember 2015 Quantenmechanik heute Quanteninformatik Ultrakalte Quantengase Supraleitung und Vielteilchenphysik

Mehr