Übersicht. Nebenläufige Programmierung: Praxis und Semantik. Synchronisation (4) Eine untere Schranke für den Platzbedarf

Größe: px
Ab Seite anzeigen:

Download "Übersicht. Nebenläufige Programmierung: Praxis und Semantik. Synchronisation (4) Eine untere Schranke für den Platzbedarf"

Transkript

1 Übersicht Komplexitätsresultate Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Synchronisation (4) Drei Komplexitätsresultate Eine genaue Schranke für den Platzbedarf Ein Resultat zur Laufzeit WS 009/0 TIDS Synchronisation (4) WS 009/0 D. Sabel /7 Komplexitätsresultate Eine untere Schranke für den Platzbedarf Platzbedarf Zeitbedarf Beachte: Modell ist immer noch: Nur atomare Lese- und Schreibbefehle für den gemeinsamen Speicher. Theorem Jeder Deadlock-freie Mutual-Exclusion Algorithmus für n Prozesse benötigt mindestens n gemeinsam genutzte Speicherplätze. (Beweis 980 on J.Burns und N.A. Lynch) TIDS Synchronisation (4) WS 009/0 D. Sabel 3/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 4/7

2 Eine obere Schranke für den Platzbedarf Idee des Ein-Bit-Algorithmus Programm des i. Prozesses Initial: für i =,... n want[i]= False, Theorem Es gibt einen Deadlock-freien Mutual-Exclusion Algorithmus für n Prozesse der n gemeinsame Bits erwendet. Beweis: Ein-Bit-Algorithmus sowohl J.E.Burns im Jahr 98 als auch on L.Lamport im Jahr 986 TIDS Synchronisation (4) WS 009/0 D. Sabel 5/7 loop foreer (P) restlicher Code (P) want[i]:= True; (P3) for local:= to n do (P4) if local i then await want[local] = False; (P5) Kritischer Abschnitt (P6) want[i] = False end loop Erfüllt wechselseitigen Ausschluss: Der erste Prozess im Kritischen Abschnitt hat want auf True, jeder andere wird dies lesen und stecken bleiben Erfüllt nicht die Deadlock-Freiheit Algorithmus so falsch! TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7 Der Ein-Bit-Algorithmus Der Ein-Bit-Algorithmus () Initial: für i =,... n want[i]= False, Programm des i. Prozesses loop foreer (P) restlicher Code (P) repeat (P3) want[i]:= True; (P4) local := : (P5) while (want[i] = True) and (local < i) do (P6) if want[local] = True then (P7) want[i] := False; (P8) await want[local] = False; (P9) local := local + (P0) until want[i] = True; (P) for local:= i+ to n do (P) await want[local] = False; (P3) Kritischer Abschnitt (P4) want[i] = False end loop Tests für j =... i Idee im Groben wie orher: Teste alle anderen want-wert auf False, beor in den KA eingetreten wird. Daher: wechselseitiger Ausschluss ist erfüllt. Tests für j = i +... n Initial: für i =,... n want[i]= False, Programm des i. Prozesses loop foreer (P) restlicher Code (P) repeat (P3) want[i]:= True; (P4) local := : (P5) while (want[i] = True) and (local < i) do (P6) if want[local] = True then (P7) want[i] := False; (P8) await want[local] = False; (P9) local := local + (P0) until want[i] = True; (P) for local:= i+ to n do (P) await want[local] = False; (P3) Kritischer Abschnitt (P4) want[i] = False end loop Deadlock-Freiheit: Beweis-Idee: Bei Deadlock-Auswertungsfolge kann man schließen: Irgendwann alle Prozesse: await in Zeile (8) in der for-schleife in Zeilen ()-() oder für immer im restlichen Code und: mind. ein Prozess in der for-schleife Prozess mit größter Nummer wird for-schleife durchlaufen TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 8/7

3 Eigenschaften des Ein-Bit-Algorithmus Garantiert wechselseitigen Ausschluss und Deadlock-Freiheit Staration ist möglich Nicht symmetrisch: Z.B. Prozess mit Nummer durchläuft die repeat-schleife sofort Nicht schnell: Wenn nur ein Prozess in den KA will, muss er alle n-bits testen Aber: Platz-optimal, da nur n-bits gemeinsamer Speicher TIDS Synchronisation (4) WS 009/0 D. Sabel 9/7 Ein Resultat zur Laufzeit Theorem (R. Alur und G.Taubenfeld, 99) Es gibt keinen (Deadlock-freien) Mutual-Exclusion Algorithmus für (oder auch n) Prozesse, der eine obere Schranke hat für die Anzahl an Speicherzugriffen (des gemeinsamen Speichers), die ein Prozess ausführen muss, beor er den kritischen Abschnitt betreten darf. D.h. Prozesse müssen beliebig lang warten bis sie in den kritischen Abschnitt dürfen Es gibt keinen Algorithmus der das erhindern kann Achtung: Für dieses Modell (Lese- und Schreiboperatiomen atomar)! Resultat meint alle Fälle, es gibt Unterfälle in denen man eine Schranke angeben kann z.b.: Fall, in dem nur ein Prozess in den kritischen Abschnitt will TIDS Synchronisation (4) WS 009/0 D. Sabel 0/7 Beweis Beweis() Sei M ein Deadlock-freier Mutual-Exclusion Algorithmus für Prozesse P und P Berechnungsbaum T M für M: binärer Baum Jeder Knoten entspricht Zustand der Ausführung (alle Belegungen) Wurzel: Erster interessanter Zustand: P und P direkt or dem Eintritt in Initialsierungscode linkes Kind eines Knotens: Nachfolgezustand nach einem Schritt on P rechtes Kind eines Knotens: Nachfolgezustand nach einem Schritt on P Blatt: P oder P hat kritischen Abschnitt betreten (dann stoppe) Markierung der Knoten on T M Blatt ist genau mit oder genau mit markiert, jenachdem welches P i im KA ist innerer Knoten ist mit, oder ( und ) markiert, je nachdem wie seine Kinder markiert sind. Ähnlichkeit Zwei Knoten, w sind ähnlich bzgl. P i (geschrieben P i w), gdw. Schritte die P i on der Wurzel zu macht = Schritte die P i on der Wurzel zu w macht Gemeinsame Variablen und lokalen Variablen on P i sind identisch für und w TIDS Synchronisation (4) WS 009/0 D. Sabel /7 TIDS Synchronisation (4) WS 009/0 D. Sabel /7

4 Beweis (3) Beweis (3) Theorem ist bewiesen wenn: Für jedes n > 0 und i {, }: Es gibt ein Blatt mit Markierung i, sodass auf dem Pfad on der Wurzel bis zu werden mehr als n Schritte für Prozess P i ausgeführt Theorem ist bewiesen wenn: Für jedes n > 0 und i {, }: Es gibt ein Blatt mit Markierung i, sodass auf dem Pfad on der Wurzel bis zu werden mehr als n Schritte für Prozess P i ausgeführt Wurzel > n mal nach links Wurzel > n mal nach rechts TIDS Synchronisation (4) WS 009/0 D. Sabel 3/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 3/7 Beweis (4) Beweis (5) Fall: Es gibt unendlichen langen Pfad in T M, der unendlich iele Knoten enthält, die alle mit i markiert sind und Prozess P i für unendlich iele Schritte auf diesem Pfad aus. i i i Prozess i führt -oft einen Schritt durch Wir zeigen nun: Annahme A führt zum Widerspruch. Da Algorithmus Deadlock-frei muss gelten (w.g. Annahme A): Es gibt Knoten,, mit ist mit, markiert Die beiden Knoten und sind jeweils mit genau einer Zahl markiert. unendlich lang Dann: Für jedes n kann der gesuchte Pfad konstruiert werden. Deshalb: Annahme A: T M hat keinen solchen unendlichen Pfad TIDS Synchronisation (4) WS 009/0 D. Sabel 4/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 5/7

5 Beweis (6): Fall : mit, mit markiert Beweis (6): Fall : mit, mit markiert, e e e, e e ρ ρ ρ ρ ρ Annahme A = linkester Pfad endlich lang, rechtester Pfad endlich lang (Blatt mit bzw. markiert) TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7 e Lese-Operation: Dann gilt P und auch P. Widerspruch, da ρ auch für zu Blatt mit führen muss TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7 Beweis (6): Fall : mit, mit markiert, e e ρ ρ ρ e Beweis (6): Fall : mit, mit markiert e, e e ρ ρ ρ e Lese-Operation: Dann gilt P und auch P. Widerspruch, da ρ auch für zu Blatt mit führen muss e und e Schreibe-Operation auf gleiche Variablen: Dann gilt P Widerspruch (wie orher) TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7

6 Beweis (6): Fall : mit, mit markiert Beweis (7): Fall : mit, mit markiert, e e e e, e e ρ ρ ρ ρ ρ ρ e und e Schreibe-Operation auf erschiedene Variablen: Dann gilt P i für i =,. Widerspruch: Da Markierungen unmöglich TIDS Synchronisation (4) WS 009/0 D. Sabel 6/7 P nicht im KA in = P nicht im KA in = ganz links ab (da nur P Schritte macht) TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7 Beweis (7): Fall : mit, mit markiert Beweis (7): Fall : mit, mit markiert, e e e, e e ρ ρ ρ ρ ρ analog: ganz rechts ab e ist Leseoperation. Dann P. ρ auch on aus ausführen. = unendlicher langer Pfad aus P -Schritten, alle Knoten mit markiert. Widerspruch zu Annahme A. TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7

7 Beweis (7): Fall : mit, mit markiert Beweis (7): Fall : mit, mit markiert, e e e, e e ρ ρ e ρ ρ ρ ρ e ist Leseoperation: analog e und e Schreiboperationen in die gleiche Variable. Dann gilt P. Widerspruch. TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7 TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7 Beweis (7): Fall : mit, mit markiert, e e e e ρ ρ ρ ρ e und e Schreiboperationen in erschiedene Variablen. Dann gilt für i =, : P i,. Unmöglich. TIDS Synchronisation (4) WS 009/0 D. Sabel 7/7

Übersicht. Nebenläufige Programmierung: Praxis und Semantik. Synchronisation (5) Bisher. Jetzt. Aktuelle Themen zu Informatik der Systeme: WS 2011/12

Übersicht. Nebenläufige Programmierung: Praxis und Semantik. Synchronisation (5) Bisher. Jetzt. Aktuelle Themen zu Informatik der Systeme: WS 2011/12 Stand der Folien: 15. November 2011 Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Synchronisation (5) 1 Übersicht über die Operationen Mutual-Exclusion

Mehr

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen)

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) Betriebssysteme G: Parallele Prozesse (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) 1 Allgemeine Synchronisationsprobleme Wir verstehen ein BS als eine Menge von parallel

Mehr

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion Betriebssysteme Vorlesung im Herbstsemester 2010 Universität Mannheim Kapitel 6: Speicherbasierte Prozessinteraktion Felix C. Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012 Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Sander Bruggink Automaten und Formale Sprachen 1 Abgeschlossenheit (Definition)

Mehr

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

Theoretische Informatik SS 03 Übung 3

Theoretische Informatik SS 03 Übung 3 Theoretische Informatik SS 03 Übung 3 Aufgabe 1 a) Sind die folgenden Funktionen f : partiell oder total: f(x, y) = x + y f(x, y) = x y f(x, y) = x y f(x, y) = x DIV y? Hierbei ist x DIV y = x y der ganzzahlige

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Softwarelösungen: Versuch 4

Softwarelösungen: Versuch 4 Softwarelösungen: Versuch 4 Nichtstun in Schleife wird ersetzt durch zeitweilige Zurücknahme der Anforderung, um es anderen Prozessen zu erlauben, die Ressource zu belegen: /* Prozess 0 */ wiederhole flag[0]

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften

Abschlusseigenschaften. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Abschlusseigenschaften Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Abgeschlossenheit (Definition) Gegeben sei eine Menge M und ein n-ärer

Mehr

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3)

Datenstrukturen und Algorithmen Beispiellösung zu Heimübungsblatt 7. Abbildung 1: Das Array A als Baum (vgl. Foliensatz 16, Folie 3) Aufgabe 3 a) Wir verwenden zur Lösung den Algorithmus Build-Heap 1, dieser verwendet die Funktion Heapify. Unser Array A ist gegeben durch [7, 10,, 5, 5,, 3, 3, 17]. 10 5 5 3 17 7 Abbildung 1: Das Array

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

1.1 Transitionssysteme Produkte von Transitionssystemen Kripkestrukturen Verifikation und Model-Checking...

1.1 Transitionssysteme Produkte von Transitionssystemen Kripkestrukturen Verifikation und Model-Checking... Transitionssysteme und Verifikation 3. Transitionssysteme.................................. 3. Produkte von Transitionssystemen......................... 9.3 Automaten und reguläre Sprachen.........................

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

10. Sortieren III. Untere Schranken für das vergleichsbasierte Sortieren, Radix- und Bucketsort

10. Sortieren III. Untere Schranken für das vergleichsbasierte Sortieren, Radix- und Bucketsort 280 10. Sortieren III Untere Schranken für das vergleichsbasierte Sortieren, Radix- und Bucketsort 281 10.1 Untere Grenzen für Vergleichbasiertes Sortieren [Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI33 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 3: Verifikationstechniken Teil 3: FH Wedel Prof. Dr. Sebastian Iwanowski GTI33

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am

Kurs 1613 Einführung in die imperative Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 Analysiert man das Verfahren anhand des angegebenen Beispiels, ist schnell zu erkennen, dass das erste Element von infeld2 nach outfeld an Index 2 kopiert wird, das zweite den Index 4 bekommt,

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Turing-Maschinen: Ein abstrakes Maschinenmodell

Turing-Maschinen: Ein abstrakes Maschinenmodell Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen

Mehr

Bitte füllen Sie den untenstehenden Abschnitt nicht aus

Bitte füllen Sie den untenstehenden Abschnitt nicht aus Institut für Informatik Prof. Dr. Michael Böhlen Binzmühlestrasse 14 8050 Zurich Telefon: +41 44 635 4333 Email: boehlen@ifi.uzh.ch AlgoDat Midterm1 Frühjahr 2014 28.03.2014 Name: Matrikelnummer: Hinweise

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Aufgabe (Schreibtischtest, lexikographische Ordnung)

Aufgabe (Schreibtischtest, lexikographische Ordnung) Aufgabe (Schreibtischtest, lexikographische Ordnung) Führen Sie einen Schreibtischtest für den Algorithmus Bubblesort aus der VL für die folgenden Eingabe-Arrays durch. Geben Sie das Array S nach jedem

Mehr

Cognitive Interaction Technology Center of Excellence

Cognitive Interaction Technology Center of Excellence Kanonische Abdeckung Motivation: eine Instanz einer Datenbank muss nun alle funktionalen Abhängigkeiten in F + erfüllen. Das muss natürlich immer überprüft werden (z.b. bei jedem update). Es reicht natürlich

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012

Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 2011/2012 Die Höhe von binären Suchbäumen Ausarbeitung zum Seminar zu Stochastischen Rekursionsgleichungen im WS 011/01 Sandra Uhlenbrock 03.11.011 Die folgende Ausarbeitung wird, basierend auf Branching Processes

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Effiziente Algorithmen 2

Effiziente Algorithmen 2 Effiziente Algorithmen 2 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

14. Sortieren II Heapsort. Heapsort. [Max-]Heap 7. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 14. Sortieren II 14.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 397 398 Heapsort [Max-]Heap 7 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum

Mehr

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am

Kurs 1612 Konzepte imperativer Programmierung Musterlösung zur Nachklausur am 1 Aufgabe 1 a) Da Effizienzbetrachtungen bei der Lösung der Aufgabe keine Rolle spielen, wählen wir einen einfachen, aber ineffizienten Algorithmus mit zwei ineinander verschachtelten for-schleifen. Dadiefor-Schleifen

Mehr

Klausur Algorithmen und Datenstrukturen I WS 05/06

Klausur Algorithmen und Datenstrukturen I WS 05/06 FH Braunschweig/Wolfenbüttel Fachbereich Informatik Prof. Dr. R. Rüdiger Wolfenbüttel, den 10. Januar 2006 Klausur Algorithmen und Datenstrukturen I WS 05/06 Hinweise: Es sind beliebige schriftliche Unterlagen

Mehr

Exkurs: Graphtraversierung

Exkurs: Graphtraversierung Sanders: Informatik III November 28, 2006 1 Exkurs: Graphtraversierung Begriffe Graphrepräsentation Erreichbarkeit mittels Tiefensuche Kreise Suchen Sanders: Informatik III November 28, 2006 2 Gerichtete

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { Programm sortiert das Eingabefeld iofeld aufsteigend var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1;

Mehr

String - Matching. Kapitel Definition

String - Matching. Kapitel Definition Kapitel 1 String - Matching 1.1 Definition String - Matching ( übersetzt in etwa Zeichenkettenanpassung ) ist die Suche eines Musters ( Pattern ) in einem Text. Es findet beispielsweise Anwendung bei der

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Berechenbarkeit und Komplexität Vorlesung 11

Berechenbarkeit und Komplexität Vorlesung 11 Berechenbarkeit und Komplexität Vorlesung 11 Prof. Dr. Wolfgang Thomas Lehrstuhl Informatik 7 RWTH Aachen 7. Dezember 2014 Wolfgang Thomas, Informatik 7 () Vorlesung Berechenbarkeit und Komplexität 7.

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Kurs 1613 Einführung in die imperative Programmierung Lösungen der Aufgaben zum Studientag

Kurs 1613 Einführung in die imperative Programmierung Lösungen der Aufgaben zum Studientag Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { Programm sortiert das Eingabefeld iofeld aufsteigend var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1;

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

Informatik I Übung, Woche 40

Informatik I Übung, Woche 40 Giuseppe Accaputo 1. Oktober, 2015 Plan für heute 1. Nachbesprechung Übung 2 2. Vorbesprechung Übung 3 3. Zusammenfassung der für Übung 3 wichtigen Vorlesungsslides Informatik 1 (D-BAUG) Giuseppe Accaputo

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda Amortisierte Analyse Suche in sortierten Arrays Heaps Vorstellen des fünften Übungsblatts

Mehr

OpenMP - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009

OpenMP - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009 - Threading- Spracherweiterung für C/C++ Matthias Klein, Michael Pötz Systemprogrammierung 15. Juni 2009 Grundlagen der Parallelen Programmierung Hardware Threads vs. Prozesse Kritische Abschnitte Lange

Mehr

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016

Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016 Algorithmen und Datenstrukturen Übung Stefan Florian Palkovits, BSc 09 e09@student.tuwien.ac.at 9. Juni 0 Aufgabe 9: Anwenden der Spanning Tree Heuristik auf symmetrisches TSP 9 8 7 8 8 7 Bilden eines

Mehr

Reihungen. Prof. Dr. Christian Böhm. In Zusammenarbeit mit Gefei Zhang. WS 07/08

Reihungen. Prof. Dr. Christian Böhm. In Zusammenarbeit mit Gefei Zhang.   WS 07/08 Reihungen Prof. Dr. Christian Böhm In Zusammenarbeit mit Gefei Zhang http://www.dbs.ifi.lmu.de/lehre/nfinfosw WS 07/08 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1) für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach

Mehr

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage Logik Die Logik ist in der Programmierung sehr wichtig. Sie hilft z.b. bei der systematischen Behandlung von Verzweigungen und Schleifen. z.b. if (X Y und Y>0) then Oder beim Beweis, dass ein Algorithmus

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 2 Übung zur Vorlesung Grundlagen: Datenbanken im WS3/4 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws34/dbsys/exercises/

Mehr

Reihungen. Martin Wirsing. in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang

Reihungen. Martin Wirsing. in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang Reihungen Martin Wirsing in Zusammenarbeit mit Michael Barth, Fabian Birzele und Gefei Zhang http://www.pst.informatik.uni-muenchen.de/lehre/ws0506/infoeinf/ WS 05/06 2 Ziele Die Datenstruktur der Reihungen

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] Heapsort 211 Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

2 Hennessy-Milner-Logik

2 Hennessy-Milner-Logik 2.1 Syntax und Semantik Hennessy-Milner-Logik (HML), auch als multi-modale Logik K bekannt, erweitert die Aussagenlogik um zwei Konstrukte ( diamond und box ), mit denen man über Nachfolger eines Zustandes

Mehr

Zufall oder Absicht?

Zufall oder Absicht? Zufall oder Absicht? Randomisierung und Derandomisierung Prof. Markus Bläser Universität des Saarlandes 4. Januar 2010 1 / 21 Zufall oder Absicht? 1 Randomisierte Algorithmen 2 Polynom-Identitätstests

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH)

Formale Systeme. Prof. Dr. Bernhard Beckert. Winter 2008/2009. Fakultät für Informatik Universität Karlsruhe (TH) Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe (TH) Winter 2008/2009 Prof. Dr. Bernhard Beckert Formale Systeme Winter 2008/2009 1 / 22 Kalküle für die Aussagenlogik

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 2: Generierung von Primzahlen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 15.11.2018 Einleitung Einleitung Diese Lerneinheit

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik

Mehr

2.4 Starke Zusammenhangskomponenten in Digraphen

2.4 Starke Zusammenhangskomponenten in Digraphen Starke Zusammenhangskomponenten Einleitung 2.4 Starke Zusammenhangskomponenten in Digraphen Definition 2.4.1 Zwei Knoten v und w in einem Digraphen G heißen äquivalent, wenn v w und w v gilt. Notation:

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

5.3 Korrektheit und Verifikation

5.3 Korrektheit und Verifikation 5.3 Korrektheit und Verifikation Korrektheit bedeutet, dass ein Algorithmus oder ein Programm das in der Spezifikation beschriebene Problem für beliebige Eingabedaten korrekt löst. Die Korrektheit kann

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Übersicht Formale Semantik. Übersicht Axiomatische Semantik. Inhaltsübersicht HPS WS 2003/04. Vorlesung Höhere Programmiersprachen,

Übersicht Formale Semantik. Übersicht Axiomatische Semantik. Inhaltsübersicht HPS WS 2003/04. Vorlesung Höhere Programmiersprachen, Vorlesung Höhere Programmiersprachen, WS 2003/04 Teil 2: Formale Semantik Axiomatische Semantik Inhaltsübersicht - Grundlagen (1,2) - Konzepte imperativer Programmiersprachen (2,3) - Deklarative Programmiersprachen

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik

> Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013. Parallele und Verteilte Systeme, Institut für Informatik > Parallele Systeme Übung: 4. Übungsblatt Philipp Kegel Wintersemester 2012/2013 Parallele und Verteilte Systeme, Institut für Informatik Inhaltsverzeichnis 2 1 Besprechung des 4. Übungsblattes Aufgabe

Mehr

Algorithmische Geometrie: Abfragen Orthogonaler Bereiche

Algorithmische Geometrie: Abfragen Orthogonaler Bereiche Algorithmische Geometrie: Abfragen Orthogonaler Bereiche Nico Düvelmeyer WS 2009/2010, 8.12.2009 Überblick 1 1-dimensionale Bereichsabfragen 2 Kd-Baum Struktur Aufbau Abfrage mit dem Kd-Baum 3 Range-Baum

Mehr

EINI LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12

EINI LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12 EINI LW Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 11/12 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

19. Nichtdeterministische Turingmaschinen und ihre Komplexität

19. Nichtdeterministische Turingmaschinen und ihre Komplexität 19. Nichtdeterministische Turingmaschinen und ihre Komplexität Bei einem Turingmaschinenprogramm P aus bedingten Anweisungen wird durch die Forderung i a b B j i a b B j i a sichergestellt, dass zu jeder

Mehr

Grundlagen der Theoretischen Informatik: Übung 10

Grundlagen der Theoretischen Informatik: Übung 10 Grundlagen der Theoretischen Informatik: Übung 10 Joachim Selke Fachgebiet Theoretische Informatik Universität Hannover 20. Januar 2005 Turing-Maschinen als Rechenmaschinen gegeben sei eine Funktion f

Mehr

Kontrollstrukturen -- Schleifen und Wiederholungen

Kontrollstrukturen -- Schleifen und Wiederholungen Kontrollstrukturen -- Schleifen und Wiederholungen Informatik für Elektrotechnik und Informationstechnik Benedict Reuschling benedict.reuschling@h-da.de Hochschule Darmstadt Fachbereich Informatik WS 2013/14

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Proportional Symbol Maps

Proportional Symbol Maps Proportional Symbol Maps Florian Simon 8. Dezember, 2009 Proportional Symbol Maps Gegeben: Punkte p 1,..., p n R 2 mit zugeordneten Werten w 1,..., w n R Proportional Symbol Maps Gegeben: Punkte p 1,...,

Mehr