Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten

Größe: px
Ab Seite anzeigen:

Download "Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten"

Transkript

1 Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten 1 / 20

2 Lineares Gleichungssystem Ax = f, n A[i, j]x j = f i j=1 für i = 1,..., n Voraussetzungen Matrix A sei symmetrisch: A[i, j] = A[j, i] Matrix A sei positiv definit: (Au, u) > 0 für alle u R n Definition: Ein System {p k } n 1 k=0 von n Vektoren pk R n heißt A orthogonal oder konjugiert, falls gilt: (Ap k, p j ) = (p k, Ap j ) = 0 für k j, (Ap k, p k ) > 0 2 / 20

3 Lineares Gleichungssystem Ax = f Darstellung des Lösungsvektors x = n x k e k k=1 mit Einheitsvektoren e k R n oder x = x 0 α l p l mit konjugierten Vektoren p l R n und einem beliebigen Startvektor x 0 R n. Bestimmung der konjugierten Vektoren p l Bestimmung der Zerlegungskoeffizienten α l 3 / 20

4 Lineares Gleichungssystem Ax = f, x = x 0 α l p l Einsetzen Ax 0 α l Ap l = f Skalarprodukt mit konjugierten Vektoren p j Zerlegungskoeffizienten α l (Ap l, p j ) = (Ax 0 f, p j ) α l = (Ax 0 f, p l ) (Ap l, p l ) für l = 0,..., n 1 4 / 20

5 Definition einer Näherungslösung x k k 1 = x 0 α l p l, x n = x, α l = (Ax 0 f, p l ) (Ap l, p l ) Rekursive Definition x k+1 = x 0 α l p l Es ist k 1 = x 0 α l p l α k p k = x k α k p k, α k = (Ax 0 f, p k ) (Ap k, p k ) k 1 (Ax 0 f, p k ) = (Ax 0 f, p k ) α l (Ap l, p k ) k 1 = (Ax 0 α l Ap l f, p k ) = (Ax k f, p k ) = (r k, p k ) 5 / 20

6 Rekursionsvorschrift x k+1 = x k α k p k, α k = (r k, p k ) (Ap k, p k ) Residuum Rekursionsvorschrift r k = Ax k f r k+1 = Ax k+1 f = A(x k α k p k ) f = Ax k f α k Ap k = r k α k Ap k Bestimmung der konjugierten Vektoren p k 6 / 20

7 System linear unabhängiger Vektoren {w l } n 1, w l = e l+1 Einheitsvektoren [Fox, Huskey, Wilkinson 1948] System konjugierter Vektoren {p l } n 1 : (Apl, p j ) = (p l, Ap j ) = 0 für l j Orhogonalisierungsverfahren nach Gram Schmidt p 0 = w 0 p k+1 = w k+1 β kl p l für k = 0,..., n 2 0! = (Ap k+1, p j ) = (Aw k+1, p j ) β kl (Ap l, p j ) = (Aw k+1, p j ) β kj (Ap j, p j ), β kj = (Aw k+1, p j ) (Ap j, p j ) Bestimmung der linear unabhängigen Ausgangsvektoren w k 7 / 20

8 Iterationsvorschrift für Suchrichtungen p 0 = w 0, p k+1 = w k+1 β kl p l, β kl = (Aw k+1, p l ) (Ap l, p l ) Iterationsvorschrift für Näherungslösungen Es gilt x k+1 = x k α k p k, r k+1 = r k α k Ap k, α k = (r k, p k ) (Ap k, p k ) (r k+1, p k ) = (r k α k Ap k, p k ) = (r k, p k ) α k (Ap k, p k ) = 0 (r k+1, p k 1 ) = (r k, p k 1 ) α k (Ap k, p k 1 ) = 0 Durch vollständige Induktion folgt (r k+1, p l ) = 0 für l = 0,..., k 8 / 20

9 Orthogonalität (r k+1, p l ) = 0 für l = 0,..., k Iterationsvorschrift für Suchrichtungen p 0 = w 0, p k+1 = w k+1 β kl p l, β kl = (Aw k+1, p l ) (Ap l, p l ) Dann gilt l 1 l 1 (r k+1, w l ) = (r k+1, p l + β l 1,j p j ) = (r k+1, p l ) + β l 1,j (r k+1, p j ) = 0 j=0 j=0 Orthogonalität (r k+1, w l ) = 0 für l = 0,..., k Die Vektoren w 0,..., w k, r k+1 sind linear unabhängig: w k+1 = r k+1 9 / 20

10 Initialisierung x 0, r 0 = Ax 0 f, p 0 = r 0 Iterationsvorschrift x k+1 = x k α k p k, r k+1 = r k α k Ap k, α k = (r k, p k ) (Ap k, p k ) Orthogonalitäten Dann gilt p k+1 = r k+1 β kl p l, β kl = (Ar k+1, p l ) (Ap l, p l ) (r k+1, p l ) = 0, (r k+1, w l ) = (r k+1, r l ) = 0 für l = 0,..., k k 1 k 1 (r k, p k ) = (r k, r k β k 1,l p l ) = (r k, r k ) β k 1,l (r k, p l ) = (r k, r k ) 10 / 20

11 Iterationsvorschrift r k+1 = r k α k Ap k, α k = (r k, r k ) (Ap k, p k ) > 0, Apk = 1 α k [r k r k+1 ] Suchrichtungen Berechnung von β kl p k+1 = r k+1 β kl p l, β kl = (Ar k+1, p l ) (Ap l, p l ) (Ar k+1, p l ) = (r k+1, Ap l ) = 1 0 für l < k, (r k+1, r l r l+1 ) = α l 1 (r k+1, r k+1 ) für l = k α k Damit ist β kl = 0 für l < k, β kk = (r k+1, r k+1 ) α k (Ap k, p k ) 11 / 20

12 Suchrichtung Erinnerung Wegen p k+1 = r k+1 + β k p k, β k = (r k+1, r k+1 ) α k (Ap k, p k ) r k+1 = r k α k Ap k, (r k+1, p l ) = 0 für l = 0,..., k α k (Ap k, p k ) = (r k r k+1, p k ) = (r k, p k ) = (r k, r k + β k 1 p k 1 ) = (r k, r k ) ist schließlich p k+1 = r k+1 + β k p k, β k = (r k+1, r k+1 ) (r k, r k ) 12 / 20

13 Iterationsvorschrift des Verfahrens konjugierter Gradienten [Hestenes, Stiefel 1952] Für eine beliebig gegebene Startnäherung x 0 R n sei r 0 = Ax 0 f. Setze p 0 := r 0 und berechne ϱ 0 = (r 0, r 0 ). Stoppe, falls ϱ 0 < ε 2 mit einer vorgegebenen Fehlergenauigkeit ε erreicht ist. Berechne für k = 0, 1,..., n 2 : s k = Ap k, σ k = (s k, p k ), α k = ϱ k σ k x k+1 := x k α k p k r k+1 := r k α k s k ϱ k+1 := (r k+1, r k+1 ) Stoppe, falls ϱ k+1 < ε 2 ϱ 0 mit einer vorgegebenen Fehlergenauigkeit ε erreicht ist. Berechne andernfalls die neue Suchrichtung p k+1 := r k+1 + β k p k, β k := ϱ k+1 ϱ k 13 / 20

14 Iterationsvorschrift des Verfahrens konjugierter Gradienten Aufwand pro Iterationsschritt eine Matrix Vektor Multiplikation s k = Ap k zwei Skalarprodukte zur Berechnung von σk und ϱ k+1 drei Vektoradditionen zur Berechnung von x k+1, r k+1, p k+1 Speicherbedarf Matrix A, rechte Seite f, Lösungsvektor x Residuum r, Suchrichtung p, Hilfsvektor s Konvergenz Berechnung der exakten Lösung x = x n Interpretation als direktes Verfahren Konvergenzabschätzung Wie viele Iterationsschritte sind ausreichend, um eine vorgegebene Genauigkeit zu erreichen? 14 / 20

15 Lösung Näherungslösung Fehler Es gilt x = x 0 α l p l x k+1 = x 0 α l p l e k+1 = x k+1 x = e k+1 2 A = (Ae k+1, e k+1 ) = (A = l=k+1 α l p l, l=k+1 j=k+1 l=k+1 α l p l j=k+1 α j p j ) α l α j (Ap l, p j ) = l=k+1 α 2 l(ap l, p l ) 15 / 20

16 Fehler Für ergibt sich analog x k+1 x 2 A = x = x 0 α l p l, l=k+1 α 2 l(ap l, p l ) u = x 0 γ l p l u x 2 A = [α l γ l ] 2 (Ap l, p l ) + l=k+1 α 2 l(ap l, p l ) Minimierungsproblem x k+1 x 2 A = min u=x 0 k P γ l p l u x 2 A = min γ 0,...,γ k e 0 γ l p l 2 A 16 / 20

17 Darstellung von Residuum und Suchrichtung durch Matrix Polynome r k = ϕ k (A)r 0, p k = ψ k (A)r 0 Initialisierung r 0 = Ax 0 f = ϕ 0 (A)r 0, p 0 = r 0 = ψ 0 (A)r 0, ϕ 0 (A) = ψ 0 (A) = I Iterationsvorschriften r k+1 = r k α k Ap k = ϕ k (A)r 0 α k Aψ k (A)r 0 = [ϕ k (A) α k Aψ k (A)]r 0 = ϕ k+1 (A)r 0 p k+1 = r k+1 + β k p k = ϕ k+1 (A)r 0 + β k ψ k (A)r 0 = [ϕ k+1 (A) + β k ψ k (A)]r 0 = ψ k+1 (A)r 0 Dann ist γ l p l = γ l ψ l (A)r 0 = q k (A)r 0 mit einem Matrix Polynom q k (A) mit Polynomgrad k 17 / 20

18 Darstellung des Residuums Minimierungsproblem r k = Ax k f = Ax k Ax = A(x k x) = Ae k x k+1 x 2 A = min γ 0,...,γ k e 0 Fehlerabschätzung γ l p l 2 A = min q k (A) e0 q k (A)r 0 2 A = min (I q k(a)a)e 0 2 A = min p k+1(a)e 0 2 A q k (A) p k+1 (A),p k+1 (0)=1 x k+1 x A = min p k+1 (A),p k+1 (0)=1 p k+1(a)e 0 A min p k+1 (A),p k+1 (0)=1 min p k+1 (A),p k+1 (0)=1 = max λ [λ min (A),λ max(a)] T k+1 (λ) max p k+1(λ j (A)) e 0 A j=1,...,n max p k+1(λ) e 0 A λ [λ min (A),λ max(a)] 18 / 20

19 Satz mit q = x k x A κ2 (A) + 1 κ2 (A) 1, 2qk 1 + q 2k x 0 x A κ 2(A) = A 2 A 1 2 = λ max(a) λ min (A) 19 / 20

20 Krylov Raum S k (A, r 0 ) = span{p 0, p 1,..., p k } = span{r 0, Ar 0, A 2 r 0,..., A k r 0 } Krylov Raum Verfahren 20 / 20

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Das CG-Verfahren. Sven Wetterauer

Das CG-Verfahren. Sven Wetterauer Das CG-Verfahren Sven Wetterauer 06.07.2010 1 Inhaltsverzeichnis 1 Einführung 3 2 Die quadratische Form 3 3 Methode des steilsten Abstiegs 4 4 Methode der Konjugierten Richtungen 6 4.1 Gram-Schmidt-Konjugation.........................

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen 1 / 16 Vektorraum u R n, u = (u 1,..., u n ), u k R Euklidisches Skalarprodukt Euklidische Vektornorm (u, v) = u k v k u 2 = (u, u) = n u 2 k Vektoren u, v R n heißen orthogonal,

Mehr

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017

Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 2016/2017 Lösungen zu Blatt 13 der Übungen zur Vorlesung Numerik, LMU München, Wintersemester 01/017 Peter Philip, Sabine Bögli. Januar 017 1. 10 Punkte) a) Betrachten Sie R mit der Maximumsnorm. Berechnen Sie die

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15.

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15. Lanczos Methoden Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann 15. Juni 2005 Lanczos-Methoden Lanczos-Methoden sind iterative Verfahren zur

Mehr

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Kapitel 4 Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Situation: A C n n schwach besetzt, n groß, b C n. Ziel: Bestimme x C n mit Ax = b. 4.1 Spliting-Methoden Die Grundidee ist hier

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen und Wiederholung (1) Die Grundlagen decken sich mit dem Stoff, der einen Teil des Kapitels 2 - Numerik ausmacht und bereits in Mathematik behandelt

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

KAPITEL 2. K m und L m des R n zu bestimmen. Dabei sollen die folgenden Beziehungen gelten: u m u (0) + K m. sowie

KAPITEL 2. K m und L m des R n zu bestimmen. Dabei sollen die folgenden Beziehungen gelten: u m u (0) + K m. sowie KAPITEL 2 Projektionsmethoden In diesem Kapitel beschäftigen wir uns mit Projektionsmethoden zur iterativen Lösung von linearen Gleichungssystemen der Form Au = f mit einer regulären Matrix A R n n und

Mehr

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand PCG Verfahren Zur Verbesserung des Konvergenzverhaltens des CG-Verfahrens, wird in der Praxis oft ein geeigneter Vorkonditionierer konstruiert. Vorraussetzungen an einen Vorkonditionierer B sind: B ist

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

Numerik II. Roland Pulch

Numerik II. Roland Pulch Numerik II Roland Pulch Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Skript zu Iterativer Lösung linearer Gleichungssysteme

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, T I I T I. A 1 = 1 h 2 I T. T R (n 1) (n 1) und I ist die (n 1) (n 1)-Identitätsmatrix.

A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, T I I T I. A 1 = 1 h 2 I T. T R (n 1) (n 1) und I ist die (n 1) (n 1)-Identitätsmatrix. KAPITEL 13. Große dünnbesetzte LGS, iterative Löser Erstes Beispielproblem: die diskretisierte Poisson-Gleichung wobei A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, A 1 = 1 h 2 T I I T I......... I T I I

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

KAPITEL 7. Berechnung von Eigenwerten. Av = λv

KAPITEL 7. Berechnung von Eigenwerten. Av = λv KAPITEL 7. Berechnung von Eigenwerten Aufgabe: Sei A R n n eine reelle quadratische Matrix. Gesucht λ C und v C n, v 0, die der Eigenwertgleichung Av = λv genügen. Die Zahl λ heißt Eigenwert und der Vektor

Mehr

Komplexe Lineare Algebra. Lösung allgemeiner Linearer Systeme (m n möglich) Die Lösbarkeit eines linearen Systems

Komplexe Lineare Algebra. Lösung allgemeiner Linearer Systeme (m n möglich) Die Lösbarkeit eines linearen Systems Determinante und Inverse Lösung allgemeiner Linearer Systeme (m n möglich) Die Lösbarkeit eines linearen Systems Ax = b R m, x R n, A R mn hängt sehr stark vom sogenannten Rang der m n Matrix A ab Diese

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Klausur Ingenieurmathematik am. September 5 (mit Lösungen) Name Matr.-Nr. Vorname Unterschrift Aufgabe 3 5 7 Summe Note Punkte Die Klausur

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

So lösen Sie das Problem der unendlichen Elemente

So lösen Sie das Problem der unendlichen Elemente Finite Elemente I 103 4 Die Lösung der diskreten Poisson-Gleichung Die Galerkin-Matrix der FE-Diskretisierung der Poisson-RWA (3.1) ist symmetrisch und positiv-definit (gilt nicht notwendig für andere

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

3 Die Lösung der diskreten Poisson-Gleichung

3 Die Lösung der diskreten Poisson-Gleichung Finite Elemente I 90 3 Die Lösung der diskreten Poisson-Gleichung Die Galerkin-Matrix der FE-Diskretisierung der Poisson-RWA (2.1) ist symmetrisch und positiv-definit (gilt nicht notwendig für andere Dgln.)

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

6 GMRES und verwandte Verfahren

6 GMRES und verwandte Verfahren 6 GMRES und verwandte Verfahren Dieses Kapitel beschäftigt sich mit dem so genannten GMRES Verfahren und einigen Varianten zur Lösung von linearen Gleichungssystemen mit einer nur noch regulären Koeffizientenmatrix

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4 Lineare Algebra/Analytische Geometrie II SoSe 2016 Bearbeiten Sie bitte zwei

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Der LLL - Algorithmus Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Autor: Konrad Schade Betreuer: Prof. Dr. J. Rambau 1 Einführung 1.1 Motivation In dieser Arbeit soll die Verwendung des LLL-Algotithmuses

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 55 Studienplanung Bachelor

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Gruppe II Lineare Algebra

Gruppe II Lineare Algebra Pflichtbereichs Klausur in der Lehrerweiterbildung am 7.Juni 22 Bearbeiten Sie 3 der folgenden 6 Aufgaben, dabei aus jeder der beiden Gruppen (Lineare Algebra und Analysis) mindestens eine Aufgabe! Zur

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 27 L I N E A R E A L G E B R A F Ü R T P H, U E (.64) 2. Haupttest (FR, 9..28) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Numerische Mathematik für das Lehramt

Numerische Mathematik für das Lehramt Numerische Mathematik für das Lehramt Skriptum zur Vorlesung im SS 009 PD Dr. Markus Neher Universität Karlsruhe (TH) Forschungsuniversität gegründet 85 Institut für Angewandte und Numerische Mathematik

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW

AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW AUFGABENSAMMLUNG ZU VEKTORRECHNUNG FÜR USW Lineare Gleichungssysteme Lösen Sie folgende Gleichungssysteme über R: a) x + x + x = 6x + x + x = 4 x x x = x 7x x = 7 x x = b) x + x 4x + x 4 = 9 x + 9x x x

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

8 Iterationsverfahren zur Lösung von Gleichungssystemen

8 Iterationsverfahren zur Lösung von Gleichungssystemen Numerische Mathematik 378 8 Iterationsverfahren zur Lösung von Gleichungssystemen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Kapitel 5 Iterative Verfahren für LGS

Kapitel 5 Iterative Verfahren für LGS Kapitel 5 Iterative Verfahren für LGS Einführung Matrixnormen Splitting Verfahren Mehrgitter (Multigrid) Verfahren Gradientenverfahren Vorkonditionierung CG-Verfahren Abbruch von iterativen Verfahren Zusammenfassung

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Klausur HM I F 2004 HM I : 1

Klausur HM I F 2004 HM I : 1 Klausur HM I F 004 HM I : Aufgabe (5 Punkte): Für welche n gilt die folgende Aussage? ( n ) det n! n 0 (n )! () Führen Sie den Beweis mit Hilfe der vollständigen Induktion. Lösung: Beweis per Induktion

Mehr

8 Iterationsverfahren zur Lösung von Gleichungen

8 Iterationsverfahren zur Lösung von Gleichungen Numerik 396 8 Iterationsverfahren zur Lösung von Gleichungen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst werden (vgl. Kapitel

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017

Institut für Analysis und Scientific Computing E. Weinmüller WS 2017 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 7 L I N E A R E A L G E B R A F Ü R T P H, U E (.64). Haupttest (FR, 9..8) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding

Übungsaufgaben. Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Mathematik I für Informatiker WS 2006/07 Otto-von-Guericke Universität Magdeburg Prof. Dr. M. Henk, Dr. M. Höding Übungsaufgaben Aufgabe 0.1 Ermitteln Sie x R aus folgenden Gleichungen (a) log 2 (x + 14)

Mehr

4 Die Lösung der diskreten Poisson-Gleichung

4 Die Lösung der diskreten Poisson-Gleichung Finite Elemente I 122 4 Die Lösung der diskreten Poisson-Gleichung Die Galerkin-Matrix der FE-Diskretisierung der Poisson-RWA (3.1) ist symmetrisch und positiv-definit (gilt nicht notwendig für andere

Mehr

M U = {x U f 1 =... = f n k (x) = 0}, (1)

M U = {x U f 1 =... = f n k (x) = 0}, (1) Aufgabe 11. a) Es sei M = {(x, y, z) R 3 f 1 = xy = 0; f = yz = 0}. Der Tangentialraum T x M muss in jedem Punkt x M ein R-Vektorraum sein und die Dimension 1 besitzen, damit diese Menge M eine Untermannigfaltigkeit

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Adaptivität II - Theorie

Adaptivität II - Theorie Adaptivität II - Theorie Hubertus Bromberger, Manuel Nesensohn, Johannes Reinhardt, Johannes Schnur 8. November 2007 Fazit des ersten Vortrages Ein geeignet verfeinertes Gitter ermöglicht massive Einsparung

Mehr

Münchner Volkshochschule. Planung. Tag 08

Münchner Volkshochschule. Planung. Tag 08 Planung Tag 08 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 181 Vektoren Analytische Darstellung: Jedem Punkt im Raum kann ein Ortsvektor zugeordnet werden. P: (6; 5) R 2 P(6; 5) a = OP = 6 5 a Vektoren

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (MO, 8..6) / Gruppe (mit Lösung ) Ein einfacher Taschenrechner ist

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr