3.5 Symmetrie Agenda

Größe: px
Ab Seite anzeigen:

Download "3.5 Symmetrie Agenda"

Transkript

1 Model Cheking für finite state systems Computergestützte Verifikation.. explizit:.: Tiefensuhe Kapitel symbolish: Kapitel.: LTL-Model Cheking.: CTL-Model Cheking.: Fairness.: B-basiertes CTL-Model Cheking.: SAT-basiertes Model Cheking.: Reduktion durh Symmetrie.: Partial Order Redution.: Tools.: Tools. Symmetrie Agenda Grundgedanke: symmetrish strukturierte Systeme haben symmetrishes Verhalten Quellen für Symmetrie: a) regelmäßig strukturierte atentypen b) replizierte Komponenten im Gesamtsystem Wenn Verhalten bei s bekannt und s symmetrish zu s, brauht Verhalten bei s niht mehr untersuht werden. Formale efinition: symmetrishes Verhalten. Konstruktion des Quotientensystems. Welhe Eigenshaften bleiben erhalten?. Erkennung von atenstruktursymmetrie. Erkennung von Komponentensymmetrie tehnish: Äquivalenzrelation; Quotienten-Transitionssystem.. Symmetrishes Verhalten Basis: Transitionssystem σ heißt Symmetrie, wenn: - σ ist Bijektion S S - s e s gdw. ex. e : σ(s) e σ(s ) -s I gdw. σ(s) I mit Induktion: s s s... Pfad in einem Transitionssystem σ(s) σ(s) σ(s)... ebenfalls -Id ist immer Symmetrie -Wenn σ Symmetrie, so auh σ - -Wenn σ und σ Symmetrien, so auh σ o σ Σ TS : Menge aller Symmetrien von TS [Σ TS,o] ist Gruppe.. Symmetrie in atentypen Fall : Skalare atentypen -Menge von Werten - nur, in Guards - : (Zuweisung) - als Indexmenge von (einfahen) Arrays anderer atentypen - Shleifen der Form FOR ALL x O... - hoose(x) - keine Konstanten Seien x,..., xn alle Variablen eines skalaren atentyps, β eine Belegung dieser Variablen mit Werten, und π eine Permutation auf. Setzen π zu einer Symmetrie σ fort

2 Graphautomorphismen Eine Permutation s: V V heißt Graphautomorphismus, falls für alle v,v aus V gilt:. (v) (σ(v)). Wenn [v,v ] E, so [σ(v),σ(v )] E und ([v,v ]) ([σ(v),σ(v )]) Graphautomorphismen des Kommunikationsgraphen induzieren Symmetrien eines Komponentensystems Hinter allen Symmetrieansätzen steken Graphautomorphismen, z.b. auh hinter atentypsymmetrie: inr inr inr inr Orbits Jede Untergruppe U definiert eine Äquivalenzrelation auf G: g ~ U g gdw. g o g - U reflexiv: g o g - e U symmetrish: Sei g o g - u U g o g - (g o g - ) - u - U transitiv: Sei g o g - u U und g o g - u U g o g - g o (g - o g ) o g - (g o g - ) o (g o g - ) u o u U Klassen heißen Orbits Bsp: Restklassen modulo k x y mod k gdw. k x - y Orbits endliher Gruppen Konzept für Erzeugendensystem Alle Orbits haben gleih viele Elemente, nämlih U Sei g G und O g der Orbit, in dem g liegt. O g { g o u u U} U U (Ein Erzeugendensystem für) U + pro Orbit ein (beliebiges!) Element bilden zusammen ein Erzeugendensystem für G Erzeugung ist in einem gewissen Sinne eindeutig: für jedes g O g gibt es genau ein u U mit g g o u U U U U... Un {e} Eindeutige arstellung: Jedes Element g von G besitzt genau eine arstellung der Form g g o g o... o gn mit gi aus einem der von Ui in U(i-) generierten Orbit Zurük zu Graphautomorphismen [V,E,]; Sei V {v,..., vn} Ui {π π ist Graphautomorphismus und π(vj) vj für j i} Orbits O ik bzgl. Ui in U(i-): {π π ist Graphautomorphismus, π(vj) vj für j < i, π(vi) vk} E {,, ; } g g g g o g o i- i- i j Erzeugendensystem: für alle i {,.., n} und k {i+,.., n}: Wenn O ik dann nimm genau ein Element in das Erzeugendensystem auf (für O ii immer ). o g g o g o g g o g g o g o g max. n(n-)/ Elemente

3 Zweites A Berehnung von Automorphismen - atenstruktur abstrakte Permutation B A... An V B... Bn V g g o g o g A B σ C gdw. σ(ai) Bi (für alle i). Ebene:.... Ebene,,,. Ebene,,, + + Erzeugende für x x Automorphismen A An... C B Bn Abstrakte Permutation Bsp. Komplexität V V jede Permutation ist konsistent {v (v) d} {v (v) d}... {v (v) dk} {v (v) dk} alle Permutationen, die Beshriftung der Knoten respektieren geg: abstrakte Permutation C ges: ein Automorphismus, der konsistent mit C ist ist äquivalent zum Graphisomorphieproblem {v} {v}... {v(i-)} {v(i-)} {vi} {vk} Rest Rest ie Automorphismen, die konsistent sind, sind genau die Elemente eines Orbits bzgl. Ui in U(i-) Berehnungsproblem: geg.: abstrakte Permutation C Graphisomorphismus G G ist Automorphismus von G G, der konsistent mit V V, V V ist konsistenter Automorphismus ist Isomorphismus von G auf G, wobei im Urbild (v) i falls v in Ai, und im Bild (v) i falls v in Bi. ges: ein Automorphismus, der mit C konsistent ist # -Nahbarn in A REFINE #-Nahbarn in B EFINE Jeder Automorphismus, der mit dem alten Constraint konsistent ist, ist auh mit den neuen Constraints konsistent Jeder Automorphismus, der mit dem alten Constraint konsistent ist ist mit genau einem der neuen Constraints konsistent

4 Automorphismenberehnung Orbitproblem poly a e b f a g g g g g g g g g exp #Ai #Bi ist selten meistens poly. Laufzeit!!! geg: s ges: anrep(s). s : MIN{gi - (s), i...}. s : MIN{gi - (s), i...}. s : MIN{gi - (s), i...}... n. sn : MIN{gi - (s[n-]), i...} anrep(s) : sn E {,, ; } g g g g x x s x x - (s) (s) x x x x x x - (s) (s) x x x x - (s) (s) x x x x - (s) (s) s x x E {,, ; } g g g g x x s x x - (s) (s) Resultat x x x x x x x x s - (s) (s) x x x x x x Resultat anrep(s) (s) x x Globales Min führt niht immer über min. Zwishenresultate (si)! Lösung des Orbit-Problems a) exakte Berehnung von anrep äquivalent zu Graphisomorphie b) ganz andere Lösungen des Orbit-Problems sind bekannt: eins funktioniert gut nur für shmale Symmetriegruppen eins funktioniert gut nur für dihte Symmetriegruppen ) approximative Berehnung nah dem beshriebenen Verfahren polynomiell, aber zus. Speiherplatz nötig... Vorteile der approximativen Lösung überwiegen Zusammenfassung Symmetrie Symmetrien können in speziellen atentypen oder als Automorphismen geeigneter Graphen gefunden werden atentypsymmetrie: - nur einige spezielle Symmetriegruppen, + Erkennung der Symmetrien trivial + Orbit-Problem effizient lösbar Automorphismen: + viele Symmetriegruppen ( mehr Reduktion) - Erkennung der Symmetrien aufwendig, obwohl meist doh polynomiell - Orbit-Problem langsam oder approximativ

5 Übung Bestimme ein Erzeugendensystem für die Automorphismengruppe des folgenden Graphen: Übung Wieviele Elemente hat das in der Vorlesung studierte Erzeugendensystem eines a) gerihteten Ringes mit n Knoten, z.b. b) ungerihteten Ringes mit n Knoten, z.b. Übung Finde einen (niht notwendigerweise zusammenhängenden) Graph mit Knoten,...,, dessen Automorphismengruppe folgende Eigenshaften hat:. ie Automorphismengruppe hat Elemente. ie Untergruppe U derjenigen Automorphismen, die Knoten auf sih selbst abbilden, hat Elemente. ie Untergruppe U derjenigen Automorphismen, die Knoten und jeweils auf sih selbst abbilden, enthält nur die Identität

Temporale Operatoren auf Pfaden. Sicherheit und Lebendigkeit. Der Berechnungsbaum. CTL* -Pfadquantoren. Computergestützte Verifikation.

Temporale Operatoren auf Pfaden. Sicherheit und Lebendigkeit. Der Berechnungsbaum. CTL* -Pfadquantoren. Computergestützte Verifikation. Inhalt Computergetützte Verifikation Kapitel 1: Syteme Kapitel 2: Temporale Logik 25.4.03 Fehlerbeeitigung Simulation Verfeinerung Gegenbeipiel Sytem Abtraktion Präziierung Modell - Model Cheker + Spezifikation

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z: Aufgabe 1.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 2, 2, 2, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 2, 2, 2, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y: Aufgabe 3.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (2, 3, 3, 3, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (2, 3, 3, 3, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y: Aufgabe 2.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 1, 2, 2, 4, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 1, 2, 2, 4, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:...

Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:... 8. März 2011 Prof. Dr. W. Bley Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) 1 2 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Das Rucksackproblem. Definition Sprache Rucksack. Satz

Das Rucksackproblem. Definition Sprache Rucksack. Satz Das Rucksackproblem Definition Sprache Rucksack Gegeben sind n Gegenstände mit Gewichten W = {w 1,...,w n } N und Profiten P = {p 1,...,p n } N. Seien ferner b, k N. RUCKSACK:= {(W, P, b, k) I [n] : i

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Satz 3.1.15 Sei N eine Natürliche Zahl. Dann gilt S =! := 1 2. (D.h. -Fakultät Elemente.) Beweis : Um eine bijektive Abbildung σ : {1} {1} zu erhalten,

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Multiple Choice Quiz: Lösungen

Multiple Choice Quiz: Lösungen D-MATH Algebra I HS 2015 Prof. Richard Pink Multiple Choice Quiz: Lösungen Jede Frage hat mindestens eine richtige Antwort, manchmal mehrere. 1. Eine nichtleere Teilmenge H G einer Gruppe G ist eine Untergruppe

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

1 4. Algebraisch abgeschlossene Körper

1 4. Algebraisch abgeschlossene Körper 1 4. Algebraisch abgeschlossene örper Z iel: onstruktion einer kleinsten algebraisch abgeschlossenen örpererweiterung des örpers und Eindeutigkeit von bis auf -Isomorphie. 1 4. 1. Definition: Ein örper

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben

Mehr

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,

Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0, Übungen ur Ingenieur-Mathematik III WS 5/6 Blatt..6 Aufgabe 4: Betrahten Sie die Gleihungen: Lösung: h(,, := ( + + 4 =, g(,, := =, ( h(,, f(,, := = g(,, (. a Geben Sie eine geometrishe Interpretation der

Mehr

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler S n C n D n A n Automorphismengruppe Definition: Gruppe Definition: Nebenklasse Eigenschaften: Äquivalenzrelation Satz: Lagrange Definition: Normalteiler Einheitswurzelgruppe C n = {ζ C; ζ n = 1} Permutationsgruppe

Mehr

Übung zur Vorlesung Diskrete Strukturen I

Übung zur Vorlesung Diskrete Strukturen I Technische Universität München WS 00/0 Institut für Informatik Aufgabenblatt Prof. Dr. J. Csirik. November 00 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen am. und.

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

1. Übungsscheinklausur Diskrete Strukturen SS 2000

1. Übungsscheinklausur Diskrete Strukturen SS 2000 Aachen, den 23.06.2000 der RWTH Aachen Prof. Dr. L. Volkmann 1. Übungsscheinklausur Diskrete Strukturen SS 2000 1) (4 Punkte) Für welche m, n N mit ggt (m, n) = 1 gilt (m + n) mn? 2) (4 Punkte) Man bestimme

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Diskrete Strukturen Nachholklausur

Diskrete Strukturen Nachholklausur Technische Universität München Winter 0/7 Prof. H. J. Bungartz / Dr. M. Luttenberger, J. Bräckle, K. Röhner HA- Diskrete Strukturen Nachholklausur.04.07 Beachten Sie: Soweit nicht anders angegeben, ist

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es gilt die leere Abbildung die einzige Abbildung von Ø nach B.

alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es gilt die leere Abbildung die einzige Abbildung von Ø nach B. Mathematik I für Informatiker Abbildungen p. 1 alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es gilt B A = B A. die leere Abbildung die einzige Abbildung von Ø nach

Mehr

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen 85 Die allgemeine Cauhyshe Integralformel und holomorphe Stammfunktionen 85. Holomorphe Stammfunktionen 85.2 Äquivalenzen zur Gültigkeit des Cauhyshen Integralsatzes für eine feste Funktion 85.(Ho) Homotopie

Mehr

Übungsblatt 4. Hausübungen

Übungsblatt 4. Hausübungen Übungsblatt 4 Hausübungen Die Hausübungen müssen bis Mittwoch, den 07.11.18, um 18:00 Uhr in den Briefkasten mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden. Bitte schreiben

Mehr

Mehr über Abbildungen

Mehr über Abbildungen Mehr über Abbildungen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de alle Abbildungen Die Menge aller Abbildungen von A nach B wird mit B A bezeichnet. Es

Mehr

Invariantentheorie. Vorlesung 24. Die Beziehung zwischen SL 2 (C) und SO 3 (R)

Invariantentheorie. Vorlesung 24. Die Beziehung zwischen SL 2 (C) und SO 3 (R) Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 24 Die Beziehung zwischen SL 2 C) und SO 3 R) Für die Klassifikation der endlichen Untergruppen der SL 2 C) werden wir die platonische

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Nachklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretishe Informatik Lehrstuhl Prof. Dr. D. Wagner Nahklausur zur Vorlesung Theoretishe Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 7 Nebenklassen Definition 7.1. Sei G eine Gruppe und H G eine Untergruppe. Wir setzen x H y (und sagen, dass x und y äquivalent

Mehr

Einführung in das Seminar Algorithmentechnik

Einführung in das Seminar Algorithmentechnik Einführung in das Seminar Algorithmentechnik 10. Mai 2012 Henning Meyerhenke, Roland Glantz 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Roland undglantz: nationales Einführung Forschungszentrum

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Grundbegriffe der mathematischen Logik

Grundbegriffe der mathematischen Logik Grundbegriffe der mathematischen Logik Vorlesung WS 2005/2006 Jakob Kellner http://www.logic.univie.ac.at/ kellner Kurt Gödel Research Center for Mathematical Logic 5. Vorlesung, 2005-11-16 Jakob Kellner

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 06.02.2018 (Teil 2) 2. Februar 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 2. Februar 2018

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 27. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 27.11.2018 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Die

Mehr

Vorlesung 6: Gruppen und Homomorphismen

Vorlesung 6: Gruppen und Homomorphismen Vorlesung 6: Gruppen und Homomorphismen Gabriele Link 11.11.2013 Gabriele Link Vorlesung 6: Gruppen und Homomorphismen 1 Erinnerung: Verknüpfung Gegeben sei eine Menge M. Eine (innere) Verknüpfung auf

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2) 15. Februar 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar 2017

Mehr

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21.

Theorie der Informatik Übersicht. Theorie der Informatik SAT Graphenprobleme Routing-Probleme. 21. Theorie der Informatik 19. Mai 2014 21. einige NP-vollständige Probleme Theorie der Informatik 21. einige NP-vollständige Probleme 21.1 Übersicht 21.2 Malte Helmert Gabriele Röger 21.3 Graphenprobleme

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 25. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 25.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 9 Graduierte Körpererweiterungen Definition 9.1. Es sei K ein Körper und D eine kommutative Gruppe. 1 Eine K-Algebra A heißt D-graduiert,

Mehr

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig.

3-Färbbarkeit. Korollar: Zu Entscheiden, ob ein Graph k-färbbar ist mit k 3, ist NP-vollständig. 3-Färbbarkeit Wir wissen bereits, dass in polynomieller Zeit entschieden werden kann, ob ein Graph 2-färbbar ist. Satz: Zu Entscheiden, ob ein Graph 3-färbbar ist, ist NPvollständig. Beweis: Reduktion

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 44 In den folgenden Vorlesungen werden wir unsere Methoden um einige wesentliche Aspekte erweitern, indem wir

Mehr

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: 5.6 Satz von Fermat Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt: b p b mod p, (falls b 0 mod p : b p 1 1 mod p) (gemeint ist: die Gleichung b p = b gilt modulo p) Diskrete Strukturen 5.6 Satz von

Mehr

Auswertung von Operatorbäumen Huffman-Code

Auswertung von Operatorbäumen Huffman-Code Datenstrukturen: Bäume 4 Bäume 4. Terminologie und Grundlagen: Modelle für Graphen und Bäume 4.. Spezifikation und einfahe Algorithmen 4. Anwendungen - 4.. Auswertung von Operatoräumen - 4.. Huffman-Code

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Was bisher geschah gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Spezielle Graphen: I n, K n, P n, C n, K m,n, K 1,n, K n1,...,n m Beziehungen zwischen Graphen: Isomorphie, Teilgraph,

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Algorithmen zur Visualisierung von Graphen Kombinatorische Optimierung mittels Flussmethoden II Vorlesung im Wintersemester 2011/2012 10.11.2011 Orthogonale Zeichnungen II letztes Mal: Satz G Maxgrad-4-Graph

Mehr

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei:

Approximierbarkeit. Definition. Ein Optimierungsproblem P ist gegeben durch ein Quadrupel. P = (I, Sol, m, goal), wobei: Approximierbarkeit Ein Optimierungsproblem P ist gegeben durch ein Quadrupel wobei: P = (I, Sol, m, goal), I ist die Menge der Instanzen von P. Sol ist eine Funktion, die ein x I abbildet auf die Menge

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC. 1 Der Einbettungssatz von Jech und Sochor

Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC. 1 Der Einbettungssatz von Jech und Sochor Seminar zur Mengenlehre: Forcing SS 2007 Prof. Dr. P. Koepke 11. und 18. Juni 2007 Dr. B. Irrgang Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC Friedemann Diener 1 Der

Mehr

Die umgekehrte Richtung

Die umgekehrte Richtung Die umgekehrte Richtung Satz 95 Sei n N, n 2. Dann gilt: b n 1 1 mod n für alle b Z n \ {0} = n ist prim. Beweis: [durch Widerspruch] Annahme: r n für ein r N, r > 1. Dann also r n 1 1 (r mod n) n 1 1

Mehr

21 Körperhomomorphismen

21 Körperhomomorphismen 21 Körperhomomorphismen Definition 21.1. Seien K, L, M... Körper. (i) Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K, L). Ein

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

Übungsblatt 12: Abschluss

Übungsblatt 12: Abschluss Übungsblatt 1: Abschluss 1. PRIMITIVE ELEMENTE V 1.1. (a) Sei E K eine endliche Galoiserweiterung. Zeigen Sie (mit Hilfe der Galoiskorrespondenz), dass für α E die beiden Aussagen äquivalent sind: (i)

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

- Theorie der uninterpretierten

- Theorie der uninterpretierten Theorie der uninterpretierten Funktionen Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 13. Universität Mai 2013 des S.

Mehr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr

Graphentheorie. Algebraic Graph Theory von Chris Godsil und Gordon Royle. Kapitel Seminararbeit. von. Katharina Mayr Graphentheorie Algebraic Graph Theory von Chris Godsil und Gordon Royle Kapitel 1.1 1.3 Seminararbeit von Katharina Mayr 01210559 Universität Graz Insitut für Mathematik und wissenschaftliches Rechnen

Mehr

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Aufgabe 4. (Die Gruppen der Ordnung 12) Beweisen Sie, dass jede Gruppe der Ordnung 12 sich als semidirektes Produkt einer 2-Sylowuntergruppe mit einer 3-Sylowuntergruppe

Mehr

Aufgabensammlung zum Tutorium zur STEOP für LAK

Aufgabensammlung zum Tutorium zur STEOP für LAK Aufgabensammlung zum Tutorium zur STEOP für LAK Zusammengestellt von A. Čap aufbauend auf die Beiepiele von H. Schichl aus früheren Semestern Dieses Skriptum enthält Übungsaufgaben zur Vorlesung Einführung

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Algorithmentheorie 1. Vorlesung

Algorithmentheorie 1. Vorlesung Algorithmentheorie. Vorlesung Martin Dietzfelbinger 6. April 2006 Methode, Material Vorlesung Vorlesungsskript (Netz, Copyshop) Folien (im Netz) Vorlesung nachbereiten! Übung Übungsblätter (im Netz) Übung

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Serie 4. Abgabetermin. Bis zum in meinem Briefkasten (Raum A 514). Bitte die Lösungen mit Namen, Matrikelnummer und Übungsgruppe versehen.

Serie 4. Abgabetermin. Bis zum in meinem Briefkasten (Raum A 514). Bitte die Lösungen mit Namen, Matrikelnummer und Übungsgruppe versehen. Wintersemester 17/18 ALGEBRA I Serie 1 Prof. Dr. J.S. Wilson Aufgabe 1.1. (a) Seien H 1, H 2 Untergruppen einer Gruppe G und sei G = H 1 H 2. Zeigen Sie, daß entweder H 1 = G oder H 2 = G. (b) Geben Sie

Mehr

NP-Vollständigkeit einiger Zahlprobleme

NP-Vollständigkeit einiger Zahlprobleme NP-Vollständigkeit einiger Zahlprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 22. Januar 2010 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1

Einführung in LTL unter MAUDE. Maschine!es Beweisen Einführung in LTL Seit# 1 Einführung in LTL unter MAUDE Mashine!es Beweisen Einführung in LTL Seit# 1 Verifikation eines Systems System- Verhalte% System- Spezifikatio% Mashine!es Beweisen Einführung in LTL Seit# 2 Verifikation

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

19 Körperhomomorphismen

19 Körperhomomorphismen 19 Körperhomomorphismen Definition und Bemerkung 19.1. (i) Seien K, L Körper. Ein Ringhomomorphismus σ : K L heißt Körperhomomorphismus. Die Menge der Körperhomomorphismen K L bezeichnen wir mit Hom(K,

Mehr