Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Ingenieur-Mathematik III WS 2015/2016 Blatt h(x, y, z) := (x 2) 2 + y 2 + z 2 4 = 0,"

Transkript

1 Übungen ur Ingenieur-Mathematik III WS 5/6 Blatt..6 Aufgabe 4: Betrahten Sie die Gleihungen: Lösung: h(,, := ( =, g(,, := =, ( h(,, f(,, := = g(,, (. a Geben Sie eine geometrishe Interpretation der Situation an. Welhe Figuren shneiden sih hier? Was ist die Shnittmenge dieser Figuren? b Beshreiben Sie die Shnittmenge vollständig (in insgesamt 4 Stüken als Funktionen über bw. über. Tipp: Fertigen Sie eine Skie der Situation an! a h(,, = ( = beshreibt eine Kugel B R (M R mit Radius R = (R = 4! und Mittelpunkt M = (,, T. g(,, = = beshreibt die Ebene =, die parallel ur --Ebene ist und den Abstand von dieser Ebene hat. f(,, = ( h(,, g(,, beshreibt die Shnittmenge beider Figuren: = Die Shnittmenge ist ein Kreis in der Ebene = : ( = h(,, = ( =. = = + Dies ist ein Kreis vom Radius R = mit Mittelpunkt M = (,, T im R. b Offensihtlih gilt: Entsprehend: = = ( = ± für (sowie ( = = = ( = ± für. (sowie ( = Beahte: Wegen der ± erhalten wir in der Tat 4 Funktionen und damit die gesuhten 4 Stüke!

2 Genauer gilt: Die Shnittmenge wird parametrisiert durh folgende 4 Stüke als Graph jeweils einer Funktion von einer (geeigneten Variablen: γ ( = γ ( = γ ( = γ 4 ( = γ ( = γ ( = γ ( = γ 4 ( = Aufgabe 4: Betrahten Sie die Gleihungen: h(,, := + 4 =, g(,, := + =, ( h(,, f(,, := = g(,, für <, für <, für <, für <. (. Geben Sie eine geometrishe Interpretation der Situation an. Welhe Figuren shneiden sih hier? Was ist die Shnittmenge dieser Figuren? Beshreiben Sie die Shnittmenge vollständig und geben Sie den Tangentialraum an. Tipp: Fertigen Sie eine Skie der Situation an! Lösung: h(,, = + 4 = beshreibt einen Kreislinder, dessen Grundflähe durh einen Kreis mit Radius (Mittelpunkt auf der -Ahse dargestellt wird. g(,, = + = beshreibt die affine Ebene + =, jeder Punkt p in dieser Ebene hat eine Darstellung Folglih beshreibt + r f(,, = + s ( h(,, g(,, für gewisse r, s R. = die Shnittmenge M beider Figuren, es ist eine Ellipse in der affinen Ebene. Diese kann lokal mit den Funktionen γ, γ : [, ] R wie folgt parametrisiert werden: γ (t = t t 4 t, γ (t = ( t t 4 t Diese Parametrisierungen ergeben sih, indem man in Abhängigkeit von die Koordinaten und aus ( bestimmt. Der Tangentialraum kann aus den Gradienten. (

3 (der Rang der Matri ( h g ist für alle Punkt in M! h(,, = g(,, = mit Hilfe des Vektorprodukts wie folgt berehnet werden: T (,, M = span { h g} = span. Aufgabe 4: Es sei f : R R eine stetig differenierbare Funktion mit f(,,. Lösung: a Bestimmen Sie für die durh f(,, = gegebene Flähe die Tangentialebene in einem Punkt (,, mit f(,, =, f (,,, indem Sie die Flähe als Graph einer Funktion über der -Ebene darstellen und den Tangentialraum an die Graphenflähe in Normalenform berehnen (Tipp: Ohne Normierung der Normalen ist die Rehnung einfaher. Verwenden Sie den Sat über impliiten Funktionen, um die auftretenden partiellen Ableitungen dieser unbekannten Funktion durh partielle Ableitungen von f ausudrüken. b Was ergibt sih für das Ellipsoid mit der Gleihung f(,, = a + b + = an der Stelle (,, = (a, b,?

4 a Nah Voraussetung gilt: f(,, = und f(,, daher kann lokal (d. h. in einer geeigneten Umgebung des Punktes (,, = g(, geshrieben werden und die durh f(,, = definierte Flähe wird lokal als Graph der Funktion = g(, gegeben. Wir suhen also die Tangentialebene an den Graphen G g (, = g(, Aus der Vorlesung wissen wir T (,,g(, G g = + v v span g(, Der Vektor g(, g(,. = g(,, g(, g(, g(, steht also senkreht auf der Tangentialebene an den Graphen G g im Punkt (,,. Daraus folgt T (,, G g = R g(, g(, + = d, wobei d noh u bestimmen ist. Da der Punkt (,, auf der Tangentialeben liegt, gilt d = g(, g(, +. T (,, G g = R = g(, ( + g(, ( Aus = f(,, g(, folgt nah der Kettenregel (und dem Sat über impliite Funktionen: g(, = f(,, f(,, und g(, = f(,, f(,, Sett man dies ein und multipliiert mit f(,, (was nah Vorausetung!, ergibt sih f(,, T (,, G g = R f(,, = f(,, Bemerkung: Im Graphenfall wird die Tangentialebene an den Graphen meinst wie oben

5 angegeben definiert, doh es gibt auh Definitionen ohne Aufpunkt g(, In diesem Fall gilt d =, so dass der Abshnitt ur Berehnung von d wegfällt und sih folgende Lösung ergibt: f(,, T (,, G g = R f(,, = f(,, b Wir seten natürlih a, b, > voraus. f ( a, b, f ( a, b, f(,, = a + b + =, = + + =, ( f(,, = a, b,, = ( a, b,. ( a + ( a b ( a + ( a b b + ( b + ( a + b + = + + = a + b + = T (a,b, G g = = = R a + b + = ist damit die Tangentialebene im Punkt (a, b, an das Ellipsoid.. Bemerkung: Analog um vorherigen Aufgabenteil gibt es auh hier eine weite Möglihe Lösung. Diese lautet T (a,b, G g = = R a b R a + b + = =

6 Aufgabe 44: a Betrahten Sie das Gravitationspotential U( = U(,, := mg a = mg ( a + ( a + ( a eines Punktes a R der Masse m >. Die positive Konstante G mit dem Wert G = (667 ± 4 4 m s kg ist die Gravitationskonstante. Zeigen Sie, dass die Niveauflähen F := { R : U( = } von U für jedes > weidimensionale Flähen sind. Um welhe Flähen handelt es sih? b Das Gravitationspotential weier Punkte a, b R (a b der Massen m = m = m > lautet V ( = V (,, := m G a + m G b Sind die Niveauflähen S := { R : V ( = } von V wiederum für jedes > weidimensionale Flähen? Lösung: a U( = a = mg a = R =: R Dies sind Kugeloberflähen vom Radius R = mg > und Mittelpunkt M = a R. Wegen U( = mg a a für a gilt U( für alle >. Der Sat über impliite Funktionen besagt daher, dass es sih bei F um eine weidimensionale Flähen handelt. Bemerkung: Der Sat über impliite Funktionen wäre/ist hier niht absolut nötig, da man die Auflösungen epliit (s. oben vornehmen kann und damit auh epliit Tangentialvektoren ausrehnen kann! b Zuerst eigen wir, daß diese Menge niht leer ist. Da m = m = m gilt ( V ( = mg a + b und V ( für V ( + für a, b. Also gibt es für alle > Punkte R, die in der Niveaumenge F = { R V ( = }

7 liegen. Sei g( := m G a + ( = mg m G b a + b die Funktion, die die Niveaumenge V ( = als Null-Niveaumenge beshreibt. ( ( a ( b g( = mg + a b Die Niveaumenge ist keine Flähe, falls g( = ( a ( b a b = a a = b b Da wei Vektoren genau dann gleih sind, wenn sie in Länge und Rihtung übereinstimmen, gilt g( = a = b = a + b Solhe Punkte gehören u der Niveauflähen V ( = wobei = Somit sind alle Niveaumengen mit Flähen. F mg b a + mg a b = 4mG a b F = { R V ( = } ist hingegen keine Flähe. Bemerkung: Aus den Vorüberlegungen u Beginn dieses Aufgabenteiles, weil g nur an einer Stelle Null ist, und weil die Niveaumengen sih niht shneiden, kann man sagen, dass: Für < ist die Niveaumenge V ( = ist eine Hperfähe in R, das heißt eine geshlossene D Flähe; Für = hat die Niveaumenge V ( = einen singulären Punkt (Siehe Abbildung Für > besteht die Niveaumenge V ( = aus wei Hperfähen in R, das heißt wei geshlossene D Flähen.

8 < a > = > b Abbildung : Skie der Niveaufähen in D

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14

D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. Lösung - Serie 14 D-MAVT/D-MATL Analsis II FS 2018 Dr. Andreas Steiger Lösung - Serie 14 1. Für welhe der folgenden Funktionen f ist f x (x, = e 4x 2x 2, f (x, = os 2x 2? (a (x, 1 4 e4x x 2 2 sin π. (b (x, 1 4 e4x x 2 2

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

8.2. KURVEN IM RAUM 37

8.2. KURVEN IM RAUM 37 8.2. KURVEN IM RAUM 37 Lemma 8.2.3.10 (Differenzierbarkeit der Wegelängenfunktion für glatte Kurven) Ist γ C 1 (I; V ), so ist die Abbildung t L t (γ) differenzierbar, die Ableitung an der Stelle t ergibt

Mehr

Analysis. Tangenten, Normalen, Änderungsraten. Schaubilder von Ableitungsfunktionen

Analysis. Tangenten, Normalen, Änderungsraten. Schaubilder von Ableitungsfunktionen Analysis Shaubilder von Ableitungsfunktionen Allg. Gymnasien: ab Klasse 0 Beruflihe Gymnasien: ab Klasse Berufskolleg: Aufgaben ohne *) Hilfsmittel: wissenshaftliher Tashenrehner Alexander Shwarz Juli

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

2 Sehnen, Sekanten und Chordalen

2 Sehnen, Sekanten und Chordalen Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz................................................... 7. Chordalen.................................................................. 3 Weitere

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert. R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,

Mehr

7 Partielle Ableitung

7 Partielle Ableitung Vorlesung SS 29 Analsis 2 Prof Dr Siegfried Echterhoff 7 Partielle Ableitung Definition 7 Sei U R n offen und f : U R m eine Funktion Dann heißt f im Punkt nach der j-ten Variablen j partiell differenierbar,

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om

Mehr

10. Übungsblatt zur Mathematik II für Maschinenbau

10. Übungsblatt zur Mathematik II für Maschinenbau Fahbereih Mathematik Prof. Dr. M. Joswig Dr. Davorin Lešnik Dipl.-Math. Katja Kulas 1. Übungsblatt zur Mathematik II für Mashinenbau Gruppenübung SS 211 2.6.-22.6.11 Aufgabe G1 (Wegintegral Gegeben seien

Mehr

Mathematik. Mai 2017 AHS. Kompensationsprüfung 8 Angabe für Kandidatinnen/Kandidaten

Mathematik. Mai 2017 AHS. Kompensationsprüfung 8 Angabe für Kandidatinnen/Kandidaten Name: Datum: Klasse: Kompensationsprüfung zur standardisierten kompetenzorientierten shriftlihen Reifeprüfung AHS Mai 2017 Mathematik Kompensationsprüfung 8 Angabe für Kandidatinnen/Kandidaten Hinweise

Mehr

K l a u s u r N r H j G k M 11

K l a u s u r N r H j G k M 11 K l a u s u r N r. 2 1. H j G k M 11 Aufgabe 1 Gegeben ist die Parabel f(x) 1 und die Gerade 8 x2 g(x) - x - 6 a) Weisen Sie durh Rehnung nah, dass die Gerade g(x) eine Passante zur Parabel f(x) ist. b)

Mehr

Achtung: Im Nenner eines Bruches darf nie die Null stehen!!

Achtung: Im Nenner eines Bruches darf nie die Null stehen!! Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du

Mehr

Pool für das Jahr 2017

Pool für das Jahr 2017 Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 17 Aufgabe für das Fah Mathematik Kurzbeshreibung Anforderungsniveau Prüfungsteil Sahgebiet digitales Hilfsmittel erhöht B Analysis WTR 1 Aufgabe

Mehr

Fit in Mathe. Musterlösungen. Dezember Klassenstufe 10 Trigonometrie (Taschenrechner erlaubt)

Fit in Mathe. Musterlösungen. Dezember Klassenstufe 10 Trigonometrie (Taschenrechner erlaubt) Thema Trigonometrie (Tashenrehner erlaubt) Drei Bestimmungsstüke sind gegeben. Bestimme die fehlenden Seiten. a) γ = 60, b = 10, = 10 b) γ = 90, b = 3, = 5 ) γ = 10, a, b d) γ = 30 β = 60, = 5 Zu a) Aus

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12

Zusatzkapitel zur Vorlesung Mathematische Modellierung WS 2011/12 Zusatzkapitel zur Vorlesung Mathematishe Modellierung WS 20/2 Vorlesung vom 8..20 A A. Das Hindernisproblem Motivation und Modellierung Anwendungsbeispiel: Filtration Ein Gemish, das getrennt werden soll,

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2 Gymnasium Landau Q11 Mai 01 Etremwertprobleme 1 Ein gleihshenkliges Dreiek ABC mit der Basislänge und den Shenkellängen b wird aus einem Draht der Länge L gebogen, dh +b L b h C b A B (a) Beweise für die

Mehr

Das gefaltete Quadrat

Das gefaltete Quadrat =.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch

Tangentialebene. Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch Tangentialebene Sei f eine stetig differenzierbare Funktion und p = (p 1,..., p n ) die Koordinaten eines Punktes P auf der durch implizit definierten Fläche. f (x 1,..., x n ) = c Tangentialebene 1-1

Mehr

Über schwimmende Balken

Über schwimmende Balken Einleitung Über shwimmende Balken Wolfgang Grentz, Peter Gallin, Kantonssshule Zürher Oberland Der Name Arhimedes wird wohl zuerst wenn auh niht nur mit dem Auftrieb in Verbindung gebraht Wenn wir lesen,

Mehr

GDV Algorithmen und Beispielprogramme

GDV Algorithmen und Beispielprogramme GDV Algorithmen und Beispielprogramme Helge Janike 5. Januar 2002 Inhaltsverzeihnis 1 Bresenham Linie 2 2 Bresenham Kreis 4 3 Gram-Shmidt-Verfahren 6 4 Euklid 8 4.1 Satz des Pythagoras.........................

Mehr

Prinzipiell die gleichen Regeln wie bei Bruchzahlen! z.b. zum Addieren und Subtrahieren: Erweitern auf den Hauptnenner

Prinzipiell die gleichen Regeln wie bei Bruchzahlen! z.b. zum Addieren und Subtrahieren: Erweitern auf den Hauptnenner Gmnasium Stein Grundwissenkatalog Mathematik Jahrgangsstufe 8 Wissen/Können Rehnen mit Bruhtermen (Grundrehenarten) Lösen von Bruhgleihungen Einfaher Spezialfall: Auflösen von Formeln Funktionen Zur Angabe

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Dreiecke Vierecke 11. Lösungen B211-01

Dreiecke Vierecke 11.  Lösungen B211-01 reieke Viereke 11 211-01 1 5 1 ei den Winkelhalbierenden sind zwei Seiten, ausgehend von einem Ekpunkt, aufeinanderzulegen. ei genauem Falten treffen sih die drei Winkelhalbierenden in einem Punkt, dem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Über-/Rückblick. F3 01/02 p.269/294

Über-/Rückblick. F3 01/02 p.269/294 Über-/Rükblik Algorithmenbegriff: Berehenbarkeit Turing-Mashine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentehniken Algorithmenanalyse (Berehnung der Komplexität) Rekursion Iteration

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte)

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte) Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Klassishe Theoretishe Physik III WS 2014/2015 Prof. Dr. A. Shnirman Blatt 7 Dr. B. Narozhny Lösungen 1. 2D Leitershleifen:

Mehr

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen

85 Die allgemeine Cauchysche Integralformel und holomorphe Stammfunktionen 85 Die allgemeine Cauhyshe Integralformel und holomorphe Stammfunktionen 85. Holomorphe Stammfunktionen 85.2 Äquivalenzen zur Gültigkeit des Cauhyshen Integralsatzes für eine feste Funktion 85.(Ho) Homotopie

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, othmar.marti@uni-ulm.de. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise

Mehr

Technische Universität München. Probeklausur Lösung SS 2012

Technische Universität München. Probeklausur Lösung SS 2012 Technische Universität München Andreas Wörfel & Carla Zensen Ferienkurs Analysis für Physiker Probeklausur Lösung SS Aufgabe Differenzierbarkeit / Punkte: [4,, 3, 4] Es sei f(x, y) = sin(x3 + y 3 ) x +

Mehr

Kleinster Umschließender Kreis

Kleinster Umschließender Kreis Proseminar Theoretishe Informatik 11.07.2017 Janis Meyer Kleinster Umshließender Kreis Prof. Wolfgang Mulzer 1 Einführung Das Problem wurde zum ersten Mal vom britishen Mathematiker James Joseph Sylvester

Mehr

Angewandte Mathematik - Probeklausur SS 10 - Prof. Scheltho. 1. Berechnen Sie die Richtungsableitung der Funktion. f(x; y) = 1 xy. D v (f) = grad f ~v

Angewandte Mathematik - Probeklausur SS 10 - Prof. Scheltho. 1. Berechnen Sie die Richtungsableitung der Funktion. f(x; y) = 1 xy. D v (f) = grad f ~v Angewandte Mathematik - Probeklausur SS 0 - Prof. Sheltho. Berehnen Sie die Rihtungsableitung der Funktion f(x; y) = xy im Punkt ~x 0 = (x 0 ; y 0 ) = (; 3) in Rihtung des (bereits normierten) Vektors

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Shulolympiade) Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Shulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrehnungen

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Maro Bettner, Erik Dinges Mathe an Stationen Das in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Maro Bettner Erik Dinges Mathe an Stationen Umgang mit dem Geobrett

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013 Shallwellen II Krystian Gaus Wintersemester 01/013 Erinnerung. ρ = ρ 0 + ρ ist die Gasdihte, p = p 0 + p der Gasdruk und u = ũ die Gasgeshwindigkeit. Dabei sind p, ρ, ũ kleine Amplituden-Störungen. ist

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.5 2010/01/26 09:31:31 hk Exp $ $Id: diffgl.tex,v 1.4 2010/01/25 15:48:10 hk Exp hk $ 6 Rotation und der Satz von Stokes 6.2 Der -alkül Wir hatten begonnen Formeln für Gradient, Divergenz

Mehr

Mathematik-Aufgabenpool > Geraden (Haupt-/Normalform)

Mathematik-Aufgabenpool > Geraden (Haupt-/Normalform) Mihael Buhlann Matheatik-Aufgabenpool > Geraden (Haupt-/Noralfor) Einleitung: Geraden sind (als ganz rationale Funktionen Grades, lineare Funktionen) von der For: = x + it Geradensteigung und -Ahsenabshnitt,,

Mehr

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a... Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe

Mehr

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x}

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x} Matrizen: Einleitung Mit Matrizen können Zusammenhänge übersihtliher und kompakter dargestellt werden. Dazu werden Größen zu einer Matri zusammengefaßt, die in einem logishen Zusammenhang stehen. Zur Erläuterung

Mehr

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. eldmann. Juni 203 Kurzzusammenfassung Vorlesung 3 vom 28.5.203 5. Zeitabhängige elder, Elektromagnetishe Strahlung Bisher: Elektrostatik und Magnetostatik

Mehr

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen

Proseminar Einführung in die Mathematik 1 WS 2010/11 2. Dezember 2010 Lösungen Proseminar Einführung in die Mathematik 1 WS 1/11. Deember 1 Lösungen 46) Wie kann man nach Wahl eines Nullpunktes die Zeichenebene in natürlicher Weise als Vektorraum betrachten? Skriptum Kapitel 4, Par.

Mehr

Ketten. I n = [0,1] n, n 0, mit der Vereinbarung I 0 Õ{0}. Sei n 0. Der Standard-n-Würfel ist die Abbildung. Definition. I n : I n! R n, I n (x) = x.

Ketten. I n = [0,1] n, n 0, mit der Vereinbarung I 0 Õ{0}. Sei n 0. Der Standard-n-Würfel ist die Abbildung. Definition. I n : I n! R n, I n (x) = x. Ketten 22.3 623 22.3 Ketten Wir spezifizieren nun die geometrishen Objekte, über die wir Differenzialformen integrieren wollen. Die Begriffsbildung mag etwas umständlih ersheinen. Tatsählih handelt es

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

X.5.4 Potentiale und Felder einer bewegten Punktladung

X.5.4 Potentiale und Felder einer bewegten Punktladung X.5 Klassishe Theorie der Strahlung 85 X.5.4 Potentiale und Felder einer bewegten Punktladung Dieser Paragraph beginnt mit der Berehnung der Potentiale und Felder, die durh eine bewegte Punktladung mit

Mehr

7.4. Gradient, Niveau und Tangentialebenen

7.4. Gradient, Niveau und Tangentialebenen 7.4. Gradient Niveau und Tangentialebenen Wieder sei f eine differenzierbare Funktion von einer Teilmenge A der Ebene R -dimensionalen Raumes R n ) nach R. (oder des n Der Anstieg von f in einem Punkt

Mehr

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1 0 Die Logarithmusfunktion Würde man nun versuhen die Aufgae 6. des vorigen Ashnittes rehnerish zu lösen, so stößt man auf folgende noh unlösare Gleihung: h 0,88 www.etremstark.de 0,88 h Gesuht ist also

Mehr

IX.5 Klassische Theorie der Strahlung

IX.5 Klassische Theorie der Strahlung 18 Zeitabhängige elektromagnetishe Felder IX.5 Klassishe Theorie der Strahlung In diesem Abshnitt werden die Maxwell-Gleihungen in Anwesenheit fester äußerer Quellen mithilfe von sogenannten retardierten

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN. Dienstag Übungen Dienstag -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN Dienstag Blk (Die Musterlösungen werden am Abend auf der Vrkurs-Hmepage aufgeshaltet!). Lösen Sie die flgenden linearen Gleihungssysteme

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Analytische Geometrie

Analytische Geometrie www.mathe-aufgaben.om Analytishe Geometrie Analytishe Geometrie Übungsaufgaben Geraden Oberstufe Alexander Shwarz www.mathe-aufgaben.om Oktober 205 www.mathe-aufgaben.om Analytishe Geometrie Aufgabe :

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Relativistisch kovariante Formulierung der Elektrodynamik

Relativistisch kovariante Formulierung der Elektrodynamik KAPITEL III Relativistish kovariante Formulierung der Elektrodynamik Die Spezielle Relativitätstheorie wurde gerade entwikelt, um die Konstanz der Lihtgeshwindigkeit im Vakuum in allen Inertialsystemen

Mehr

Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 2010/2011. Mathematik A. 24. Mai :00 Uhr

Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 2010/2011. Mathematik A. 24. Mai :00 Uhr Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fahhohshulreife im Shuljahr / Mathematik 4. Mai 9: Uhr Mathematik - Lösungsexemplar. ufgabe Differential- und Integralrehnung Gegeben

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras 9.4.4 April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien

Mehr

Kapitel 2. Raumkurven. 2.1 Allgemeine Kurventheorie Die Weglänge

Kapitel 2. Raumkurven. 2.1 Allgemeine Kurventheorie Die Weglänge Kapitel 2 Raumkurven 2. Allgemeine Kurventheorie 2.. Die Weglänge Definition. Unter einer Raumkurve im IR n verstehen wir eine stetige Abbildung :[a, b] IR n. Weiter sprehen wir von einem C k -Weg, wenn

Mehr

11. David Bohm und die Implizite Ordnung

11. David Bohm und die Implizite Ordnung David Bohm und die Implizite Ordnung Mathematisher Anhang 1 11 David Bohm und die Implizite Ordnung Mathematisher Anhang Streng stetig, streng kausal, streng lokal Relativitätstheorie In der speziellen

Mehr

Cluster aus Spinteilchen

Cluster aus Spinteilchen Cluster aus Spinteilhen III. Teil Ergebnisse aus der Zahlenlehre G. Shulz Universität des Saarlandes Fakultät 7 für Physik und Mehatronik Februar 0 Zur Kondensation von Spinteilhen auf festen Oberflähen

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Übungen zur Klassishen Theoretishen Physik III (Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

X.5 Klassische Theorie der Strahlung

X.5 Klassische Theorie der Strahlung X.5 Klassishe Theorie der Strahlung 179 X.5 Klassishe Theorie der Strahlung In diesem Abshnitt werden die Maxwell-Gleihungen in Anwesenheit fester äußerer Quellen mithilfe von retardierten Potentialen

Mehr

Produktbeschreibung. EM converterled

Produktbeschreibung. EM converterled Produktbeshreibung EM onverterled 3 Inhaltsverzeihnis EM onverterled LED-Notlihtbetriebsgerät.................................................................. 4 Eine Notlihteinheit für alle LED-Module,

Mehr

Der Riemannsche Umordnungssatz für bedingt konvergente Reihen

Der Riemannsche Umordnungssatz für bedingt konvergente Reihen Der Riemannshe Umordnungssatz für bedingt konvergente Reihen Franka Shorten Definitionen Konvergenz a k heisst konvergent, wenn die Folge der Partialsummen s n := a 0 + a + a + + a n konvergiert Divergenz

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppit, Dr. I. Rybak 11. Gruppenübung ur Vorlesung Höhere Mathematik Sommersemester 009 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise u den Hausaufgaben: Aufgabe H 31.

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

Klausur Mechanik für Geowissenschaftler WiSe Februar 2014

Klausur Mechanik für Geowissenschaftler WiSe Februar 2014 Klausur Mehanik für Geowissenshaftler WiSe 04 7. Februar 04 Matrikelnummer ) Gegeben sei das abgebildete rehtwinklige Dreiek. a β a) Benennen Sie Katheten und Hypotenuse. b) Was ist die Ankathete zu γ?

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2009 Teil 4, Wirtschaftliche Anwendungen, Aufgabe 1 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2009 Teil 4, Wirtschaftliche Anwendungen, Aufgabe 1 Baden-Württemberg Beruflihes Gymnasium (WG, EG, AG, SG) Hauptprüfung 9 eil, Wirtshaftlihe Anwendungen, Aufgabe Baden-Württemberg In einem Betrieb werden aus den Rohstoffen R, R, R und R die Bauteile B, B und B und aus diesen

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

Kosmologie Blatt 2. 2 = tan ϑ

Kosmologie Blatt 2. 2 = tan ϑ Prof. Dr. K. Kassner Dipl. Phys. A. Shulz Kosmologie Blatt SS 019 10.04.19 4. Stellare Aberration und absolute Geshwindigkeit 1 Pkt. Beobahtet man einen Stern von der Erde aus, so ersheint er gegenüber

Mehr

x 3x 2x 0 2x x x 3 e 4 t t dt 12

x 3x 2x 0 2x x x 3 e 4 t t dt 12 5 Gewöhnlihe Differentialgleihungen 5. Einführung und Definition einer Differentialgleihung, Beispiele Die Shulmathematik hat sih bisher sehr ausgiebig mit dem Lösen von Gleihungen beshäftigt. In diesen

Mehr

11d Mathematik Stefan Krissel. Nullstellen

11d Mathematik Stefan Krissel. Nullstellen d Mathematik..009 Stefan Krissel D E R Z W E I T E S C H R I T T B E I D E R F U N K T I O N S U N T E R S U C H U N G : Nullstellen Der zweite Shritt bei der Untersuhung von Funktionen ist die Untersuhung

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr

Musterlösung Blatt 9, Aufgabe 1 (mit Kommentaren)

Musterlösung Blatt 9, Aufgabe 1 (mit Kommentaren) Musterlösung Blatt 9, Aufgabe (mit Kommentaren) Aufgabe ( Punkte) Sei R n messbar, (f k ) k eine Folge in L (; C), die in L (; C) gegen eine Funktion f konvergiert. Ferner sei (g k ) k eine Folge messbarer,

Mehr

Exkurs: Koordinatensysteme

Exkurs: Koordinatensysteme Exkurs: Koordinatensysteme Herleitung der Raum-Zeit-Diagramme Das ist unsere Raumzeit. So mögen wir sie: Ordentlih, gerade und aufgeräumt. Der vertikale Pfeil bildet unsere Zeitlinie t. Der horizontale

Mehr

Ferienkurs Experimentalphysik Musterlösung Probeklausur

Ferienkurs Experimentalphysik Musterlösung Probeklausur Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine

Mehr

Musterlösung Nachholsemestrale Ex

Musterlösung Nachholsemestrale Ex Musterlösung Nahholsemestrale Ex 2.4.2008 Musterlösung Nahholsemestrale Ex 2.4.2008 2 Aufgabe Wir berehnen zuerst den Ort des abarishen Punktes, d.h. seinen Abstand r a vom Erdmittelpunkt. Das von Erde

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 26. April 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Lösungen zur 4. Übung Aufgabe

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15 D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr