2 Sehnen, Sekanten und Chordalen

Größe: px
Ab Seite anzeigen:

Download "2 Sehnen, Sekanten und Chordalen"

Transkript

1 Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz Chordalen Weitere Resultate und Aufgaben Anmerungen Sehnen- und Seantensatz In Kap. 1 haben wir gesehen, dass alle eripheriewinel über einer festgehaltenen Sehne gleih groß sind. Im folgenden Satz halten wir nun niht eine Sehne fest, sondern einen unt im Kreis, und betrahten die Sehnen, welhe sih in diesem unt shneiden. Sehnensatz.1 Shneiden sih zwei Sehnen A und B 1 B eines Kreises im unt, so gilt: A = B 1 B. B A B 1 Gilt umgeehrt A = B 1 B für zwei sih in shneidende Streen A und B 1 B, so liegen die vier Streenendpunte, A,B 1,B auf einem Kreis. Springer-Verlag Berlin Heidelberg 016 L. Halbeisen et al., Mit harmonishen Verhältnissen zu Kegelshnitten, DOI / _

2 8 Sehnen, Seanten und Chordalen Beweis: Wir zeigen zunähst, dass A = B 1 B gilt, falls die unte, A, B 1, B auf einem Kreis liegen: Die Winel B 1 A und B 1 B A sind nah dem eripheriewinelsatz 1. als eripheriewinel über dem Kreisbogen B 1 A gleih groß. Die Dreiee B 1 und A B sind somit ähnlih, da auh die Sheitelwinel B 1 und A B gleih groß sind. Nah dem Satz über ähnlihe Dreiee 9.5 gilt B 1 = B A, und daraus folgt die Behauptung. B A B 1 Gilt umgeehrt A = B 1 B, so müssen wir zeigen, dass die vier unte, A,B 1,B auf einem Kreis liegen. Gilt < A (was wir ohne Einshränung der Allgemeinheit annehmen dürfen), so wird das Dreie B 1 wie folgt ins Dreie A B gelegt: A 1 erhält man, indem man von aus die Länge auf dem Strahl B abträgt. Um B 1 zu erhalten, trägt man von aus die Länge B 1 auf dem Strahl A ab. B A 1 B 1 A B 1 Aus der Voraussetzung folgt A 1 B = B 1 A. Mit der Umehrung des 1. Strahlensatzes erhalten wir, dass A 1B 1 und A B parallel sind, und weil Stufenwinel an arallelen gleih groß sind, sind die entsprehend marierten Winel gleih groß. Shließlih folgt aus dem eripheriewinelsatz 1., dass B 1 auf dem Umreis des Dreies B A liegt, und somit liegen alle vier unte auf demselben Kreis.

3 .1 Sehnen- und Seantensatz 9 Seanten-Tangenten-Satz. Von einem unt außerhalb eines Kreises zeihnen wir eine Tangente an und eine Seante durh. Die Tangente berühre im unt B, und die Seante shneide in und A. Dann gilt: B = A. s A t B Gehen umgeehrt von einem unt zwei Strahlen s und t aus (die niht in einer Geraden liegen) und gilt B = A, wobei und A auf s liegen und B auf t liegt, so ist t eine Tangente an den Kreis durh die unte, A und B. Beweis: Der Sehnentangentenwinel B ist nah dem eripheriewinelsatz 1. gleih groß wie der eripheriewinel A B über dem Kreisbogen B. A B Mit dem gemeinsamen Winel B sind folglih die Dreiee B und BA ähnlih. Nah dem Satz über ähnlihe Dreiee 9.5 gilt B= B A, d.h. B = A. Um die Umehrung zu zeigen, nehmen wir an, dass und A auf einem Strahl s liegen und B auf einem Strahl t liegt, wobei die beiden Strahlen niht in einer Geraden liegen und sih in shneiden. Sei der Kreis durh die unte B, und A. Ferner sei t eine Tangente von an den Kreis, welhe im unt B berührt. Dann ist s eine Seante durh und es gilt B = A. Gilt nun auh B = A, so ist B= B und damit ist t eine Tangente an.

4 30 Sehnen, Seanten und Chordalen Als wihtige Folgerung des Seanten-Tangenten-Satzes. erhalten wir Satz.3 Sei ein Kreis mit Mittelpunt M und Radius r. Weiter sei ein unt außerhalb von, von dem aus eine Tangente an gezeihnet ist, welhe den Kreis im unt T berührt. Dann gilt: T = M r. r M T Beweis: Seien und A die Shnittpunte der Zentrale mit dem Kreis. r M r A T Dann ist = M r und A = M+ r, und somit ist: A = M r. Mit dem Seanten-Tangenten-Satz. gilt nun T = A, d.h. T = M r. Bemerung: Da MT ein rehter Winel ist, folgt Satz.3 unmittelbar aus dem Satz von ythagoras 9.7; anders ausgedrüt, der Satz von ythagoras 9.7 ist eine unmittelbare Folgerung aus Satz.3.

5 .1 Sehnen- und Seantensatz 31 Als weitere Folgerung aus dem Seanten-Tangenten-Satz. erhalten wir den Seantensatz.4 Betrahte zwei Seanten durh den Kreis, welhe sih außerhalb des Kreises im unt shneiden. Wenn die eine den Kreis in und in A, die andere in B 1 und in B shneidet, so gilt: A = B 1 B. s1 A s B 1 B Liegen umgeehrt die unte und A auf einem Strahl s 1 und die unte B 1 und B auf einem Strahl s, wobei die beiden Strahlen niht in einer Geraden liegen und sih in shneiden, so folgt aus A = B 1 B, dass die vier unte, A, B 1, B auf einem Kreis liegen. Beweis: Wir legen von eine Tangente an den Kreis, welhe im unt T berührt. Mit dem Seanten-Tangenten-Satz. gilt nun A = T und B 1 B = T. und somit ist A = B 1 B. Um die Umehrung zu zeigen, legen wir einen Kreis durh die drei unte, A, B 1 und von eine Tangente t an, welhe im unt T berührt. Weil s 1 eine Seante durh und t eine Tangente an ist, erhalten wir mit dem Seanten-Tangenten-Satz. die Gleihung T = A. Gilt nun auh A = B 1 B, so ist T = B 1 B, und somit liegt auh B auf. Bemerung: Der Seantensatz.4 ist eng verwandt mit dem Sehnensatz.1, denn während sih beim Sehnensatz.1 die beiden Sehnen innerhalb des Kreises shneiden, shneiden sih beim Seantensatz.4 die Verlängerungen der Sehnen außerhalb des Kreises; die Sehnenabshnitte werden aber in beiden Sätzen auf dieselbe Weise gebildet.

6 3 Sehnen, Seanten und Chordalen. Chordalen In diesem Abshnitt betrahten wir Tangenten an zwei Kreise. Insbesondere untersuhen wir unte, von denen aus die Tangentenabshnitte an die zwei Kreise gleih lang sind. Dass es solhe unte gibt, zeigen die folgenden beiden Sätze: Satz.5 Gegeben seien zwei Kreise 1 und, welhe sih in S 1 und S shneiden. Alle unte auf der Geraden S 1 S, von denen aus Tangenten an die beiden Kreise gezeihnet werden önnen, haben die Eigenshaft, dass die Längen t 1 und t der Tangentenabshnitte an die beiden Kreise gleih sind. t 1 1 t S 1 S Beweis: Nah dem Seanten-Tangenten-Satz. gilt einerseits t1= S 1 S für den Kreis 1 und andererseits t= S 1 S für den Kreis. Somit ist t1= t, und da Streenlängen positiv sind, folgt daraus t 1 = t. Satz.6 Gegeben seien zwei Kreise 1 und mit vershiedenen Mittelpunten. Weiter sei 0 ein dritter Kreis, welher die beiden Kreise in und A bzw. in B 1 und B shneidet, und zwar so, dass sih die Geraden A und B 1 B in einem unt außerhalb der Kreise 1 und shneiden. Zeihnen wir nun von aus Tangenten an die beiden Kreise, so sind die Längen t 1 und t der Tangentenabshnitte an die beiden Kreise gleih. t 1 t B 1 1 A B 0

7 . Chordalen 33 Beweis: Nah dem Seanten-Tangenten-Satz. gilt einerseits t1= A für den Kreis 1 und andererseits t= B 1 B für den Kreis. Da für den Kreis 0 mit dem Seantensatz.4 A = B 1 B gilt, folgt wieder t1= t und somit t 1 = t. Bemerung: Man überzeugt sih leiht, dass es zu zwei beliebigen, niht-onzentrishen Kreisen 1 und, immer einen dritten Kreis 0 gibt mit den im Satz.6 geforderten Eigenshaften. Es stellt sih nun die Frage, ob es noh weitere solhe unte gibt, sodass die Tangentenabshnitte von an zwei Kreise gleih lang sind. Folgender Satz gibt uns eine erste Antwort. Satz.7 Gegeben seien zwei niht-onzentrishe Kreise mit den Mittelpunten M 1 und M und den Radien r 1 und r, und sei ein unt außerhalb der beiden Kreise. Weiter seien t 1 und t die Längen der beiden Tangentenabshnitte von an die beiden Kreise. Dann gilt wie die folgende Figur zeigt: M 1 M = r 1 r t 1 = t, t 1 t r 1 r M 1 M Beweis: Mit Satz.3 (bzw. dem Satz von ythagoras 9.7) haben wir M 1 r 1 = t 1 und entsprehend auh M r = t. Somit gilt t 1= t genau dann, wenn auh die Gleihung M 1 r 1 = M r gilt, was aber äquivalent ist zur Gleihung M 1 M = r 1 r. Weil nun die Streenlängen t 1 und t positiv sind, gilt t1= t genau dann, wenn t 1 = t ist, woraus unmittelbar die Behauptung folgt. Dieser Satz führt uns zur folgenden Definition: Chordale. Für zwei niht-onzentrishe Kreise mit den Mittelpunten M 1 und M und den Radien r 1 und r definieren wir die Chordale der beiden Kreise als Menge aller unte, für die gilt: M 1 M = r 1 r.

8 34 Sehnen, Seanten und Chordalen Bemerungen: Aus Satz.7 folgt unmittelbar, dass jeder unt, von dem aus die Tangentenabshnitte an zwei gegebene Kreise gleih lang sind, auf der Chordalen der beiden Kreise liegt und umgeehrt. Ist ein unt, von dem aus die Tangentenabshnitte an zwei gegebene Kreise gleih lang sind, so önnen wir einen Kreis 0 mit Mittelpunt zeihnen, der durh die Berührungspunte der Tangenten von an die gegebenen Kreise geht. Der Kreis 0 shneidet dann die beiden gegebenen Kreise senreht. Ist umgeehrt 0 ein Kreis, der zwei gegebene Kreise senreht shneidet, so liegt der Mittelpunt von 0 auf der Chordalen der gegebenen Kreise. Sih senreht shneidende Kreise werden wir ausführlih in Kap. 4 behandeln. Der nähste Satz zeigt, dass die Chordale zweier Kreise immer eine Gerade ist. Satz.8 Gegeben seien zwei niht-onzentrishe Kreise mit den Mittelpunten M 1 und M, und sei ein unt auf der Chordalen der beiden Kreise. Dann ist die Chordale die Gerade durh, welhe senreht zur Zentralen M 1 M steht, wie die folgende Figur zeigt: M 1 M Beweis: Es genügt zu zeigen, dass ein von vershiedener unt Q genau dann auf der Chordalen der beiden Kreise liegt, wenn sih die Geraden Q und M 1 M rehtwinlig shneiden. Sei ein unt auf der Chordalen und sei die Gerade durh, welhe die Zentrale M 1 M rehtwinlig shneidet. Weiter sei F der Shnittpunt der Geraden mit M 1 M und sei Q ein von vershiedener unt auf. Shließlih sei u=m 1 F und v= M F. M 1 r 1 u F v r 1 Q r r M

9 . Chordalen 35 Da auf der Chordalen liegt, gilt nah Definition M 1 M = r 1 r, (1) wobei r 1 und r die Radien der beiden Kreise bezeihnen. Mit dem Satz von ythagoras 9.7 gilt nun auh M 1 = u + F und M = v + F. Damit gilt M 1 M = u v, und mit der Gleihung(1) erhalten wir u v = r1 r. () Mit dem Satz von ythagoras 9.7 gilt auh für den unt Q die Gleihung und mit() gilt: QM 1 QM = u v, QM 1 QM = r 1 r. Somit liegt Q auf der Chordalen der beiden Kreise. Liegt umgeehrt ein unt Q auf der Chordalen, gilt also Q M 1 Q M = r 1 r, so gilt mit() auh Q M 1 Q M = u v, und somit liegt nah dem Satz von ythagoras 9.7 der unt Q auf. Bemerungen zur Konstrution einer Chordalen: Satz.8 gilt für alle aare niht-onzentrisher Kreise: Die Konstrution der Chordalen geshieht meist dadurh, dass zuerst ein unt der Chordalen wie im Satz.6 und dann von auf die Zentrale der beiden Kreise die Lotgerade onstruiert wird. In Spezialfällen lässt sih die Chordale zweier Kreise etwas einfaher onstruieren: Falls sih die beiden Kreise shneiden, ist nah Satz.5 die Chordale die Gerade durh die beiden Shnittpunte. Falls die beiden Kreise gemeinsame Tangenten haben, so erhalten wir die Chordale, indem wir eine Gerade durh die Mittelpunte zwishen entsprehenden Tangentenberührungspunten zeihnen.

10 36 Sehnen, Seanten und Chordalen In den untenstehenden Figuren sind jeweils zwei Kreise in vershiedenen gegenseitigen Lagen mit der zugehörigen Chordalen gezeihnet: Wir wollen die Chordale noh auf eine weitere, äquivalente Weise haraterisieren. Dazu betrahten wir einen Kreis und eine Seante s durh einen festen unt. Die Shnittpunte seien X und Y. X Y s Liegt außerhalb von, so ist der Wert X Y wegen des Seanten-Tangenten-Satzes. unabhängig von der Seante s. Liegt innerhalb von, so ist X Y wegen des Sehnensatzes.1 unabhängig von der Seante. Diese Überlegung führt auf die folgende Definition: otenz eines untes. Ist ein unt, ein Kreis und s eine Seante durh mit Shnittpunten X und Y. Dann heißt das rodut der Seantenabshnitte X Y die otenz des untes in Bezug auf.

11

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $ $Id: dreie.tex,v 1.37 2017/06/19 14:39:24 h Exp $ 2 Dreiee 2.3 Einige spezielle Punte im Dreie In der letzten Sitzung haben wir drei unserer speziellen Punte eines Dreies behandelt, es steht nur noh der

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

Das gefaltete Quadrat

Das gefaltete Quadrat =.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist.

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist. 9 Pthagoras Tripel Nah Pthagoras gilt: In einem rehtwinkligen Dreiek mit den Katheden a und b und der Hpothenuse ist Speziell gilt die sogenannte a + b = Zimmermannsregel. Drei Latten der Länge 3, 4 und

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Maro Bettner, Erik Dinges Mathe an Stationen Das in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Maro Bettner Erik Dinges Mathe an Stationen Umgang mit dem Geobrett

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Shulolympiade) Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Shulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrehnungen

Mehr

H. Bortis Wirtschaftstheorie

H. Bortis Wirtschaftstheorie H. Bortis Wirtshaftstheorie Die neo-riardianishe riti an der neolassishen Theorie (apitaltheoretishe ontroverse zwishen ambridge (England) und ambridge (Massahussetts)) y = Q N = Output pro Arbeiter und

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Prinzipiell die gleichen Regeln wie bei Bruchzahlen! z.b. zum Addieren und Subtrahieren: Erweitern auf den Hauptnenner

Prinzipiell die gleichen Regeln wie bei Bruchzahlen! z.b. zum Addieren und Subtrahieren: Erweitern auf den Hauptnenner Gmnasium Stein Grundwissenkatalog Mathematik Jahrgangsstufe 8 Wissen/Können Rehnen mit Bruhtermen (Grundrehenarten) Lösen von Bruhgleihungen Einfaher Spezialfall: Auflösen von Formeln Funktionen Zur Angabe

Mehr

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung

Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der

Mehr

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a... Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Kleinster Umschließender Kreis

Kleinster Umschließender Kreis Proseminar Theoretishe Informatik 11.07.2017 Janis Meyer Kleinster Umshließender Kreis Prof. Wolfgang Mulzer 1 Einführung Das Problem wurde zum ersten Mal vom britishen Mathematiker James Joseph Sylvester

Mehr

Zusammenfassung: Lineare mechanische Wellen

Zusammenfassung: Lineare mechanische Wellen LGÖ Ks Ph -stündig 0.09.0 Zusammenfassung: Lineare mehanishe Wellen Alle Shwingungen und Wellen werden als ungedämpft angesehen. Mehanishe Wellen benötigen zu ihrer Ausbreitung einen Wellenträger, d. h.

Mehr

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b Hans Walser, [0005a], [050] Falten im Rehtek Anregungen: E.-R. M., S. und H. S., S. Eke hinauffalten In einem Hohformat-Rehtek falten wir die rehte untere Eke auf die obere Kante. Dann falten wir wieder

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/26 11:37:34 hk Exp $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/26 11:37:34 hk Exp $ $Id: dreiec.tex,v 1.9 2013/04/26 11:37:34 h Exp $ 1 Dreiece 1.5 Einige spezielle Punte im Dreiec In der letzten Sitzung haben wir die Konstrution der vier speziellen Punte S m, S w, S u und S h beendet.

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

Dreiecke Vierecke 11. Lösungen B211-01

Dreiecke Vierecke 11.  Lösungen B211-01 reieke Viereke 11 211-01 1 5 1 ei den Winkelhalbierenden sind zwei Seiten, ausgehend von einem Ekpunkt, aufeinanderzulegen. ei genauem Falten treffen sih die drei Winkelhalbierenden in einem Punkt, dem

Mehr

Reflexion von Querwellen

Reflexion von Querwellen Mehanishe Wellen Refleion von Querwellen Dein Lernverzeihnis Refleion von Querwellen Übersiht Einführung 2 Refleion von Querwellen an einem Ende 2. Refleion am festen Ende.....................................

Mehr

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x}

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x} Matrizen: Einleitung Mit Matrizen können Zusammenhänge übersihtliher und kompakter dargestellt werden. Dazu werden Größen zu einer Matri zusammengefaßt, die in einem logishen Zusammenhang stehen. Zur Erläuterung

Mehr

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1 0 Die Logarithmusfunktion Würde man nun versuhen die Aufgae 6. des vorigen Ashnittes rehnerish zu lösen, so stößt man auf folgende noh unlösare Gleihung: h 0,88 www.etremstark.de 0,88 h Gesuht ist also

Mehr

Relativitätstheorie und philosophische Gegenargumente II

Relativitätstheorie und philosophische Gegenargumente II Didaktik der hysik Frühjahrstagung Hannoer 00 Relatiitätstheorie und philosophishe Gegenargumente II J. Brandes* *Danziger Str. 65, D 76307 Karlsbad, e-mail: jg-brandes@t-online.de Kurzfassung.) Es werden

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/20 08:57:49 hk Exp $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2015 Montg 20.4 $Id: dreiek.tex,v 1.15 2015/04/20 08:57:49 hk Exp $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2 Gymnasium Landau Q11 Mai 01 Etremwertprobleme 1 Ein gleihshenkliges Dreiek ABC mit der Basislänge und den Shenkellängen b wird aus einem Draht der Länge L gebogen, dh +b L b h C b A B (a) Beweise für die

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A.

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A. Prof. Dr. H.-H. ohler, W 004/05 PC1 apitel.4 - Reversible Reation.4-1.4 Reversible Reationen.4.1 Diretionale und Netto-Reationsgeshwindigeit Wir gehen jetzt zu reversiblen Reationen über und betrahten

Mehr

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1 rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert

Mehr

Über-/Rückblick. F3 01/02 p.269/294

Über-/Rückblick. F3 01/02 p.269/294 Über-/Rükblik Algorithmenbegriff: Berehenbarkeit Turing-Mashine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentehniken Algorithmenanalyse (Berehnung der Komplexität) Rekursion Iteration

Mehr

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile.

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile. 112 C.1 Aufbau der Blasenkammer C Arbeitsblätter C.1 Aufbau der Blasenkammer Der Aufbau der Blasenkammer Abbildung 1: Aufbau der Blasenkammer ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die

Mehr

Über schwimmende Balken

Über schwimmende Balken Einleitung Über shwimmende Balken Wolfgang Grentz, Peter Gallin, Kantonssshule Zürher Oberland Der Name Arhimedes wird wohl zuerst wenn auh niht nur mit dem Auftrieb in Verbindung gebraht Wenn wir lesen,

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om

Mehr

Dualität in der Elementaren Geometrie

Dualität in der Elementaren Geometrie Dualität in der Elementaren Geometrie Vortrag zum Tag der Mathematik 2012 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stohastik Inhaltsverzeihnis 1 Zusammenfassung (aus dem Programmheft)

Mehr

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen,

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen, 2. Mengenlehre In diesem bshnitt geben wir einen kompakten Überblik über wesentlihe Grundlagen der Mengenlehre, die im weiteren Verlauf noh relevant sein werden. Neben der allgemeinen Definition und Darstellung

Mehr

3 Eigenschaften holomorpher Funktionen

3 Eigenschaften holomorpher Funktionen 3 Eigenshaften holomorpher Funktionen 3.1 Der Identitätssatz Der Identitätssatz zeigt einen überrashend engen Zusammenhang zwishen den Werten einer holomorphen Funktion auf. Satz 3.1 (Identitätssatz) Sei

Mehr

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

ABC-ähnliche Fußpunktdreiecke. Eckart Schmidt

ABC-ähnliche Fußpunktdreiecke. Eckart Schmidt -ähnlihe Fußpunktdreieke Ekart hmidt Das eitenmittendreiek ist das -ähnlihe Fußpunktdreiek der Umkreismitte uh die roard-punkte haben -ähnlihe Fußpunktdreieke Durh piegelung dieser Punkte an den pollonius-kreisen

Mehr

01 Proportion Verhältnis Maßstab

01 Proportion Verhältnis Maßstab 5 Ähnlihkeit und Strhlensätze LS 01.M1 01 Proportion Verhältnis Mßst 1 Lies die folgende Informtion sorgfältig. Mrkiere wihtige egriffe und Formeln. ) Proportionle Zuordnung ei einer proportionlen Zuordnung

Mehr

Ferienkurs Experimentalphysik Musterlösung Probeklausur

Ferienkurs Experimentalphysik Musterlösung Probeklausur Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/15 09:12:15 hk Exp hk $ 1.4 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2013 Montg 15.4 $Id: dreiek.tex,v 1.5 2013/04/15 09:12:15 hk Exp hk $ 1 Dreieke 1.4 Dreiekserehnung mit Seiten und Winkeln In der letzten Sitzung htten wir egonnen die vershiedenen

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung

Mehr

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet.

im Fall einer Longitudinalwelle angeregt wird und die sich in die positive x-richtung eines Koordinatensystems ausbreitet. Name: Datum: Harmonishe Wellen - Mathematishe eshreibung Da eine Welle sowohl eine räumlihe als auh eine zeitlihe Änderung eines physikalishen Systems darstellt, ist sowohl ihre graphishe Darstellung als

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Alexander Halles. Temperaturskalen

Alexander Halles. Temperaturskalen emperatursalen Stand: 15.0.004 - Inhalt - 1. Grundsätzlihes über emperatur 3. Kelvin-Sala 3 3. Fahrenheit-Sala und Ranine-Sala 4 4. Celsius-emperatursala 4 5. Die Réaumur-Sala 4 6. Umrehnung zwishen den

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Probeklausur Aufgabe 1: Kupfermünze 4 Punkte) Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA

Mehr

Analytische Geometrie

Analytische Geometrie www.mathe-aufgaben.om Analytishe Geometrie Analytishe Geometrie Übungsaufgaben Geraden Oberstufe Alexander Shwarz www.mathe-aufgaben.om Oktober 205 www.mathe-aufgaben.om Analytishe Geometrie Aufgabe :

Mehr

Das geteilte Quadrat

Das geteilte Quadrat 1 Ds geteilte Qudrt Puzzles from round the world by Dik Hess 19. Juli 001 Gegeben sei ein Qudrt mit der Seitenlänge. Ds Qudrt soll in zwei untershiedlihe Rehteke geteilt werden, wobei ds kleine Rehtek

Mehr

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie Materialien für Unterriht und Studium Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Georg Bernhardt 5. Oktober 017 Beshreibt das Zwillingsparadoxon tatsählih eine logishe Inkonsistenz

Mehr

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei!

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei! Kreiselphysik Kreisel sind starre Körper mit hoher Symmetrie, die bei Rotation um diese Symmetrieahsen sehr stabil laufen können. Lagert man den Kreisel so, dass keine Drehmomente M auf ihn wirken, so

Mehr

Pool für das Jahr 2017

Pool für das Jahr 2017 Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 17 Aufgabe für das Fah Mathematik Kurzbeshreibung Anforderungsniveau Prüfungsteil Sahgebiet digitales Hilfsmittel erhöht B Analysis WTR 1 Aufgabe

Mehr

Allgemeine Mechanik Musterlo sung 13.

Allgemeine Mechanik Musterlo sung 13. Allgemeine Mehanik Musterlo sung 3. U bung. HS 23 Prof. R. Renner Beshleunigte Bewegung Im Rahmen der speziellen Relativita tstheorie lassen sih auh beshleunigte Bewegungen behandeln. Vorraussetzung ist

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN. Dienstag Übungen Dienstag -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN Dienstag Blk (Die Musterlösungen werden am Abend auf der Vrkurs-Hmepage aufgeshaltet!). Lösen Sie die flgenden linearen Gleihungssysteme

Mehr

11d Mathematik Stefan Krissel. Nullstellen

11d Mathematik Stefan Krissel. Nullstellen d Mathematik..009 Stefan Krissel D E R Z W E I T E S C H R I T T B E I D E R F U N K T I O N S U N T E R S U C H U N G : Nullstellen Der zweite Shritt bei der Untersuhung von Funktionen ist die Untersuhung

Mehr

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.5 2010/01/26 09:31:31 hk Exp $ $Id: diffgl.tex,v 1.4 2010/01/25 15:48:10 hk Exp hk $ 6 Rotation und der Satz von Stokes 6.2 Der -alkül Wir hatten begonnen Formeln für Gradient, Divergenz

Mehr

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol

2. Stragegische Asymmetrien - Stackelberg-Modelle und Markteintritt. Vorlesung 8. Stackelberg-Modell = Sequentielles Duopol Vorlesung 8. Stragegishe Asymmetrien - Stakelberg-Modelle und Markteintritt Stakelberg-Modell = Sequentielles Duopol Übungsaufgabe aus Vorlesung 7: Räumliher und politisher Wettbewerb Angenommen jeder

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

Elementargeometrie Knipping Sommersemester

Elementargeometrie Knipping Sommersemester Elementargeometrie Knipping Sommersemester 2005 121 7.2 Strecenverhältnisse und Strahlensätze Nachdem wir als Einführung die zentrische Strecung behandelt haben, önnen wir jetzt noch einmal grundsätzlich

Mehr

6. Entmischung in flüssigen Systemen 1

6. Entmischung in flüssigen Systemen 1 6. Entmishung in flüssigen Systemen 1 6. ENTMISCHUNG IN FLÜSSIGEN SYSTEMEN 1. Aufgabe Analyse des isobaren Phasendiagramms von zwei binären flüssigen Mishungen mit Mishungslüke. Dabei sollen Kriterien

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein

Mehr

Darstellung von Wellen

Darstellung von Wellen Darstellung von Wellen Um vershiedene Wellenphänomene anshaulih verstehen zu können, sind grafishe Darstellungsformen von Wellen hilfreih. Nahe an der Mathematik ist die Darstellung von Wellen im kartesishen

Mehr

Stunden 2 und 3: Eigenschaften der zentrischen Streckung und Übungen

Stunden 2 und 3: Eigenschaften der zentrischen Streckung und Übungen Stunden und 3: Eigenschaften der zentrischen Strecung und Übungen Ziel der Stunden: Die Schüler - ennen ausgewählte wichtige Eigenschaften der zentrischen Strecung und - önnen bei vorgegebenem Strecungsfator

Mehr

Ein Flug durchs Universum... Martin Heinold

Ein Flug durchs Universum... Martin Heinold Ein Flug durhs Universum... Martin Heinold 27 1 1 1 Einführung Der Weltraum, unendlihe Weiten..., so beginnen viele bekannte Siene-Fition Serien und Filme. Dabei enthalten sie ungeahnte Tehnologien und

Mehr

Klausur 1 Kurs Ph12 Physik Lk

Klausur 1 Kurs Ph12 Physik Lk 16.03.2005 Klausur 1 Kurs Ph12 Physik Lk Lösung 1 Eine an einem Faden befestigte Metallkette shwingt, wenn man sie (wie nebenstehend abgebildet) über eine Rollsheibe hängt. Der Faden sei masselos, die

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Ähnlichkeitssätze für Dreiecke

Ähnlichkeitssätze für Dreiecke Klsse 9 Mth./Ähnlihkeitssätze S.1 Let Ähnlihkeitssätze für Dreieke Def.: Die Verkettung (Hintereinnderusführung) einer zentrishen Strekung mit einer Kongruenzbbildung heißt Ähnlihkeitsbbildung. Zwei Figuren,

Mehr

Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS Niederschlag von CuS Niederschlag von PbS

Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS Niederschlag von CuS Niederschlag von PbS Studienbegleitende Prüfung Modul 1 Anorganish-Chemishes Grundpraktikum SS 003.09.003 Name: Vorname: Matrikelnummer: Fahsemester: Punkte: Note: Frage 1 Was geshieht, wenn Sie Lösungen folgender Kationen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 5-04 1 10 mthuh 1 LU reitsheft + weitere ufgen «Grundnforderungen» Symmetrien 301 Zeihne Grossuhsten des lphets, sortiert nh vier Typen: hsensymmetrish punktsymmetrish hsen- und punktsymmetrish weder hsen-

Mehr

Physik / Mechanik / Kinematik

Physik / Mechanik / Kinematik 1. Setzen Sie bei den folgenden Zahlenpaaren einen Vergleihsoperator (>,,

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Achtung: Im Nenner eines Bruches darf nie die Null stehen!!

Achtung: Im Nenner eines Bruches darf nie die Null stehen!! Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du

Mehr

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 :

2 Die Bildsprache Der relevante Winkel im grünen Dreieck ist stumpf; die gleichschenkligen Dreiecke haben den Basiswinkel 180 : Hns Wlser, [20080409] Eine Visulisierung des Kosinusstzes 1 Worum es geht Es wird eine zum Pythgors-Piktogrmm nloge Figur für niht rehtwinklige Dreieke esprohen. Dei werden ähnlihe gleihshenklige Dreieke

Mehr

Konstruktion von Kreistangenten

Konstruktion von Kreistangenten Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder

Mehr

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel.

Ein Winkel zwischen 0 und 90 heißt spitzer Winkel, ein Winkel zwischen 90 und 180 heißt stumpfer Winkel. Geometrie 1 3 Winkelsummen Der von zwei Nhrseiten eines Vieleks geildete Winkel heißt Innenwinkel. Die Summe der Innenwinkel eines Dreieks eträgt 180. + + = 180 Die Summe der Innenwinkel eines Viereks

Mehr

2.3 Der Fluss eines Vektorfeldes

2.3 Der Fluss eines Vektorfeldes 32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.

Mehr

Tim n Übu~gen. Timing 1

Tim n Übu~gen. Timing 1 Tim n Üu~gen Es folgen einige Üungen zum Veressern des Timings Sie sollten täglih geüt werden und es sollen eigene Wege und Variationen dazu erfunden werden Hierei ist wihtig, daß Sie ei allen Timing Üungen

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

3. Cartesische Geometrie I: Punkte, Strecken und Dreiecke.

3. Cartesische Geometrie I: Punkte, Strecken und Dreiecke. 3. Cartesishe Geometrie I: Punkte, Streken und Dreieke. Existiert eine iderspruhsfreie Euklidishe Geometrie? Um dies zu zeigen müsste man ein iderspruhsfreies Modell angeen in dem alle Hilertshen Axiome

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

17. KONTEXTSENSITIVE SPRACHEN

17. KONTEXTSENSITIVE SPRACHEN 17. KONTEXTSENSITIVE SPRACHEN HAUPTERGEBNIS: KS = ERW = NSPACE(O(n)) REK Das heisst: Kontextsensitive Grammatiken und Grammatiken vom Erweiterungstyp haben die gleihe Beshreibungsmähtigkeit. Kontextsensitive

Mehr

10. Übungsblatt zur Mathematik II für Maschinenbau

10. Übungsblatt zur Mathematik II für Maschinenbau Fahbereih Mathematik Prof. Dr. M. Joswig Dr. Davorin Lešnik Dipl.-Math. Katja Kulas 1. Übungsblatt zur Mathematik II für Mashinenbau Gruppenübung SS 211 2.6.-22.6.11 Aufgabe G1 (Wegintegral Gegeben seien

Mehr