Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung

Größe: px
Ab Seite anzeigen:

Download "Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung"

Transkript

1 Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der Allgemeinheit eine Größenordnung festlegen, andererseits gibt es für symmetrishe Ungleihunge wesentlih mehr Möglihkeiten der Brutefore-Attaken Stihwort: Muirhead. Desweiteren werden symmetrishe Ungleihungen oftmals auh als shöner bezeihnet. Dieser Artikel veranshauliht einige Tehniken, zyklishen Ungleihungen symmetrish zu mahen. Wie üblih verwenden wir als Notation für zyklishe Summen und für symmetrishe Summen sym,d.h. fx, y, z fx, y, z + fy, z, x + fz, x, y sowie fx, y, z fx, y, z + fy, z, x + fz, x, y + fz, y, x + fx, z, y + fy, x, z. sym Wenn niht anders angemerkt wird über drei Varilen summiert. 1 Substitutionen Oftmals lassen sih zyklishe Ungleihungen mit wenigen Substitutionen auf symmetrishe zurükführen. Zu beahten ist dei, dass zyklishe Ungleihungen durh Substitutionen nur symmetrish werden können, wenn auh die Substitution zyklish ist. Eine symmetrishe Substitution wie zum Beispiel die Ravi Substitution a x + y, b y + z, z + x wird diesen Zwek niht erfüllen. Eine Substitution, die oftmals bereits ausreiht, ist folgende: a x y, b y z, z x. Eine notwendige und hinreihende Bedingung, dass diese Substitution durhgeführt werden 1

2 kann, ist 1. Dass diese Bedingung notwendig ist, ist offensihtlih. Dass diese auh hinreihend ist, zeigt eine Wahl von x a, y 1, z 1. b Diese Substitution hat nebenbei noh den Vorteil, dass durh diese die Ungleihung auh homogen wird. Das Paradebeispiel für diese Substitution ist die Ungleihung der IMO 000: Aufge 1 IMO 000 : Für alle positiven reellen Zahlen a, b, mit 1 zeige man die Ungleihung a b b a 1. Lösung: Wegen 1 können wir a x, b y, z mit x, y, z > 0 substituieren. Die y z x Ungleihung shreibt sih dann so: x y 1 + z y y z 1 + x z z x 1 + y 1 1 x x y + zy z + xz x + y xyz Und dies ist die bekannte Shur-Ungleihung. Man beahte, dass symmetrish ist, sollte man also die Shur-Ungleihung niht kennen, so kann man auh folgendermaßen vorgehen: Sei o.b.d.a. x y z, dann gilt x y +z > 0 sowie y z +x > 0. Falls nun z x+y 0, so ist die trivial, da somit die linke Seite 0 und die rehte Seite > 0 ist. Sei also nun z x + y > 0. Dann können wir p x y + z, q y z + x, r z x + y substituieren, wobei p, q, r > 0. Die Ungleihung shreibt sih dann als pqr p + q q + r r + p was trivialerweise aus der arithmetish-geometrishen Mittelungleihung folgt. Identitäten Viele Ungleihungen lassen sih auf die Form fx, y, z P x, y, z bzw. fx, y, z P x, y, z, wobei P x, y, z in x, y, z symmetrish ist, bringen. Oftmals kann man dann mithilfe von algebraishen Identitäten beweisen, dass fx, y, z fz, y, x gilt. In diesem Fall kann man die Ungleihung mit multiplizieren und erhält eine symmetrishe Ungleihung. Es gibt einige leiht zu erkennende Konfigurationen, bei denen dies gilt. Betrahten wir nun folgende Aufgen: Aufge Litauen 1987 : Für alle x, y, z > 0 beweise man die Ungleihung x x + xy + y + y y + yz + z + z z + zx + x x + y + z.

3 Wir werden diese Aufge niht direkt beweisen, stattdessen beweisen wir eine Verallgemeinerung dieser Ungleihung, die 006 beim Österreishish-Polnishen Mathematikwettbewerb gestellt wurde. Aufge ÖPMW 006 : Für alle positiven ganzen Zahlen n und alle positiven reellen Zahlen x, y, z zeige man die Ungleihung x n + x n 1 y y n + y n+1 y n + y n 1 z z n + z n+1 z n + z n 1 x x n x + y + z n + 1. Ih werde zwei Lösungen zu dieser Ungleihung angeben. Lösung 1: Wir verwenden folgende Hilfsungleihung: n + x ny x n + x n 1 y xy n 1 + yn n + 1 Der Beweis dieser Ungleihung ist denkbar einfah. Durh ausmultiplizieren erhalten wir n + y n+1 x n y xy n n + y n+1 x i y n+1 i + i y i 0 n x i y i i y n+1 i 0 und dies ist rihtig, da x i y i und i y n+1 i entweder beide 0 falls x y, negativ falls x < y oder positiv falls x > y sind. Durh zyklishes Aufsummieren von 4 über x, y, z erhalten wir die gewünshte Ungleihung. Lösung : Wir beweisen zunähst die Identität x n + x n 1 y y n Diese Identität lässt sih shnell beweisen: x n + x n 1 y y n y n+1 y n+1 x n + x n 1 y y n. x n + x n 1 y y n y n+1 x n + x n 1 y y n x y 0 4 Multiplizieren wir mit, so erhalten wir folgende symmetrishe Ungleihung: + y n+1 x n + x n 1 y y + y n+1 + z n+1 n y n + y n 1 z z + z n+1 + x + y + z n z n + z n 1 x xn n + 1

4 Nun können wir folgende Hilfsungleihung verwenden: + y n+1 x n + x n 1 y xy n 1 + y n x + y n Diese Ungleihung lässt sih ebenfalls einfah beweisen, denn durh Ausmultipizieren erhalten wir n + y n+1 x n y xy n n + y n+1 x i y n+1 i + i y i 0 n x i y i i y n+1 i 0 was siherlih rihtig ist. Zyklishes Aufsummieren über x, y, z von 5 ergibt die gewünshete Ungleihung. Man beahte, dass die Ungleihungen 4 und 5 äquivalent sind. Mittelungleihung, Jensen, Cauhy-Shwarz Oftmals ist man mit einer Aufsummierung von Brühen oder Wurzeln konfrontiert, welhe einen zyklishen Aufbau hen. Oftmals kann man diese dann in die entsprehende Rihtung auf einen gemeinsamen Bruh oder eine gemeinsame Wurzel shätzen, welhe dann einen symmetrishen Aufbau hat. Werkzeuge hierfür sind die Cauhy-Shwarz Ungleihung und die Allgemeine Mittelungleihung welhe allerdings beide spezialfälle der Jensen-Ungleihung sind. Betrahten wir ein einführendes Beispiel: Aufge 4: Für alle positiven reellen Zahlen x, y, z mit xyz 1 beweise man folgende Ungleihung: x 4 y 4 + y + z + y 4 z 4 + z + x + z 4 x 4 + x + y 1. Lösung: Hier ist die Verwendung der Cauhy-Shwarz Ungleihung relativ offensihtlih: x 4 y 4 + y + z + y 4 z 4 + z + x + z 4 x 4 + x + y x + y + z x 4 + y 4 + z 4 + x + y + z 4

5 Nun gilt er x + y + z x 4 + y 4 + z 4 + x + y + z 1 x + y + z x 4 + y 4 + z 4 + x + y + z x y + y z + z x x + y + z x y + y z + z x xyzx + y + z x y z + y z x + z x y 0. Brühe sind jedoh niht zwingend störend, da im Zweifelsfall immer noh eine Brutefore- Attake gestartet werden kann, indem man die gesamte Ungleihung mit dem gemeinsamen Nenner multipliziert. Wesentlih lästiger können hingegen Wurzeln sein. Hier hilft oft die Verwendung der allgemeinen Mittelungleihung oder, was dasselbe Resultat erzielt, die Verwendung der Jensen-Ungleihung auf Wurzel-/Potenzfunktionen. Betrahten wir dazu folgende Beispiele: Aufge 5 Japan 005 : Für positive reelle Zahlen a, b, mit a + b + 1 zeige man a 1 + b + b 1 + a a b 1. Lösung: Nah gewihteter arithmetish-kubishen Mittelungleihung gilt: a 1 + b + b 1 + a a b a + b + a 1 + b + b 1 + a a b a + b + a 1 + b + b 1 + a a b a 1 + b + b 1 + a a b Nun gilt er a 1 + b + b 1 + a a b a + a + b + b + + a b a + b + 1 was die zu zeigende Ungleihung beweist. Aufge 6 IMO 004 Shortlist: Für alle positiven reellen Zahlen a, b, mit + b + a 1 zeige man Lösung: shätzen: a + 6b + b a 1. Wir können die linke Seite mit der arithmetish-kubishen Mittelungleihung 5

6 1 a + 6b 1 + 6b a 9 6a + b a + 1 b a + b b + a a + 1 b a + b + + b a + a b + Andererseits gilt nah der arithmetish-geometrishen Mittelungleihung 1. + b + a 1 Es genügt also, folgende Ungleihung zu beweisen: 9 8a + b + + b a + a b + 8a + b + + b a + a b + + b + a 8 a b + a b a b + 6 a b a b a b 0 a b 4 Umordnungsungleihung Die Umordnungsungleihung ist ein mähtiges Werkzeug. Sie besagt bekanntlih, dass das Skalarprodukt zweier Vektoren, betrahtet über allen Permutationen dieser Vektoren, maximal ist, wenn diese Vektoren gleihgeordnet und minimal, wenn diese entgegengesetzt geordnet sind. 6

7 Aufge 7 Japan 004 : Für alle positiven reellen Zahlen a, b, mit a + b + 1 zeige man Lösung: Wegen a + b + 1 gilt 1 + a 1 a Die Ungleihung shreibt sih nun als a 1 a b 1 b b a + b + a. a b + b a + b + a a a + b + b + a b + b + + b + + a b +. b a + a + a ba + b. Die Vektoren ; b; a a b und 1 ; 1 ; 1 a+b b+ +a sind entgegengesetzt geordnet. Um dies zu beweisen, können wir o.b.d.a. annehmen, dass a b gilt. Dann gilt ebenfalls sowie 1 a+b 1 b+ 1 +a b + +. Somit gilt nah der Umordnungsungleihung b a + a + a ba + b Nah der Nesbitt-Ungleihung gilt allerdings Literatur b + a + [1] Hojoo Lee: Topis in Inequalities, 006 [] Karl Czakler: Ungleihungen, 006 [] Kiran Kedlaya: A < B, 1999 b a + + a + b + b + a + [4] Thomas J. Mildorf: Olympiad Inequalities, 006 a + b. b ab + + a b + a b a + + a + b. b a a b 7

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...

Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a... Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe

Mehr

2 Sehnen, Sekanten und Chordalen

2 Sehnen, Sekanten und Chordalen Sehnen, Seanten und Chordalen Übersiht.1 Sehnen- und Seantensatz................................................... 7. Chordalen.................................................................. 3 Weitere

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

11d Mathematik Stefan Krissel. Nullstellen

11d Mathematik Stefan Krissel. Nullstellen d Mathematik..009 Stefan Krissel D E R Z W E I T E S C H R I T T B E I D E R F U N K T I O N S U N T E R S U C H U N G : Nullstellen Der zweite Shritt bei der Untersuhung von Funktionen ist die Untersuhung

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

Achtung: Im Nenner eines Bruches darf nie die Null stehen!!

Achtung: Im Nenner eines Bruches darf nie die Null stehen!! Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du

Mehr

Kleinster Umschließender Kreis

Kleinster Umschließender Kreis Proseminar Theoretishe Informatik 11.07.2017 Janis Meyer Kleinster Umshließender Kreis Prof. Wolfgang Mulzer 1 Einführung Das Problem wurde zum ersten Mal vom britishen Mathematiker James Joseph Sylvester

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

Piezoelektrische Effekte

Piezoelektrische Effekte Piezoelektrishe Effekte 1. Begriffe 2. Theoretishe Grundlagen 3. Anwendungen 4. Quellen Verfasser: Claudius Knaak, 24 Internet: http://www.knaak.bplaed.de/index.html - 2-1. Begriffe 1.1 Piezoelektrisher

Mehr

Sammlung von 10 Tests

Sammlung von 10 Tests ALGEBRA Potenzen und Wurzeln Sammlung von 0 Tests Die hier gezeigten Aufgen sind thematisch geordnet alle in der Datei 00 enthalten. Hier nur die Gruppierung zu Tests. Datei Nr. 0 September 00 Friedrich

Mehr

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x}

Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x} Matrizen: Einleitung Mit Matrizen können Zusammenhänge übersihtliher und kompakter dargestellt werden. Dazu werden Größen zu einer Matri zusammengefaßt, die in einem logishen Zusammenhang stehen. Zur Erläuterung

Mehr

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt

19.2 Kurvenintegrale. c a. wobei die euklidische Norm bezeichnet. Weiterhin heißt Kapitel 19: Integralrehnung mehrerer Variabler 19.2 Kurvenintegrale Für eine stükweise C 1 -Kurve : [a, b] D, D R n, und eine stetige skalare Funktion f : D R hatten wir das Kurvenintegral 1. Art definiert

Mehr

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist.

9 Pythagoras Tripel. Nach Pythagoras gilt: In einem rechtwinkligen Dreieck mit den Katheden a und b und der Hypothenuse c ist. 9 Pthagoras Tripel Nah Pthagoras gilt: In einem rehtwinkligen Dreiek mit den Katheden a und b und der Hpothenuse ist Speziell gilt die sogenannte a + b = Zimmermannsregel. Drei Latten der Länge 3, 4 und

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Eine elementare Methode für Unmöglichkeitsbeweise bei Konstruktionen mit Zirkel und Lineal

Eine elementare Methode für Unmöglichkeitsbeweise bei Konstruktionen mit Zirkel und Lineal Eine elementare Methode für Unmöglihkeitsbeweise bei Konstruktionen mit Zirkel Lineal Autor(en): Objekttyp: Laugwitz, Detlef Artile Zeitshrift: Elemente der Mathematik Band (Jahr): 17 (1962) Heft 3 PDF

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Über schwimmende Balken

Über schwimmende Balken Einleitung Über shwimmende Balken Wolfgang Grentz, Peter Gallin, Kantonssshule Zürher Oberland Der Name Arhimedes wird wohl zuerst wenn auh niht nur mit dem Auftrieb in Verbindung gebraht Wenn wir lesen,

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.

Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A.

Wir gehen jetzt zu reversiblen Reaktionen über und betrachten eine reversible Reaktion einfacher Art in der allgemeinen Form (s. Gl.(A. Prof. Dr. H.-H. ohler, W 004/05 PC1 apitel.4 - Reversible Reation.4-1.4 Reversible Reationen.4.1 Diretionale und Netto-Reationsgeshwindigeit Wir gehen jetzt zu reversiblen Reationen über und betrahten

Mehr

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert. R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,

Mehr

Repetitionsaufgaben Bruchterme

Repetitionsaufgaben Bruchterme Kantonale Fahshaft Mathematik Repetitionsaufgaben Bruhterme Zusammengestellt von der Fahshaft Mathematik der Kantonsshule Willisau Inhaltsverzeihnis A) Vorbemerkung... 1 B) Lernziel... 1 C) Theorie...

Mehr

Reflexion von Querwellen

Reflexion von Querwellen Mehanishe Wellen Refleion von Querwellen Dein Lernverzeihnis Refleion von Querwellen Übersiht Einführung 2 Refleion von Querwellen an einem Ende 2. Refleion am festen Ende.....................................

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

ADIABATENKOEFFIZIENT. Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VERSUCH 1. Grundlagen. Literatur. Theorie und Methode

ADIABATENKOEFFIZIENT. Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VERSUCH 1. Grundlagen. Literatur. Theorie und Methode VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideales und reales Gasgesetz 1. Hauptsatz der Thermodynamik Zustandsgleihungen, Guggenheim-Shema isohore,

Mehr

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

EDA-Methoden. Versuch 12 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotehnik und Informationstehnik Institut für Mikro- und Nanoelektronik Fahgebiet Elektronishe Shaltungen und Systeme EDA-Methoden Versuh 12 im Informationselektronishen Praktikum Studiengang

Mehr

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen

6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen 6. Mathematik Olympiade 1. Stufe (Shulolympiade) Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Shulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrehnungen

Mehr

3 Eigenschaften holomorpher Funktionen

3 Eigenschaften holomorpher Funktionen 3 Eigenshaften holomorpher Funktionen 3.1 Der Identitätssatz Der Identitätssatz zeigt einen überrashend engen Zusammenhang zwishen den Werten einer holomorphen Funktion auf. Satz 3.1 (Identitätssatz) Sei

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung

Mehr

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten.

Straf-Taten sind kriminelle Handlungen und Gewalt-Taten. Liebe Düsseldorfer und Düsseldorferinnen. Die Stadt-Verwaltung Düsseldorf bittet alle Düsseldorfer Bürger um ihre Mithilfe. Bitte füllen Sie den Fragebogen aus. Shiken Sie den ausgefüllten Fragebogen an

Mehr

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile.

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile. 112 C.1 Aufbau der Blasenkammer C Arbeitsblätter C.1 Aufbau der Blasenkammer Der Aufbau der Blasenkammer Abbildung 1: Aufbau der Blasenkammer ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die

Mehr

Seiten 5 / 6. Seite 8. Lösungen Mathematik-Dossier Algebra in Q

Seiten 5 / 6. Seite 8. Lösungen Mathematik-Dossier Algebra in Q Seite Binomishe Formeln Seiten / Produkt von zwei Binomen / Binome in Trinome verwandeln 1 a) (r + ) (s 11) rs 11r + s - b) ( + ) ( ) 2 + 2 2-2 ) (19y + ) ( y) 12y 7y 2 + 2 12y -7y 2 + 10y + 2 (korrekt

Mehr

Lorentzkraft. 1. Einleitung

Lorentzkraft. 1. Einleitung Lorentzkraft Einleitung Ein gerader stromführender Draht lenkt eine Kompassnadel ab Wir shreiben diese Wirkung dem Magnetfeld zu, das von ihm ausgeht Streut man Eisenfeilspäne auf eine Unterlage, die vom

Mehr

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke

6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke 6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.

Mehr

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, othmar.marti@uni-ulm.de. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise

Mehr

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen,

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen, 2. Mengenlehre In diesem bshnitt geben wir einen kompakten Überblik über wesentlihe Grundlagen der Mengenlehre, die im weiteren Verlauf noh relevant sein werden. Neben der allgemeinen Definition und Darstellung

Mehr

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b

Wir fragen nun, wie die Faltlinie die senkrechten Rechtecksseiten teilt. 1 b Hans Walser, [0005a], [050] Falten im Rehtek Anregungen: E.-R. M., S. und H. S., S. Eke hinauffalten In einem Hohformat-Rehtek falten wir die rehte untere Eke auf die obere Kante. Dann falten wir wieder

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES

Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideale und reale Gase (Gasgesetze, Van-der-Waals Gleihung, Koolu- men, Van-der-Waals Shleifen, Maxwell-Konstruktion,

Mehr

x 3x 2x 0 2x x x 3 e 4 t t dt 12

x 3x 2x 0 2x x x 3 e 4 t t dt 12 5 Gewöhnlihe Differentialgleihungen 5. Einführung und Definition einer Differentialgleihung, Beispiele Die Shulmathematik hat sih bisher sehr ausgiebig mit dem Lösen von Gleihungen beshäftigt. In diesen

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen

47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 47. Österreichische Mathematik-Olympiade Landeswettbewerb für Anfänger/innen Lösungen 16. Juni 016 Aufgabe 1. Man bestimme alle natürlichen Zahlen n mit zwei verschiedenen positiven Teilern, die von n

Mehr

Höhere Mathematik Vorlesung 9

Höhere Mathematik Vorlesung 9 Höhere Mathematik Vorlesung 9 Mai 2017 ii Be yourself, everyone else is already taken. Osar Wilde 9 Integralrehnung im Komplexen Das Riemannshe Integral einer komplexwertigen Funktion: Sei f : [a, b] C

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

Mathematik, Klasse 7, Terme und Termwerte

Mathematik, Klasse 7, Terme und Termwerte Mathematik, Klasse 7, Terme und Termwerte. Finde den Term und berechne dann den Termwert für x = - 5 und x = 00. x = x = x = 3 x = 4 x = 5 x = - 5 x =00 T (x) = 5 8 4 7 T (x) = 3 6 9-5 T 3 (x) = 0 3 8

Mehr

Über-/Rückblick. F3 01/02 p.269/294

Über-/Rückblick. F3 01/02 p.269/294 Über-/Rükblik Algorithmenbegriff: Berehenbarkeit Turing-Mashine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentehniken Algorithmenanalyse (Berehnung der Komplexität) Rekursion Iteration

Mehr

Verkürzungsfaktor bei Antennen und Koax-Leitungen

Verkürzungsfaktor bei Antennen und Koax-Leitungen 071111 hb9tyx@lusterte.om Verkürzungsaktor bei Antennen und Koax-Leitungen Vielleiht haben Sie sih beim Bau von Antennen oder Umwegleitungen auh shon geragt, woher eigentlih der Verkürzungsaktor stammt.

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

(Cauchysche Integralformel)

(Cauchysche Integralformel) H.J. Oberle Komplexe Funktionen SoSe 203 8. Die Cauhyshe Integralformel Satz (8.) (Cauhyshe Integralformel) Ist f : D C holomorph auf einem Gebiet D und ist : [a, b] D \ {z 0 } ein geshlossener, zum Punkt

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

Wie Mathematik die Modellbildung vereinfacht

Wie Mathematik die Modellbildung vereinfacht 39 Peter Junglas Wie Mathematik die Modellbildung vereinfaht Auszug. Im Fah Simulationstehnik müssen ingenieuerwissenshaftlihe, physikalishe und mathematishe Kenntnisse miteinander verknüpft werden. Es

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr

9 Strahlungsgleichungen

9 Strahlungsgleichungen 9-9 Strahlungsgleihungen Ein spontanes Ereignis bedarf keines nstoßes von außen, um ausgelöst zu werden. Das Liht thermisher Strahler, das wir visuell wahrnehmen, entsteht dadurh, dass eine Substanz bei

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Übungen zur Klassishen Theoretishen Physik III (Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1 rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert

Mehr

Invariantentheorie. Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen

Invariantentheorie. Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen Beispiel 1.1. Wir betrachten Dreiecke

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

3. Mai Zusammenfassung. g x. x i (x).

3. Mai Zusammenfassung. g x. x i (x). 3. Mai 2013 Zusammenfassung 1 Hauptsatz Satz 1.1 Sei F C 1 (D) für eine offene Teilmenge D von R q+1 = R q R. Für (x 0, u 0 ) D gelte F (x 0, u 0 ) = 0, (x 0, u 0 ) 0. Dann gibt es eine Umgebung V von

Mehr

Ungleichungen II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 5. Januar 2016 vers

Ungleichungen II. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 5. Januar 2016 vers Schweizer Mathematik-Olympiade smo osm Ungleichungen II Thomas Huber Aktualisiert: 5. Januar 06 vers...0 Inhaltsverzeichnis Symmetrische polynomiale Ungleichungen. Bunching....................................

Mehr

1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen:

1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen: 1 Mariazell 009 Czakler Geometrische Ungleichungen Ungleichungen im Dreieck 1. Dreiecksungleichungen Es seien a, b, c > 0 die Seiten eines Dreiecks. Dann gelten die Dreiecksungleichungen:. Die x-y-z-transformation

Mehr

Analytische Geometrie

Analytische Geometrie www.mathe-aufgaben.om Analytishe Geometrie Analytishe Geometrie Übungsaufgaben Geraden Oberstufe Alexander Shwarz www.mathe-aufgaben.om Oktober 205 www.mathe-aufgaben.om Analytishe Geometrie Aufgabe :

Mehr

Michelson-Versuche ohne Lorentz-Kontraktion

Michelson-Versuche ohne Lorentz-Kontraktion Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten

Mehr

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher,

Materialien für den Kindergarten. Liebe Erzieherin, lieber Erzieher, Materialien für den Kindergarten Liebe Erzieherin, lieber Erzieher, die Musik nimmt einen ganz besonderen Platz im Herzen der Kinder ein: Kinder lieben Musik! Und ganz nebenbei hat die Musik einen außerordentlih

Mehr

Hans Sillescu. Das Zwillingsparadoxon

Hans Sillescu. Das Zwillingsparadoxon Hans Sillesu Das Zwillingsparadoxon Irgendwann erfahren die meisten Zwillinge in unserer zivilisierten Welt von dem sogenannten Zwillingsparadoxon. Ih will hier versuhen, mit einfahen Worten zu erklären,

Mehr

Kosmologie (WPF Vertiefungsrichtung) Blatt 3

Kosmologie (WPF Vertiefungsrichtung) Blatt 3 Prof. Dr. K. Kassner Kosmologie (WPF Vertiefungsrihtung) Blatt 3 SS 2017 27. 04. 2017 6. Uran-Blei-Datierung 7 Pkt. In dieser Aufgabe wollen wir einige Überlegungen anstellen, wie man mithilfe der bekannten

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray James.Gray@hysik.uni-muenhen.de Übung.: Eine Gitarrensaite Wir betrahten

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $

Mathematische Probleme, SS 2017 Montag $Id: dreieck.tex,v /06/19 14:39:24 hk Exp $ $Id: dreie.tex,v 1.37 2017/06/19 14:39:24 h Exp $ 2 Dreiee 2.3 Einige spezielle Punte im Dreie In der letzten Sitzung haben wir drei unserer speziellen Punte eines Dreies behandelt, es steht nur noh der

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Physik I Übung 11 - Lösungshinweise

Physik I Übung 11 - Lösungshinweise Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr

Mehr

2.3 Der Fluss eines Vektorfeldes

2.3 Der Fluss eines Vektorfeldes 32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.

Mehr

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2

Gymnasium Landau Q11 Mai Extremwertprobleme. L Lx2 4x 3 2 Gymnasium Landau Q11 Mai 01 Etremwertprobleme 1 Ein gleihshenkliges Dreiek ABC mit der Basislänge und den Shenkellängen b wird aus einem Draht der Länge L gebogen, dh +b L b h C b A B (a) Beweise für die

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

Lichtablenkung unter Gravitation - flaches Universum?

Lichtablenkung unter Gravitation - flaches Universum? Lihtablenkung unter Gravitation - flahes Universum? von Dieter Prohnow, Berlin E-mail: du.prohnow@t-online.de Im Universum kann Liht in der Nähe von Massenanhäufungen von seiner Bahn abgelenkt werden.

Mehr

Pool für das Jahr 2017

Pool für das Jahr 2017 Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 17 Aufgabe für das Fah Mathematik Kurzbeshreibung Anforderungsniveau Prüfungsteil Sahgebiet digitales Hilfsmittel erhöht B Analysis WTR 1 Aufgabe

Mehr

Zerspankraftmessung 1

Zerspankraftmessung 1 Zerspankraftmessung 1 Inhalt 1 Einleitung...2 2 Versuhsaufbau, verwendete Mashinen, Messgeräte und Werkzeuge...2 2.1 Versuhsaufbau...2 2.2 Mashinen, Werkzeuge und Messgeräte...2 3 Grafishe Darstellung

Mehr

Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA.

Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA. Die WURZEL Werkstatt Mathematik Polynome Teil IV: Hilfspolynome oder Eine Erweiterung des Satzes von VIETA. Was hat ein Gleichungssystem der Art x + y + z = 5 x 2 + y 2 + z 2 = 29 xyz = 24 mit Polynomen

Mehr

Analysis Übung MuLo

Analysis Übung MuLo Anlysis 2 3. Übung MuLo Prof. Dr. B. Kümmerer Fhbereih Mthemtik W. Reußwig, K. Shwieger 4. Juli 20 Anwesenheitsübungen Aufgbe Tngentilhyperebene Wir betrhten die Funktion f : 2, f (x, y) : (x y) 3. Bestimmen

Mehr

Vertrag über die Beschaffung von IT-Dienstleistungen

Vertrag über die Beschaffung von IT-Dienstleistungen VB-IT Dienstvertrag Vertragsnummer/Kennung Auftragnehmer: V918/2900000 Seite 1 von 7 Vertrag über die Beshaffung von IT-Dienstleistungen Zwishen Finanzbehörde Gänsemarkt 6 2054b Hamburg - im Folgenden

Mehr

Seminar Kryptographie

Seminar Kryptographie Seminar Kryptographie Christian Wilkin Seminararbeit WS 24/25 Dezember 24 Betreuung: Prof. Dr. Alfred Sheerhorn Fahbereih Design und Informatik Fahhohshule Trier University of Applied Sienes FACHHOCHSCHULE

Mehr

2. Wellenausbreitung

2. Wellenausbreitung 2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben

Mehr

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie

Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie Materialien für Unterriht und Studium Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Georg Bernhardt 5. Oktober 017 Beshreibt das Zwillingsparadoxon tatsählih eine logishe Inkonsistenz

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.5 2010/01/26 09:31:31 hk Exp $ $Id: diffgl.tex,v 1.4 2010/01/25 15:48:10 hk Exp hk $ 6 Rotation und der Satz von Stokes 6.2 Der -alkül Wir hatten begonnen Formeln für Gradient, Divergenz

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

KLASSISCHE ELEKTRODYNAMIK

KLASSISCHE ELEKTRODYNAMIK KLASSISCHE ELEKTRODYNAMIK Frühjahrsemester 2009 Matthias R. Gaberdiel Institut für Theoretishe Physik Hönggerberg, KIT 23.1 ETH Zürih CH-8093 Zürih Email: gaberdiel@itp.phys.ethz.h Contents 1 Einleitung

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.)

Kurvenintegrale. (Eine reguläre Kurve besitzt also in jedem Punkt einen nicht verschwindenden Tangentenvektor.) Kurvenintegrle Definition: (Kurve) Eine stetige Abbildung : [, b] R n heißt ein Weg im R n. Ds Bild C := ([, b]) heißt Kurve im R n. Die Punkte () bzw. (b) heißen Anfngsbzw. Endpunkt der Kurve. heißt geshlossener

Mehr

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter R. Brinkmnn http://rinkmnn-du.de eite.0.0 Lösungen Bruhrehnung I mit dem GTR CAIO fx-cg 0 Rehnerlösungen git es zu den Aufgen 6 is 0. Ausführlihe Berehnungseispiele und vieles mehr git es unter http://www.freiurger-verlg.de/

Mehr