Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Größe: px
Ab Seite anzeigen:

Download "Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen"

Transkript

1 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn. Zustandsgrößen Zustandsänderungen sind auf vier vershiedene Arten möglih: isohor (olumen konstant) Energieaustaush isobar (Druk konstant) mit Umgebung isotherm (emeratur konstant) adiabatish (kein Wärmeaustaush mit Umgebung) K-H. Kamert ; Physik für Bauingenieure ; SS00

2 -Diagramm isohor isobar ~/ isotherm: =onst (gl. Boyle Mariotte) adiabatish: / =onst (Abkühlung bei der Exansion bewirkt verstärkte Drukabnahme) Prinzi der Energieerhaltung bei Zustandsänderungen führt zum... K-H. Kamert ; Physik für Bauingenieure ; SS00

3 . Hautsatz der WärmelehreW Bei Zufuhr von Wärme DQ kann Gas die innere Energie DU erhöhen und mehanishe Arbeit DW leisten: DQ = DU + DW orzeihenkonvention: DQ > 0 : dem Gas zugeführte Wärme DQ < 0 : vom Gas abgegebene Wärme DW < 0 : dem Gas zugeführte mehanishe Arbeit DW > 0 : vom Gas abgegebene mehanishe Arbeit Bs: Gas dehnt sih bei konstantem Druk aus fl das Gas leistet mehanishe Arbeit zur ergrößerung des olumens Arbeit = Kraft Weg = F Ds = ( A) Ds = ( A) D/A = D K-H. Kamert ; Physik für Bauingenieure ; SS00 fl DW = D fl W = () d orzeihen lt. Konvention oben 3

4 Erläuterung der inneren Energie U: Isohore Zustandsänderung nderung sei konstant, während die Wärmemenge DQ zugeführt wird, d.h.: D = 0 fl DW = 0 fl DQ = DU + DW = DU Die zugeführte Wärmemenge DQ wird also allein zur Erhöhung der inneren Energie des Gases verwendet Hierfür gilt: DQ = v m D fl DU = v m D Wihtiges Ergebnis: Die innere Energie eines idealen Gases wird allein von der emeratur bestimmt. K-H. Kamert ; Physik für Bauingenieure ; SS00 DQ = Q, = v m ( - ) ; DW = 0 4

5 Isobare Zustandsänderung nderung Wärmemenge DQ wird bei konstantem Druk zugeführt fl olumenänderung DW DW= D DQ = DU + DW = D = v m D = m D ï m D = v m D + D m ( - v ) D = D bzw. m ( - v ) = ergleihe mit Zustandsgl.: m R s = K-H. Kamert ; Physik für Bauingenieure ; SS00 ï R s = - v Mayershe Gleihung 5

6 Isotherme Zustandsänderung nderung Gastemeratur muss während der Zustandsänderung konstant gehalten werden fl Kontakt mit Wärmebad erforderlih DQ = DU + DW DQ = D = DW DW K-H. Kamert ; Physik für Bauingenieure ; SS00 Weitere Auswertung erfordert Kenntnis = (): verwende Zustandsgl.: = m R s Einsetzen: DW = D = ( m R s / ) D Integrieren: W m R d, = s = mrs ln Beahte orzeihen: > fl Gas leistet Arbeit d.h. W, > 0 = mr s ln 6

7 Wiederholung vom Zustandsänderungen von Gasen: isobar, ishor, isotherm, adiabatish Alle Prozesse werden durh den. Hautsatz der Wärmelehre beshrieben: DQ = DU + DW mehanishe Arbeit: DW=W = D bzw. fl W = () d isohor: D = 0 fl DW = 0 fl DU = v m D isobar: W = D DQ = m D DU = m D W isotherm: W DU = 0 W = mr s ln = mr s ln K-H. Kamert ; Physik für Bauingenieure ; SS00 7

8 Adiabatishe Zustandsänderung nderung Während der Zustandsänderung wird das Gas thermish isoliert fl DQ = 0 DQ = 0 = DU + DW Isothermen DQ=0 DW Adiabate =onst =onst = v m D + W W = - v m D = () d Auswertung erfordert wieder Zustandsgleihung: () = m R s / m R s d = v m d d d Rs = v d ( v) = v d ( v) ln = v ln K-H. Kamert ; Physik für Bauingenieure ; SS00 8

9 9 K-H. Kamert ; Physik für Bauingenieure ; SS00 Adiabatishe Zustands Adiabatishe Zustandsänderung () nderung () ( ) ln ln v v = = + v v ln ln = = v v mit Adiabatenkoeffizient = dann: = Mithilfe der Zustandsgleihung können wir auh in Relation zu, oder in Relation zu bringen: onst = = =. = = = = ( ) = = = ❶ ❷ ❶,❷ gleihsetzen: = ❶❷ ❸: Poissonshe Gleihungen ❸

10 Aus Gl ❸ findet man unmittelbar: = = = = onst Poissonshes Gesetz ( Gleihung der Adiabaten des idealen Gases ) Bs: Dieselmotor Berehnen Sie die emeraturerhöhung der angesaugten Luft in einem Dieselmotor. Es handelt sih hierbei näherungsweise um eine adiabatishe Komression von Luft ( = 5 C, = bar, =,4) von bar auf 38 bar. Gleihung ❷ liefert Relation zwishen und : = = = = 98 K K = 570 C Welhe mehanishe Arbeit wird hierbei an dem Gas geleistet? K-H. Kamert ; Physik für Bauingenieure ; SS00 0

11 olumenarbeit bei adiabatisher Komression Isothermen DQ=0 W Adiabate W = d = DQ = - v m D = + v m ( ) < 0 =onst =onst = < 0 ; am Gas wird = onst =. Arbeit geleitstet W, = mv = mv Benutze = mrs = m( v) W = mv m( v) ( ), = = m v ( ) ( ) K-H. Kamert ; Physik für Bauingenieure ; SS00

12 Polytroe Zustandsänderungen nderungen Praxis: weder isotherme noh adiabatishe Zustandsänderungen leiht realisierbar (es gibt weder eine ideale Kolung mit einem Wärmebad noh eine ideale Isolation) ergleiht man beide Prozesse: isotherm, z.b: = adiabatish: = Isotherm entsriht adiabatish für k= Führe daher zur Beshreibung von Mishformen den Polytroenkoeffizienten n ein, mit < n < k n Gleihung der Polytroe = onst eines idealen Gases K-H. Kamert ; Physik für Bauingenieure ; SS00

13 Bs: Entsannung von Drukluft Entsanne kg Drukluft ( =.4) von = 0 bar auf = bar. Die Anfangstemeratur sei 0 C. Wie groß ist die emeratur nah dem organg, wenn dieser (a) adiabatish und (b) olytro (n =.) abläuft? = 93 K " $ # 0% " $ = 93 K # 0% = 5 K = - C = 00 K = - 73 C Wie groß ist die mehanishe Arbeit in beiden Fällen ( v = 78 J/(kg K) )? adiabatish: W = m ( ) = 78 J (93 5)K = 0kJ K olytro: W = m ale n ( ) = 78 J K 0.4 (93 00)K = 3 kj 0. (Erklärung: die zusätzlihen 3 kj werden der Umgebung als Wärme entzogen, daher kein Gewinn gegenüber dem adiabatishen Fall!) -H. Kamert ; Physik für Bauingenieure ; SS00 3

14 Übersiht =adiabatish K-H. Kamert ; Physik für Bauingenieure ; SS00 4

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch hermodynamik hermodynamik Prof. Dr.-Ing. Peter Hakenesh eter.hakenesh@hm.edu www.lrz-muenhen.de/~hakenesh hermodynamik Einleitung Grundbegriffe Systembeshreibung 4 Zustandsgleihungen 5 Kinetishe Gastheorie

Mehr

Name Charakteristik Beispiele

Name Charakteristik Beispiele hermodynamishe Grundrozesse: Name Charakteristik Beisiele Isohor Isobar Isotherm Isoenergetish ) Isenthal ) Isentro 3) V = onst P = onst = onst U = onst H = onst S = onst Erwärmung oder Abkühlung in festen

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

Die Funktionsweise und Thermodynamik des Thermokompressionsmotors

Die Funktionsweise und Thermodynamik des Thermokompressionsmotors Die Funktionsweise und hermodynamik des hermokomressionsmotors Der hermokomressionsmotor durhläuft einen neuartigen Kreisrozess, um die Abgaswärme innermotorish zu nutzen. Die folgende abelle gibt die

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Versuchsprotokolle + 1=

Versuchsprotokolle + 1= Physikalishes Grundraktikum ersuh 05 Adiabatenexonent ersuhsrotokolle Aufgaben 1. Messung des Adiabatenkoeffizientens on nah Clement- Desormes. Messung dessen nah dem erfahren on Rühardt 3. Bestimmen des

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Das Chemische Gleichgewicht Massenwirkungsgesetz

Das Chemische Gleichgewicht Massenwirkungsgesetz Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

-1- Klassische Punktmechanik: Ein Massenpunkt bewegt sich im dreidimensionalen Raum von r A nach r B längs einer Bahn, die durch die Ortskoordinate r

-1- Klassische Punktmechanik: Ein Massenpunkt bewegt sich im dreidimensionalen Raum von r A nach r B längs einer Bahn, die durch die Ortskoordinate r -- 3 ERSER HSZ DER HERMODYNMIK 3. rbeit und Wärme 3.. Definition und allgemeine eshreibung der rbeit Klassishe unktmehanik: Ein Massenpunkt bewegt sih im dreidimensionalen Raum von r nah r längs einer

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

5.5 Zustandsänderungen idealer Gase

5.5 Zustandsänderungen idealer Gase 5.5 Zustandsänderungen idealer Gase iele Gase verhalten sich bei technischen Anwendungen in guter Näherung wie ideale Gase (siehe Ka. 5..3). Bei einem technischen Prozess ändert sich nun der Zustand des

Mehr

Einführung in die Verbrennungskraftmaschine

Einführung in die Verbrennungskraftmaschine Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

D o n n e r s t a g, 1 4. J u l i

D o n n e r s t a g, 1 4. J u l i D o n n e r s t a g, 1 4. J u l i 2 0 1 6 L a m p e n f i e b e r M e i n N a m e i s t A r i s a W a t a n a b e. I c h k o m m e a u s J a p a n, Y o k o h a m a. I c h b i n 1 6 J a h r e H e u t e

Mehr

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft

Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden

Mehr

Physik. Lichtgeschwindigkeit

Physik. Lichtgeschwindigkeit hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit

Mehr

Weiterführende Aufgaben zu chemischen Gleichgewichten

Weiterführende Aufgaben zu chemischen Gleichgewichten Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm.

a) Skizzieren Sie den Prozess in einem T,s-, h,s- und p,h-diagramm. Institut für hermodynamik hermodynamik II - Lösung 8 Aufgabe 13: In einem nach dem Clausius-Rankine-Prozess arbeitenden Damfkraftwerk wird flüssiges Wasser in der Kesselseiseume von 1 =,2 bar und t 1 =

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung :

Bitte beschäftigen Sie sich mit folgenden Aspekten aus dem Gebiet Schwache Wechselwirkung : Bitte beshäftigen Sie sih mit folgenden Asekten aus dem Gebiet Shwahe Wehselwirkung : igenarten des nuklearen β-zerfalls Fermi- und Gamow-Teller Übergänge 3 vektorielle und axiale Kolung 4 Wiederholen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?

FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert? FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr

Polytrope Zustandsänderung

Polytrope Zustandsänderung Sowohl isotherme als auch isentroe Zustandsänderungen werden in Maschinen nie streng erreicht. Reale Komressions- und Exansionsrozesse lassen sich aber oft recht gut durch allgemeine Hyerbeln darstellen,

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b

Thermodynamische Berechnung des Modells eines Stirling-Motors Typ b ösung : Projekt Stirling-Motor nach dem Kartonmodell Seite von 7 hermodynamische Berechnung des Modells eines Stirling-Motors y b Zu.) Übertragen Sie das gegebene --Diagramm in ein entsrechendes -s-diagramm

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Allgemeine Gasgleichung und technische Anwendungen

Allgemeine Gasgleichung und technische Anwendungen Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Kompressible Strömungsmechanik (Gasdynamik)

Kompressible Strömungsmechanik (Gasdynamik) Aerodynamik des Flugzeugs Komressible Strömungsmechanik (Gasdynamik) Folie von 94 Einleitung Strömungssimulation in Windkanälen 3 Numerische Strömungssimulation 4 Potentialströmungen 5 ragflügel unendlicher

Mehr

Zur Theorie - die Dampfdruckkurve

Zur Theorie - die Dampfdruckkurve Labor Therodynaik Zur Theorie - die I Zweihasengebiet liegt siedende Flüssigkeit zusaen it ihre gesättigten Daf vor. Der Druck eines solchen Systes ist auf einer Isothere konstant. Man kann also i Zweihasengebiet

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Kinetik homogener Reaktionen - Formalkinetik

Kinetik homogener Reaktionen - Formalkinetik Prof. Dr. xel rehm Universität Oldenburg - Praktikum der Tehnishen Chemie 1 Einleitung Kinetik homogener Reaktionen - Formalkinetik Unter hemisher Kinetik versteht man die Lehre von der Geshwindigkeit

Mehr

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)

T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel) T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole

Mehr

Übung 6 - Musterlösung

Übung 6 - Musterlösung Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7

Verhalten reiner, realer Stoffe. Maxwellsche Beziehungen. Kapitel 7 Verhalten reiner, realer Stoffe Kaitel 7 Maxwellsche Beziehungen Verknüfen die energetischen Zustandsgrößen und die Entroie mit den thermischen Zustandsgrößen Zustandsgröße sezifische Innere Energie du

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Gegenstand der letzten Vorlesung

Gegenstand der letzten Vorlesung Thermodynamik - Wiederholung Gegenstand der letzten Vorlesung Reaktionsenthalpien Satz von Hess adiabatische Zustandsänderungen: ΔQ = 0 Entropie S: Δ S= Δ Q rev (thermodynamische Definition) T 2. Hauptsatz

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1

Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1 rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

2. Hauptsätze der Thermodynamik

2. Hauptsätze der Thermodynamik . Hautsätze der hermodynamik ekannt sind vor allem der I. und II. Hautsatz der hermodynamik. Man sricht auch vom 0. Hautsatz und es gibt zusätzlich den III. Hautsatz. 0. HS: Einführung der emeratur als

Mehr

21 Spezielle Relativitätstheorie

21 Spezielle Relativitätstheorie Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.

Mehr

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler

Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung

Mehr

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom))

Institut für Thermische Verfahrenstechnik. Wärmeübertragung I. Lösung zur 4. Übung (ΔT LM (Rührkessel, Gleich-, Gegenstrom)) Prof. Dr.-Ing. Matthia Kind Intitut für hermihe Verfahrentehnik Dr.-Ing. homa Wetzel Wärmeübertragung I öung zur 4. Übung ( M (Rührkeel, Gleih-, Gegentrom Einführung Ein in der Wärmeübertragung häufig

Mehr

MINT TECHNIK ECHNIK TECHNIK SCHULE NRW INFORMATIK INFORMATIK NATURWISSENSCHAFTEN MATHEMATIK NATURWISSENSCHAFTEN MATHEMATIK INFORMATIK HAUPTSCHULE

MINT TECHNIK ECHNIK TECHNIK SCHULE NRW INFORMATIK INFORMATIK NATURWISSENSCHAFTEN MATHEMATIK NATURWISSENSCHAFTEN MATHEMATIK INFORMATIK HAUPTSCHULE MINT SCHULE NRW BEWERBUNGSBOGEN HAUPTSCHULE HAUPTSCHULE NATURWISSENSCHAFTEN MATHEMATIK INFORMATIK INFORMATIK ECHNIK NATURWISSENSCHAFTEN TECHNIK TECHNIK INFORMATIK NATURWISSENSCHAFTEN MATHEMATIK BEWERBUNG

Mehr

Hydrospeicher GRUNDLAGE OSP 050. Speicherberechnungen. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas

Hydrospeicher GRUNDLAGE OSP 050. Speicherberechnungen. Das ideale und das reale Gas. Gesetz nach Boyle-Mariotte. Zustandsgleichung reales Gas The Professional Choice Hydroseicher - in Fluid Energy Management OSP 050 Seicherberechnungen GRUNDLAGE Zustandsgleichung reales Gas Bei konstanter Temeratur und isothermer Zustands änderung: Die Berechnung

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

Versuch 1 Bestimmung der Dichte einer Flüssigkeit

Versuch 1 Bestimmung der Dichte einer Flüssigkeit Versuh 1 Bestiung der Dihte einer Flüssigkeit Versuh 1 Bestiung der Dihte einer Flüssigkeit Dihteessung it de digitalen Dihteeßgerät nah DIN 51757 ( Verfahren D ) Die Dihte ρ ist eine wihtige und vielfah

Mehr

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers Kapitel 13 13.1 Der erste Hauptsatz der Das zentrale Konzept der ist die Existenz der Temperatur (der sogenannte nullte Hauptsatz der ). Wir betrachten z.b. zwei Körper A und B. Der Körper A erscheint

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

Einführung in die Meteorologie

Einführung in die Meteorologie Einführung in die Meteorologie - eil II: Meteorologishe Elemente - Clemens Simmer Meteorologishes Institut Rheinishe Friedrih-Wilhelms Universität Bonn Sommersemester 6 Wintersemester 6/7 II Meteorologishe

Mehr

V6R: 2-Wege-Ventil mit Innengewinde, PN 16 (el.)

V6R: 2-Wege-Ventil mit Innengewinde, PN 16 (el.) Produktdatenblatt 56.460 V6R: 2-Wege-Ventil mit Innengewinde, PN 16 (el.) Ihr Vorteil für mehr Energieeffizienz Präzises Regeln mit hoher Zuverlässigkeit, das ist Effizienz Eigenshaften Silikonfettfreies

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Temperaturabhängigkeit von Enthalpie H und Entropie S

Temperaturabhängigkeit von Enthalpie H und Entropie S Prof. Dr. Norbert Ham 1/5 8. emeraturabhängigkeit von Enthalie und Entroie emeraturabhängigkeit von Enthalie H und Entroie S In abellenwerken sind Enthalien und Entroien in der Regel bezogen auf Standardbedingungen,

Mehr

2 Thermodynamik (Thermodynamics)

2 Thermodynamik (Thermodynamics) hermodynamik (hermodynamics) Aufgabe : Beschreibung makroskoischer (c, α, λ, k,...) Materieeigenschaften durch hysikalische Größen aus Kristallgitter, Atom- und Moleküleigenschaften. Beisiele : sezifische

Mehr

für die bessere Energieeffizienz...

für die bessere Energieeffizienz... Premium Armaturen + Systeme Automatisher Hydraulisher Abgleih durh Q-Teh Produktübersiht für die bessere Energieeffizienz... Einleitung Automatisher / manueller Hydraulisher Abgleih zu heiß! zu kalt! 3

Mehr

Klausursammlung. zu Klausur Technische Thermdynamik I/II. Zeitraum: 2005 2010. Aufgabenstellung

Klausursammlung. zu Klausur Technische Thermdynamik I/II. Zeitraum: 2005 2010. Aufgabenstellung Lehrstuhl und Institut für Technische Thermodynamik Fakultät für Maschinenbau Universität Karlsruhe (TH) Prof. Dr. rer. nat. habil. U. Maas (Ordinarius) Klausursammlung zu Klausur Technische Thermdynamik

Mehr