Numerische Verfahren und Grundlagen der Analysis

Größe: px
Ab Seite anzeigen:

Download "Numerische Verfahren und Grundlagen der Analysis"

Transkript

1 Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 21

2 Quadraturverfahren R. Steuding (HS-RM) NumAna Wintersemester 2011/12 2 / 21

3 Motivation Es soll das bestimmte Integral I (f ) := b a f (x)dx berechnet werden. Diese Aufgabe kann man für eine gewisse Klasse von Funktionen durch explizite Angabe einer Stammfunktion F (x) lösen: b a f (x)dx = F (b) F (a). In vielen Fällen lässt sich aber die Stammfunktion nicht in geschlossener Form angeben und man ist auf Näherungsverfahren angewiesen. Die numerische Berechnung von I (f ) bezeichnet man auch als numerische Quadratur. Diesen Namen für numerische Integration gab die klassische Aufgabe der Quadratur des Kreises, das (wegen der Transzendenz von π) nicht lösbare Problem, mit Zirkel und Lineal ein Quadrat mit dem Flächeninhalt des Einheitskreises zu konstruieren. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 3 / 21

4 Gauß sche Glockenkurve. I Einige wichtige Funktionen erlauben keine explizite Darstellung der Stammfunktion, wie das folgende Beispiel zeigt. Ist eine Variable x normalverteilt, so beschreiben der Mittelwert µ und die Standardabweichung σ die gesamte Wahrscheinlichkeitsverteilung mittels der Funktion ( ) 1 σ 2π exp x 2 µ 2 2σ 2. Die Wahrscheinlichkeit, dass ein Wert x zwischen a und b auftritt ist durch das Intergral ( ) 1 b σ x 2 µ 2 exp 2π 2σ 2 dx a gegeben, das wir nur numerisch berechnen können. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 4 / 21

5 Gauß sche Glockenkurve. II Gauß sche Glockenkurve für µ = 0, σ = 1. Die Wahrscheinlichkeit, dass eine (0, 1)-normalverteilte Zufallsvariable einen Wert zwischen 1 und 2 annimmt, entspricht der Größe der markierten Fläche. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 5 / 21

6 Bestimmte Integral als Fläche Das bestimmte Integral lässt sich interpretieren als die Fläche unter dem Funktionsgraphen von f (x). Daher ist I (f ) genau die Größe der von f (x) und der x-achse begrenzten Fläche zwischen a und b. Mit Hilfe dieser geometrischen Bedeutung des Integrals können wir I (f ) approximieren, in dem wir die dazugehörigen Fläche approximieren. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 6 / 21

7 Rechteckregel. I Aufgrund der Definition des Riemannschen Integrals durch Riemannschen Summen liegt es nahe, zur Berechnung von I (f ) die so genannte Rechteckregel zu verwenden: Wir unterteilen das Intervall [a, b] gemäß der Zerlegung Z n : a = x 0 < x 1 < < x n = b in n disjunkte Teilintervalle (x j, x j+1 ). Die Summe n 1 Qf := f (xj )(x j+1 x j ) mit einem xj [x j, x j+1 ] j=0 bildet einen Nährungswert an das bestimmte Integral I (f ). R. Steuding (HS-RM) NumAna Wintersemester 2011/12 7 / 21

8 Rechteckregel. II Die folgende Wahl für xj ist üblich: = x j führt zu Q a f := n 1 f (x j )(x j+1 x j ). x j x j j=0 = x j+1 führt zu Q b f := n 1 f (x j+1 )(x j+1 x j ). j=0 xj = x j+1+x j 2 führt zur sogenanten (Mittelpunktregel) Q M f := n 1 f ( x j+1+x j 2 )(x j+1 x j ). j=0 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 8 / 21

9 Rechteckregel. III Ist die Intervallteilung äquidistant gewählt, h := x j+1 x j = b a n, 0 j n 1, erhält man n 1 Q a f = h f (x j ), j=0 Q b f = h n n 1 f (x j ) und Q M f = h f j=1 j=0 ( x j + h ). 2 Beispiel: Wir berechnen eine Näherung für 2 1 x 2 dx mit der Rechteckregel Q b f für 4 Teilintervale. Wir erhalten h = (2 1)/4 = 1/4, x 0 = 1, x 1 = 1 + 1/4, x 2 = 1 + 2/4, x 3 = 1 + 3/4, x 4 = 2 und Zum Vergleich: ( (5 Q b = 1 ) ( ) ( ) ) = = x 2 dx = = = R. Steuding (HS-RM) NumAna Wintersemester 2011/12 9 / 21

10 Fehlerschranke für die Rechteckregeln. I Für eine auf (a, b) stetig differenzierbare Funktion f erhalten wir über den Mittelwertsatz f (x) = f (x j ) + f (ξ j )(x x j ), ξ j (min(x, x j ), max(x, x j )), die Fehlerdarstellung xj+1 x j f (x)dx hf (x j ) = xj+1 x j f (ξ j )(x x j )dx, wobei h := x j+1 x j. Für x j = x j gilt also xj+1 x j f (x)dx hf (x j ) = f (ξ j ) h2 2, ξ j (x j, x j+1 ), da ξ j stetig von x abhängt. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 10 / 21

11 Fehlerschranke für die Rechteckregeln. II Für den Quadraturfehler R n f, der bei der Näherung auftritt, ergibt sich damit b a f (x)dx = Q a f + R n f R n f = h n 1 f (ξj ) = h 2 2 (b a) 1 n 1 f (ξj ) = h n 2 f (ξ)(b a) j=0 mit ξ (a, b) nach dem Zwischenwertsatz. Für die Quadraturformel Q b f mit xj = x j+1 ergibt sich entsprechend j=0 R n f = h 2 f (ˆξ)(b a), ˆξ (a, b), so dass man sowohl für Q a f als auch für Q b f die Fehlerschranke erhält. R n f h 2 max x [a,b] f (x) (b a) R. Steuding (HS-RM) NumAna Wintersemester 2011/12 11 / 21

12 Fehlerschranke für die Rechteckregeln. III Beispiel: Im obigen Beispiel gilt R n f h 2 max x [a,b] f (x) (b a) = max x [1,2] (x 2 ) (2 1) = 1 8 max x [1,2] 2x = = 0.5 Bei der Mittelpunktregel ist jedoch mehr zu erreichen, wenn die Funktion f zwei mal stetig differenzierbar ist. In diesem Fall erhält man R n f h2 24 max x [a,b] f (x) (b a). Bemerkungswert ist die Tatsache, dass diese Schranke von Ordnung O(h 2 ) ist. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 12 / 21

13 Trapezregel. I Bis jetzt haben wir die Funktion f auf jedem der Teilintervallen (x j, x j+1 ), 0 j n 1, durch eine Konstante f (x j ), x [x j, x j+1 ], interpoliert. Interpoliert man die Funktion f über den Teileintervallen stückweise linear, so erhält man als die Summe der enstehenden Trapezenflächen T n f := n 1 j=0 y j + y j+1 (x j+1 x j ), y j = f (x j ), 2 einen Näherungswert für das bestimmte Integral b a f (x)dx = T n f + R n f mit R n f h2 12 max x [a,b] f (x) (b a). R. Steuding (HS-RM) NumAna Wintersemester 2011/12 13 / 21

14 Trapezregel. II R. Steuding (HS-RM) NumAna Wintersemester 2011/12 14 / 21

15 Trapezregel. III Mit equidistanten Stützstellen nimmt diese Trapezregel die Form T n f = h 1 2 y n y j y n an. j=1 Beispiel: Wir berechnen einen Näherungswert T 4 für 2 1 x 2 dx mit Hilfe der Trapezregel für 4 Teilintervalle. Wir erhaten h = (2 1)/4 = 1/4, x 0 = 1, x 1 = 1 + 1/4, x 2 = 1 + 2/4, x 3 = 1 + 3/4, x 4 = 2 und T 4 = 1 ( ) = = Zum Vergleich: 2 1 x 2 dx = = = R. Steuding (HS-RM) NumAna Wintersemester 2011/12 15 / 21

16 Newtonsche Inerpolationspolynom Wir wählen die Indizierung der Stützstellen wie folgt: x j = x 0 + jh, 0 j n mit der festen Srittweite h. Das Inerpolationspolynom nach dem Ansatz von mit Newton nimmt die Gestalt p(x) = f (x 0 ) + y 0 h (x x 0) + + n y 0 n!h n (x x 0)... (x x n 1 ) an, wobei 0 y j := y j m y j := m 1 y j+1 m 1 y j, (m 1). Beispiel: Für die Stützstellen ( 1, 0), (0, 2), (1, 0) erhält man p(x) = y 0 + y 0 h (x x 0) + 2 y 0 2!h 2 (x x0)(x x 1) = y 0 + y 0 h (x x 0) + y 1 y 0 2!h 2 (x x0)(x x 1 ) = (0 2) (2 0) (x ( 1)) (x ( 1))(x 0) = 2 2x 2. R. Steuding (HS-RM) NumAna Wintersemester 2011/12 16 / 21

17 Die Simpsonsche Regel. I Ene Näherung höheren Grades könnte man dadurch erreichen, dass der Integrand f über dem Doppelintevall [x 2k, x 2k+2 ] durch ein quadratisches Polynom interpoliert wird (unter Annahme n ist gerade). Dann gilt p(x) = y 2k + y 2k h (x x 2k) + 2 y 2k 2h 2 (x x 2k)(x x 2k+1 ) für x [x 2k, x 2k+2 ] und daher x2k+2 x 2k p(x)dx = h 3 (y 2k + 4y 2k+1 + y 2k+2 ). R. Steuding (HS-RM) NumAna Wintersemester 2011/12 17 / 21

18 Die Simpsonsche Regel. II Damit erhalten wir eine Näherung für das bestimmte Integral mit Simpsonsche Regel x2k x 0 f (x)dx = S 2k f + R 2k f S 2k f = h 3 (y 0 + 4y 1 + 2y 2 + 4y 3 + 2y 4 + 4y 2k 1 + y 2k ) und Fehlerabschätzung R 2k f h4 180 max x [a,b] f (4) (x) (b a). R. Steuding (HS-RM) NumAna Wintersemester 2011/12 18 / 21

19 Die Simpsonsche Regel. III R. Steuding (HS-RM) NumAna Wintersemester 2011/12 19 / 21

20 Die Simpsonsche Regel. IV Beispiel: Wir berechnen eine Näherung für 2 1 x 2 dx mit der Simpsonregel Q b f für 4 Teilintervale. Wir erhalten h = (2 1)/4 = 1/4, x 0 = 1, x 1 = 1 + 1/4, x 2 = 1 + 2/4, x 3 = 1 + 3/4, x 4 = 2 und S 4 = h 3 (y 0 + 2y 1 + 4y 2 + 2y 3 + y 4 ) ( ( ) ( ) 6 2 ( ) ) 7 2 = = = Zum Vergleich: 2 1 x 2 dx = = 7 3 = R. Steuding (HS-RM) NumAna Wintersemester 2011/12 20 / 21

21 Keplersche Fassregel Auf die Idee, sich mit der Berechnung von Flächeninhalten unter einer Fasskurve und dem entsprechenden Fassvolumen zu befassen, kam Johannes Kepler, als er einige Fässer Wein, die er für seine zweite Hochzeit brauchte, bezahlen musste. Er erkannte dabei, dass der Preis, welcher sich nach dem Volumen des Fasses richtete, auf Grund von Ungenauigkeiten beim Errechnen des Volumens des gefüllten Fasses nicht exakt war. (Quelle: R. Steuding (HS-RM) NumAna Wintersemester 2011/12 21 / 21

Numerische Verfahren

Numerische Verfahren Numerische Verfahren Jens-Peter M. Zemke zemke@tu-harburg.de Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

1/26. Integration. Numerische Mathematik 1 WS 2011/12

1/26. Integration. Numerische Mathematik 1 WS 2011/12 1/26 Integration Numerische Mathematik 1 WS 2011/12 Notation 2/26 Die Abbildung I b a : C([a, b]) R gegeben durch Ia b (f ) := beschreibt die Integration. b a f (x)dx, Um das Integral I(f ) zu approximieren

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

KAPITEL 10. Numerische Integration

KAPITEL 10. Numerische Integration KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f

Mehr

Numerische Integration

Numerische Integration Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 3 2010 1 / 87 In vielen Fällen ist es nicht möglich, ein gegebenes Integral

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.

Mehr

Analysis II. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg

Analysis II. Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg Analysis II Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 2. Juni 2008 Beachtenswertes Die Veranstaltung ist eng angelehnt

Mehr

Numerische Integration

Numerische Integration Numerische Integration Fakultät Grundlagen Januar 0 Fakultät Grundlagen Numerische Integration Übersicht Grundsätzliches Grundsätzliches Trapezregel Simpsonformel 3 Fakultät Grundlagen Numerische Integration

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 1 13. April 2010 Kapitel 6. Integralrechnung In den Naturwissenschaften finden sich zahlreiche Beispiele, bei denen die Berechnung bestimmter Integrale

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

STETIGE VERTEILUNGEN

STETIGE VERTEILUNGEN STETIGE VERTEILUNGEN. Die Näherungsformel von Moivre Laplace Betrachtet man die Binomialverteilungen Bnp für wachsendes n bei konstantem p, so werden die Histogramme einer binomialverteilten Zufallsvariablen

Mehr

Numerik für Ingenieure I Wintersemester 2008

Numerik für Ingenieure I Wintersemester 2008 1 / 32 Numerik für Ingenieure I Wintersemester 2008 J. Michael Fried Lehrstuhl Angewandte Mathematik III 23.1.2009 2 / 32 Wiederholung Stückweise Polynominterpolation Stückweise lineare Interpolierende

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Numerische Analysis - Matlab-Blatt 5

Numerische Analysis - Matlab-Blatt 5 Prof. Dr. Stefan Funken Universität Ulm M.Sc. Andreas Bantle Institut für Numerische Mathematik Dipl.-Math. oec. Klaus Stolle Sommersemester 05 Numerische Analysis - Matlab-Blatt 5 Lösung (Besprechung

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Numerische Integration

Numerische Integration Numerische Integration home/lehre/vl-mhs-1/folien/uebung/num_integration/cover_sheet_5a.tex Seite 1 von 12. p.1/12 Inhaltsverzeichnis 1. Einführung 2. Newton-Cotes Formeln Rechteckformel Trapezformel Simpsonsche

Mehr

(x x j ) x [a,b] n! j=0

(x x j ) x [a,b] n! j=0 IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (4 Punkte Es gibt zu jeder der 1 Aufgaben vier Aussagen. Diese sind mit bzw. zu kennzeichnen (hinschreiben. Es müssen alle Fragen mit oder gekennzeichnet

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 19 Fehlerbetrachtung R. Steuding

Mehr

UE Numerische Mathematik für LA

UE Numerische Mathematik für LA 06.986 UE Numerische Mathematik für LA Übungsbeispiele zur VO 06.942 Numerische Math für LA G. Schranz-Kirlinger Kapitel : Fehlerbetrachtungen. Berechnen Sie sinx dx mit Hilfe der Trapezregel für verschiedene

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

1 2 x x x x x x2 + 83

1 2 x x x x x x2 + 83 Polynominterpolation Aufgabe 1 Gegeben sei die Wertetabelle i 0 1 2 3 x i 0 1 2 4 f i 3 1 2 7 a) Bestimmen Sie das Interpolationspolynom von Lagrange durch die obigen Wertepaare. b) Interpolieren Sie die

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Klausur,,Algorithmische Mathematik II

Klausur,,Algorithmische Mathematik II Institut für angewandte Mathematik Sommersemester 017 Andreas Eberle, Matthias Erbar / Behrend Heeren Klausur,,Algorithmische Mathematik II Musterlösung 1 (Unabhängige Zufallsvariablen) a) Wir bezeichnen

Mehr

Explizite Runge-Kutta-Verfahren

Explizite Runge-Kutta-Verfahren Explizite Runge-Kutta-Verfahren Proseminar Numerische Mathematik Leitung: Professor Dr. W. Hofmann Dominik Enseleit 06.07.2005 1 1 Einleitung Nachdem wir schon einige numerische Verfahren zur Lösung gewöhnlicher

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Kapitel 4. Numerische Differentiation und Integration

Kapitel 4. Numerische Differentiation und Integration Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation

Mehr

Numerische Methoden 7. Übungsblatt

Numerische Methoden 7. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 01 Institut für Analysis Prof Dr Michael Plum Dipl-Mathtechn Rainer Mandel Numerische Methoden 7 Übungsblatt Aufgabe 17: Quadratur II Die Menge aller Polynome

Mehr

28. Lineare Approximation und Differentiale

28. Lineare Approximation und Differentiale 28. Lineare Approximation und Differentiale Sei y = f(x) differenzierbar. Die Gleichung der Tangente t im Punkt x 0 lautet t : y f(x 0 ) = f (x 0 )(x x 0 ) Für x nahe bei x 0 können wir f(x) durch den

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 4 Numerische

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 014 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

KAPITEL 8. Interpolation

KAPITEL 8. Interpolation KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0

Mehr

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen

Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Technische Numerik Numerische Integration

Technische Numerik Numerische Integration W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51

Die Normalverteilung. Mathematik W30. Mag. Rainer Sickinger LMM, BR. v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Mathematik W30 Mag. Rainer Sickinger LMM, BR v 0 Mag. Rainer Sickinger Mathematik W30 1 / 51 Einführung Heute nehmen wir uns die Normalverteilung vor. Bis jetzt konnte unsere Zufallsvariable (das X in

Mehr

Übungsblatt 4 Musterlösung

Übungsblatt 4 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome

Mehr

3 Funktionsdefinitionen

3 Funktionsdefinitionen 3 Funktionsdefinitionen Ziel heute: Programmcode zu wiederverwendbaren Einheiten zusammenpacken und wieder verwenden! Technische Realisierung: Funktionsdefinitionen (mit Teilaspekten Parameterversorgung

Mehr

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx

D-MATH Numerische Methoden FS 2017 Dr. Vasile Gradinaru Luc Grosheintz. Serie 4. 1 f i (x)dx D-MATH Numerische Methoden FS 217 Dr. Vasile Gradinaru Luc Grosheintz Serie 4 Abgabedatum: Di./Mi. 2.3/21.3 in den Übungsgruppen oder im HG J68 Koordinatoren: Luc Grosheintz, HG J 46, luc.grosheintz@sam.ethz.ch

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 11. Juli 2016 Ableitungen im Höherdimensionalen Im Eindimensionalen war die Ableitung f (x 0 ) einer Funktion f : R R die

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .

19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. . Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Übungsblatt 3 Musterlösung

Übungsblatt 3 Musterlösung Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Musterlösung. Modulprüfung MA2302. Numerik. 8. Oktober Prüfer: Prof. Dr. Bernd Simeon. Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral

Musterlösung. Modulprüfung MA2302. Numerik. 8. Oktober Prüfer: Prof. Dr. Bernd Simeon. Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral Modulprüfung MA2302 Numerik 8. Oktober 2009 Musterlösung Prüfer: Prof. Dr. Bernd Simeon Aufgabe 1 (ca. 12 P.) Sei f C (R). Das bestimmte Integral soll durch die Quadraturformel approximiert werden. I n

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung:

3 Integralrechnung. 3.1 Stammfunktion: In der Differentialrechnung: 1 Rechenverfahren für THP (WS 2002) 3 Integralrechnung 3.1 Stammfunktion: In der Differentialrechnung: Gegeben: Funktion Gesucht: Ableitung Problem der Differentialrechnung: Bestimmung der Steigung vom

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

Übungen zu Splines Lösungen zu Übung 20

Übungen zu Splines Lösungen zu Übung 20 Übungen zu Splines Lösungen zu Übung 20 20.1 Gegeben seien in der (x, y)-ebene die 1 Punkte: x i 6 5 4 2 1 0 1 2 4 5 6 y i 1 1 1 1 1 + 5 1 + 8 4 1 + 8 1 + 5 1 1 1 1 (a) Skizzieren Sie diese Punkte. (b)

Mehr

Der Begriff des bestimmten Integrals

Der Begriff des bestimmten Integrals Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite

Mehr

Interpolation, numerische Integration

Interpolation, numerische Integration Interpolation, numerische Integration 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 8. Mai 2014 Gliederung 1 Interpolation polynomial Spline 2 Numerische

Mehr

Numerik SS Übungsblatt 3

Numerik SS Übungsblatt 3 PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff-

Mehr

7 Numerische Integration

7 Numerische Integration Numerische Mathematik 318 7 Numerische Integration Ziel numerischer Integration (Quadratur): Näherungswerte für b a f(t) dt. Wozu? Ein Beispiel: Eine Apparatur liefert Meßwerte x i = x i + ε i. Angenommen,

Mehr

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern.

Das Histogramm ist glockenförmig. Es würde bei mehr als vier Fehlerquellen sich der Glockenform noch besser annähern. 10. Stetige Zufallsvariable, Normalverteilung 55 Die in den folgenden Beispielen dargestellten Verteilungen haben ungefähr Glockenform. Sie können durch die sogenannte Normalverteilung oder Gaussverteilung

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

ZWEITE KLAUSUR zur Numerik I mit Lösungen. Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben: MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE FELIX LIEDER DR. GEORG JANSING.9.7 ZWEITE KLAUSUR zur Numerik I mit Lösungen Bitte folgende Angaben ergänzen und DEUTLICH LESBAR in Druckbuchstaben schreiben:

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe

Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe Mehrschrittverfahren Ein weiterer, häufig benutzter Verfahrenstyp zur numerischen Lösung der Anfangswertaufgabe y = f(x, y), y(a) =y 0 (1) sind die linearen Mehrschrittverfahren, bei denen man zur Berechnung

Mehr

2. Klausur zu,,algorithmische Mathematik II

2. Klausur zu,,algorithmische Mathematik II IAM/INS Sommersemester 2017 Andreas Eberle, André Uschmajew 2. Klausur zu,,algorithmische Mathematik II Bitte diese Felder in Druckschrift ausfüllen Name: Matrikelnr.: Vorname: Studiengang: Wichtige Hinweise:

Mehr

7 Numerische Integration

7 Numerische Integration Numerik 337 7 Numerische Integration Ziel numerischer Integration (Quadratur): Näherungswerte für b a f(t) dt. Wozu? Ein Beispiel: Eine Apparatur liefere Messwerte x i = x i + ε i. Angenommen, die Messfehler

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx

12.2 Gauß-Quadratur. Erinnerung: Mit der Newton-Cotes Quadratur. I n [f] = g i f(x i ) I[f] = f(x) dx 12.2 Gauß-Quadratur Erinnerung: Mit der Newton-Cotes Quadratur I n [f] = n g i f(x i ) I[f] = i=0 b a f(x) dx werden Polynome vom Grad n exakt integriert. Dabei sind die Knoten x i, 0 i n, äquidistant

Mehr

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) =

Übungen zur Ingenieur-Mathematik II SS 2017 Blatt Aufgabe 13: Betrachten Sie die Funktion. f(x) = Übungen zur Ingenieur-Mathematik II SS 2017 Blatt 6 2.5.2017 Aufgabe 1: Betrachten Sie die Funktion Lösung: f(x) = 1, x [, 1]. 1 + 25x2 a) Bestimmen Sie die Interpolationspolynome vom Grad m p m (x) =

Mehr

Original - d.h. unvertauschte Reihenfolge

Original - d.h. unvertauschte Reihenfolge NumaMB F6 Verständnisfragen-Teil (3 Punkte) Jeder der 6 Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es dafür 5

Mehr

EdM Kursstufe Baden-Württemberg

EdM Kursstufe Baden-Württemberg EdM Kursstufe Baden-Württemberg Gegenüberstellung des Bildungsplans für die Kursstufe und der Inhalte des Schülerbandes EdM Kursstufe Die neben den mathematischen Kompetenzen eingeforderte Entwicklung

Mehr

LABORÜBUNG MATLAB/OCTAVE

LABORÜBUNG MATLAB/OCTAVE LABORÜBUNG MATLAB/OCTAVE 1. Riemannsche Summen mit MATLAB/Octave Riemannsche Summen lassen sich sehr einfach mit MATLAB/Octave berechnen. Das Vorgehen ist das folgende: (i) die Breite x der Teilintervallen

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken

Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni 2015 1 / 37 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:

Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert: Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5

Mehr

Integralrechnung und das Riemannintegral

Integralrechnung und das Riemannintegral Integralrechnung und das Riemannintegral Vorlesung zur Didaktik der Analysis Oliver Passon Oliver Passon Integralrechnung 1 Inhalt Historisches Archimedes (Parabel) Hippokrates ( Möndchen ) Cavalerie Aktuell

Mehr

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 9. Dezember 2017

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 9. Dezember 2017 Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 9. Dezember 2017 unser Programm 11. November: 1. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche,

Mehr

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya

Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer

Mehr