System Architecture - SS15 Exercise Sheet 1 (due: )

Größe: px
Ab Seite anzeigen:

Download "System Architecture - SS15 Exercise Sheet 1 (due: )"

Transkript

1 Wichtig: Registrieren Sie sich unter sonst können Sie sich später nicht für unsere Klausuren anmelden. Sie Benötigen 50% aller Übungsblätter die für Klausur X relevant sind, um zu Klausur X zugelassen zu werden. Dieses Blatt ist Relevant für Vor- und Nachklausur. Das Übungsblatt muss stets am Montag nach der Vorlesung bei mir in der Office Hour oder, falls zeitgleich, in der Übungsgruppe Ihrer Tutorin abgegeben werden. Tutor: Geben Sie stets Ihren Namen, Ihre Matr. Nr., und den Namen ihrer Tutorin auf der vordersten Seite oben rechts an. Sie dürfen Ergebnisse von vorherigen Aufgaben verwenden, auch wenn Sie diese nicht gelöst haben. Markieren sie Gleichungen, in denen Sie ein vorheriges Ergebniss benutzen, mit dem Kürzel E+Aufgabennummer. Wenn Sie sich nicht für die Klausur vorbereiten möchten, aber trotzdem zugelassen werden möchten, schreiben Sie einfach Ihren Namen und Ihre Matrikelnummer auf die Lösung einer kompetenten Mitstudentin. Es besteht auch keine Anwesenheitspflicht in den Übungsgruppen. Namen, Matr. Nummern: Machen Sie sich keine Sorgen, wenn Sie das erste Übungsblatt als zu lang empfinden. Spätere Übungsblätter werden kürzer sein. Exercise 1: (1) Das Induktionsaxiom ist formal wie folgt: Sei P : N B ein Prädikat der natürlichen Zahlen. Wenn P (0), und für alle n N gilt P (n) P (S(n)), dann gilt P für alle n N. Was bezeichnet man davon als den Induktionsanfang, den Induktsionsschritt, die Induktionshypothese? Solution: P (0) Induktionsanfang, P (n) P (S(n)) Induktionsschritt, P (n) Induktionshypothese (als Teil vom Induktionsschritt). Falsch ist: n.p (n) Induktionshypothese. Exercise 2: (2) Zeigen Sie durch Induktion S(x) + y S(x + y). (a) Über welche Variable führen Sie Induktion und warum? (b) Wie instantiieren Sie in diesem Fall das Prädikat P von Aufgabe 1?

2 Page 2 (c) Führen Sie den Induktionsbeweis durch. Schreiben Sie die Induktionshypothese auf und markieren Sie die Gleichung, bei der Sie die Induktionshypothese verwendet haben, mit dem Kürzel IH. Solution: Induktion über y da + rekursiv über y. Beweis P (0): Für alle x, Beweis P (y) P (S(y)): Man nehme an Zu zeigen ist P (S(y)), i.e., für alle x P (y) x, (S(x) + y S(x + y)). S(x) + 0 DEF + S(x) DEF + S(x + 0). IH : x, S(x) + y S(x + y)). S(x) + S(y)! S(x + S(y)). S(x) + S(y) DEF + S(S(x) + y) IH(x) S(S(x + y)) DEF + S(x + S(y)) Alternative (freies x): Beweis P (0): P (y) (S(x) + y S(x + y)) S(x) + 0 DEF + S(x) DEF + S(x + 0). Beweis P (y) P (S(y)): Man nehme an IH : S(x) + y S(x + y)). Zu zeigen ist P (S(y)), i.e., S(x) + S(y)! S(x + S(y)). S(x) + S(y) DEF + S(S(x) + y) IH S(S(x + y)) DEF + S(x + S(y))

3 Page 3 Exercise 3: (2) Beachten Sie folgende endrekursive Definition von addition: plus(x, 0) x, plus(x, S(y)) plus(s(x), y). Wir wollen durch Induktion zeigen dass diese Optimierung zulässig ist, d.h., (a) plus(x, y) x + y. Über welche Variable führen Sie Induktion und warum? (b) Wie instantiieren Sie in diesem Fall das Prädikat P von Aufgabe 1? (c) Führen Sie den Induktionsbeweis durch. Schreiben Sie die Induktionshypothese auf und markieren Sie die Gleichung, bei der Sie die Induktionshypothese verwendet haben, mit dem Kürzel IH. Solution: Induktion über y da + und plus rekursiv über y. P (y) x, (plus(x, y) x + y). Beweis P (0): Für alle x, plus(x, 0) DEF plus x DEF + x + 0. Beweis P (y) P (S(y)): Man nehme an Zu zeigen ist P (S(y)), i.e., für alle x IH : x, plus(x, y) x + y. plus(x, S(y))! x + S(y). plus(x, S(y)) DEF plus plus(s(x), y) IH(S(x)) S(x) + y E2(x,y) S(x + y) DEF + x + S(y) Exercise 4: (2) Beachten Sie folgende linksrekursive Definition der Gleichheit: { eq(x, y ) y S(y ) eq(0, y) (y 0), eq(s(x), y) false o.w. Zeigen Sie durch Induktion eq(x, y) x y.

4 Page 4 (a) Über welche Variable führen Sie Induktion und warum? (b) Wie instantiieren Sie in diesem Fall das Prädikat P von Aufgabe 1? (c) Führen Sie den Induktionsbeweis durch. Schreiben Sie die Induktionshypothese auf und markieren Sie die Gleichung, bei der Sie die Induktionshypothese verwendet haben, mit dem Kürzel IH. Solution: Induktion über x da eq rekursiv über x. P (x) y, (eq(x, y) x y). Beweis P (0): Für alle y, eq(0, y) DEF eq y 0 sym 0 y. Beweis P (x) P (S(x)): Man nehme an Zu zeigen ist P (S(y)), i.e., für alle y IH : y, eq(x, y) x y. eq(s(x), y)! S(x) y. eq(s(x), y) DEF eq { eq(x, y ) y S(y ) false o.w. Fallunterscheidung y S(y ) oder nicht. y S(y ): y S(y ): Dann y 0, und eq(s(x), y) eq(s(x), y) DEF eq eq(x, y ) IH(y ) x y P eano S(x) S(y ) F all S(x) y. DEF eq false P eano S(x) 0 F all S(x) y. Exercise 5: (1)

5 Page 5 Sei a B n. Was ist der Unterschied zwischen a und a? Schreiben sie für n 3 vier verschiedene Elemente a 1,..., a 4 aus B n auf und Berechnen sie jeweils a i. Solution: Die beiden Ausdrücke haben unterschiedliche Typen; a ist eine Zahl, und a ist eine Zeichenkette von Nullen und Einsen. (Elemente ausgelassen) Exercise 6: (2) Zeigen Sie, dass die Funktion injektiv (also eindeutig) ist. Für a, b B n : a b a b. Solution: Induktion über n. Für n 0 gilt a b ɛ und wir sind fertig. Für n S(n) gilt a n b n oder a n b n und a[ : 0] b[ : 0]. a n b n : W.L.O.G. ist a n 0 und b n 1, und damit a 2 n 1 < 2 n b. a n b n und a[ : 0] b[ : 0]: Per Induktionshypothese sind a[ : 0] b[ : 0], und damit a DEF a n 2 n + a[ : 0] IH a n 2 n + b[ : 0] anbn b n 2 n DEF + b[ : 0] b. Exercise 7: (2) Beachten Sie folgende Definition der Summation: 0 1 f(i) 0, S(n) 1 f(i) f(n) + (a) Definieren Sie eine Summation ohne das lästige 1 Symbol: n f(i). (b) Definieren Sie eine allgemeine Summation, i.e., für m n f(i). f(i) f(m) f(n 1), und zeigen Sie dass ihre Definition für m 0 mit der Vorherigen übereinstimmt: f(i), und sie deshalb den waagerechten Strich auch weglassen können. Hinweis: m n genau wenn es ein z N gibt sodass m + z n.

6 Page 6 (c) Zeigen Sie für m n u und ihre vorherige Definition (der waagerechte Strich ist wie oben beschrieben weggelassen): u 1 f(i) + in u 1 f(i) f(i). Falls ihnen Induktion Freude bereitet, oder wenn Sie noch Verständnissprobleme bezgl. Induktion haben, besuchen Sie auf jeden Fall die Vorlesung Introduction to Computational Logic von Prof. Smolka. Solution: Sei nun n m + z. n f(i) Per definition gilt für m 0 dass n z und S(n) 1 f(i). f(i) z 1 f(i + m). f(i) z 1 f(i + 0) f(i). Sei nun n m + x und u n + y m + x + y m + (x + y). Wir zeigen per Induktion über y u 1 f(i) + in f(i)! u 1 f(i). Nach entfalten der Definitionen und Substitution erhalten wir Sei y 0. Dann gilt x 1 f(i + m) + f(i + m + x)! y 1 f(i + m). x 1 x f(i + m) + f(i + m + x) f(i + m) + f(i + m + x) y 1 x 1 x 1 f(i + m) + 0 f(i + m) x+0 1 f(i + m) f(i + m).

7 Page 7 Wir gehen nun von y nach S(y). Sei und wir müssen Zeigen x 1 IH : f(i + m) + f(i + m + x) y 1 x 1 S(y) 1 f(i + m) + f(i + m + x)! x+s(y) 1 f(i + m), f(i + m) x 1 S(y) 1 f(i + m) + f(i + m + x) x 1 x 1 (! y 1 f(i + m) + ( S(x+y) 1 y 1 f(i + m + x) + f(y + m + x)) f(i + m) + f(i + m + x)) + f(y + m + x) f(i + m) + f(y + m + x) f(i + m) + f(x + y + m) f(i + m) x+s(y) 1 f(i + m). Exercise 8: (3) Zeigen Sie das Dekompositionslemma. (a) (2 points) Zeigen Sie für m, n N und a B n und b B m, ab a 2 m + b. (b) (1 point) Zeigen Sie für m n und a B n, dass a a[n 1 : m] 2 m + a[m 1 : 0]. Solution: Wir zeigen ab! a 2 m + b, von dem das Dekompositionslemma ein Spezialfall ist.

8 Page 8 ab m+ m 1 E7 m 1 (ab) i 2 i (ab) i 2 i + m+ (ab) i 2 i (ab) i 2 i + (ab) m+i 2 m+i m 1 (ab) i 2 i + 2 m (ab) m+i 2 i m 1 b i 2 i + 2 m b + 2 m a a 2 m + b. a i 2 i Exercise 9: (1) Seien x, y Z und k N. Erklären Sie den Unterschied zwischen x y mod k, x y mod k, und geben Sie ein Beispiel bei dem aber x y mod k, x y mod k. Warum gibt es kein Beispiel dieser Art für die andere Richtung? Solution: Die Aussage x y mod k ist die Gleichheit von zwei Zahlen: x, und dem Standardrepräsentanten modulo k von y. Die Aussage x y mod k sagt aus, dass x und y kongruent sind (modulo k). Zum beispiel sind 4 und 1 kongruent modulo 3, 4 1 mod 3, aber 4 ist nicht der Standardrepräsentant von 1: 4 1 mod 3. Da der Standardrepräsentant per Definition modulokongruent ist, gilt y (y mod k) mod k.

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 12. November 2014 Darstellung natürlicher Zahlen durch Mengen 1. Wie können wir natürliche Zahlen durch Mengen darstellen? Idee 0 = und

Mehr

Mathematik I 1. Scheinklausur

Mathematik I 1. Scheinklausur Mathematik I 1. Scheinklausur 2.12.2006 Bitte beachten Sie die folgenden Hinweise: Matrikelnummer: Bearbeitungszeit: 120 Minuten Erlaubte Hilfsmittel: Keine Bei den Aufgaben 1,2,4,5,9,und 10 wird nur die

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker UNIVERSITÄT SIEGEN Prof. Dr. Alfred Müller 12. Februar 2009 Klausuraufgaben Mathematik für Wirtschaftsinformatiker Beachten Sie folgende Hinweise: (1) Überprüfen Sie Ihr Exemplar auf Vollständigkeit! Die

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

1. Übungsblatt zur Analysis I. Gruppenübungen

1. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 17.10.2013 1. Übungsblatt zur Analysis I Gruppenübungen Aufgabe G1 (Aussagenlogik, Wahrheitstabellen) Es seien p und q Aussagen. (a) Geben Sie die Wahrheitstabelle

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Privatdozent Dr. C. Diem diem@math.uni-leipzig.de http://www.math.uni-leipzig.de/ diem/wiwi MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Es folgt eine Musterlösung zusammen mit Anleitungen

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Wintersemester 2015/16 16. März 2015 Name: Vorname: Matrikelnr.: Aufgabe 1 2 4 5 6 Summe Punkte 10 10 10 10 10 10 60 erreicht

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Nachklausur Analysis I

Nachklausur Analysis I SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Peano-Axiome und Peano-Strukturen

Peano-Axiome und Peano-Strukturen Peano-Axiome und Peano-Strukturen Filippo Leonardi 27. März 2012 1 Peano-Arithmetik Der Folgende Abschnitt beruht auf Abschnitt 3.3 in [Rau08] und benützt dieselbe Notation. In diesem Abschnitt arbeiten

Mehr

Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 2016

Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 2016 Probeklausur zur Vorlesung Grundbegrie der Informatik 22. Januar 26 Hinweis: Diese Probeklausur wurde von Tutoren erstellt. Die An-/Abwesenheit bestimmter Aufgabentypen oder auch deren Schwierigkeit in

Mehr

SWP Prüfungsvorbereitung

SWP Prüfungsvorbereitung 20. Juni 2011 1 Grammatiken 2 LL(1) 3 EXP 4 Datentypen 5 LP Grammatiken Angabe Erstellen Sie First- und Follow-Mengen aller Non-Terminale der folgenden Grammatik. S a S S B y B A C A A b b A x A ɛ C c

Mehr

Klausur zur Vorlesung Lineare Algebra und Geometrie I

Klausur zur Vorlesung Lineare Algebra und Geometrie I Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen

Mehr

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim

Jede beschränkte und monotone Folge (a n ) n N konvergiert, d.h. es gibt ein a R, so dass lim Beispiel 3.10 ( 1) n n a n a+nd aq n 1 (a > 0) n monoton steigend d 0 q 1 nein nein streng monoton steigend d > 0 q > 1 nein nein monoton fallend d 0 0 q 1 streng monoton fallend d < 0 0 < q < 1 ja nein

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

1. Teilklausur. Analysis 1

1. Teilklausur. Analysis 1 Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dipl.-Phys. Martin Rheinländer 1. Teilklausur Analysis 1 10. Dezember 2005 3. Abstufung Name: Matr. Nr.: Hauptfach: Nebenfach: Übungsgruppe:

Mehr

Mengenlehre: Mächtigkeit (Ordnung) einer Menge

Mengenlehre: Mächtigkeit (Ordnung) einer Menge Mengenlehre: Mächtigkeit (Ordnung) einer Menge Def. Seien A, B Mengen. Wir sagen, dass A höchstens gleichmächtig zu B ist, falls es eine injektive Abbildung f : A B gibt. Schreibweise: A B. Wir sagen,

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Mathematik 1 für Bauingenieure

Mathematik 1 für Bauingenieure Mathematik 1 für Bauingenieure Name (bitte ausfüllen): Prüfung am 6.3.2015 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung SS 05 Prof. Dr. K. Madlener Lösungshinweise zu Übungsblatt 6 Aufgabe 6.1. Sei f(x, b) = µy b.(y y x (y + 1) (y + 1) > x) f.a. x, b N. Sei weiter f(x) = f(x, x) f.a. x N. Aufgabe

Mehr

2. Übungsblatt zur Analysis I. Gruppenübungen

2. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 24.10.2013 2. Übungsblatt zur Analysis I Wichtig: Bitte geben Sie die Hausübungen in ihrer jeweiligen Übungsgruppe ab. Gruppenübungen Aufgabe G1 (Rechnen

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

Informatik I. Jan-Georg Smaus. Iteration vs. Rekursion. Iterativer Algorithmus Beweis der Korrektheit Python- Programm Zusammenfassung

Informatik I. Jan-Georg Smaus. Iteration vs. Rekursion. Iterativer Algorithmus Beweis der Korrektheit Python- Programm Zusammenfassung 20. Albert-Ludwigs-Universität Freiburg 1. Februar 2011 1 / 31 2 / 31 Wir haben am Beispiel von der Fakultätsfunktion und den Methoden für verlinkte Listen gesehen, dass man manche Probleme sowohl mit

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Sommersemester 2016 16. September 2016, 1:00 14:0 Uhr Name: Vorname: Matrikelnr.: Unterschrift: Aufgabe 1 2 4 5 6 Summe Punkte

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010 Informatik I 9. Nachweis von Programmeigenschaften Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 2. Dezember 2010 Jan-Georg Smaus (Universität Freiburg) Informatik I 2. Dezember 2010 1 / 30 Informatik

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14

Technische Universität Berlin Fakultät II Institut für Mathematik SS 14 Technische Universität Berlin Fakultät II Institut für Mathematik SS 4 Doz.: Blath, Gündel vom Hofe Ass.: Altmann, Fackeldey, Hammer 8. Okt 4 Oktober Klausur Analysis I für Ingenieure Name:....................................

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält

Mehr

3. Vortrag: Arithmetische Relationen und Gödelisierung

3. Vortrag: Arithmetische Relationen und Gödelisierung 3. Vortrag: Arithmetische Relationen und Gödelisierung 1. Arithmetische und arithmetische Mengen und Relationen 2. Verkettung von Zahlen 3. Gödelisierung Arithmetische und arithmetische Mengen und Relationen

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 23. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

1. Aufgabe (4 + 6 Punkte) = + (n + 1) i=0. IV n (n + 1) n (n + 1) + 2 (n + 1) = n (n + 1) 2 (n + 1) (n + 1) (n + 2) = Behauptung. n = 0 = 6.

1. Aufgabe (4 + 6 Punkte) = + (n + 1) i=0. IV n (n + 1) n (n + 1) + 2 (n + 1) = n (n + 1) 2 (n + 1) (n + 1) (n + 2) = Behauptung. n = 0 = 6. 1. Aufgabe (4 + Punkte) (a) Beweis durch vollständige Induktion über n. 0 0 (0 + 1) Induktionsanfang: n 0: i 0 n n (n + 1) Induktionsanfang: i Induktionsschritt: n n + 1 n+1 i n i + (n + 1) IV n (n + 1)

Mehr

(2 n + 1) = (n + 1) 2

(2 n + 1) = (n + 1) 2 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Induktion 0 +... Aufgaben und Lösungen Aufgabe 1 Summen von ungeraden Zahlen ). 1. Zeige durch vollständige Induktion, dass für

Mehr

Einführung, III: Verschiedenes

Einführung, III: Verschiedenes Einführung, III: Verschiedenes.1 Summennotation... 22.2 Regeln für Summen, Newtons Binomische Formeln... 22. Doppelsummen... 2.4 Einige Aspekte der Logik... 2.5 Mathematische Beweise.... 24.6 Wesentliches

Mehr

Grundbegriffe der Informatik Aufgabenblatt 2

Grundbegriffe der Informatik Aufgabenblatt 2 Matr.nr.: Nachname: Vorname: Grundbegriffe der Informatik Aufgabenblatt 2 Tutorium: Nr. Name des Tutors: Ausgabe: 4. November 2015 Abgabe: 13. November 2015, 12:30 Uhr im GBI-Briefkasten im Untergeschoss

Mehr

1. Welche der folgenden Aussagen zum Halteproblem ist richtig?

1. Welche der folgenden Aussagen zum Halteproblem ist richtig? 1. Klausur Diskrete Mathematik Seite 1 von 22 1. Welche der folgenden Aussagen zum Halteproblem ist richtig? A. Jedes Problem ist auf das Halteproblem reduzierbar. B. MP, das Zugehörigkeitsproblem, kann

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Ein Induktionsbeweis über Schuhgrößen

Ein Induktionsbeweis über Schuhgrößen Was ist FALSCH an folgendem Beweis? Behauptung: Ein Induktionsbeweis über Schuhgrößen Alle Teilnehmer dieser Vorlesung haben gleiche Schuhgröße. Wir formalisieren diese Aussage, um einen Induktionsbeweis

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 13 Erststufige Peano-Arithmetik - Folgerungen und Ableitungen Die in der zweiten Stufe formulierten Dedekind-Peano-Axiome

Mehr

Nachklausur Analysis 1

Nachklausur Analysis 1 Nachklausur Analysis 1 Die Nachklausur Analysis 1 für Mathematiker, Wirtschaftsmathematiker und Lehrämtler findet als 90-minütige Klausur statt. Für Mathematiker und Wirtschaftsmathematiker ist es eine

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 20) Übungsblatt 8 Abgabe: Montag, 24.06.20, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

1. Klausur Diskrete Mathematik Seite 1 von 22

1. Klausur Diskrete Mathematik Seite 1 von 22 1. Klausur Diskrete Mathematik Seite 1 von 22 1. Welches der folgenden Gesetze über reguläre Ausdrücke gilt im Allgemeinen nicht? (Hierbei bezeichnen D, E, F reguläre Ausdrücke und wir schreiben abkürzend

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Übungen zu Grundlagen der Logik in der Informatik - WS15/16

Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 1 / 11 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Donnerstag 14:15-15:45, Cauerstraße 7/9, Raum 0.154-115 Freitag 14:15-15:45,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,

Mehr

Klausur zu Lineare Algebra I für Informatiker, SS 07

Klausur zu Lineare Algebra I für Informatiker, SS 07 Deckblatt 9.9.7 (. Termin), Gruppe A Klausur zu Lineare Algebra I für Informatiker, SS 7 B.Sc-Modulprüfung / Diplom-Vorprüfung / Scheinklausur in Lineare Algebra I Dr. Timo Hanke, Lehrstuhl D für Mathematik,

Mehr

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0

Aufgabe 3. Sei A eine Menge von Zahlen und neg das Tripel. neg = (A, A, R) A = N A = Z A = R A = R \ {0} mod : N 0 N N 0 Funktionen Aufgabe 1. Finden Sie 3 Beispiele von Funktionen und 3 Beispiele von partiellen Funktionen, die nicht total sind. Es sollten auch mehrstellige Funktionen darunter sein. Aufgabe 2. Zeigen Sie,

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

Inhalt. PROLOG-1A: Mathematik? PROLOG-1B: Aussagen. PROLOG-2: Mengen, Funktionen. PROLOG-3A: Mathematik in Semestern 1+2

Inhalt. PROLOG-1A: Mathematik? PROLOG-1B: Aussagen. PROLOG-2: Mengen, Funktionen. PROLOG-3A: Mathematik in Semestern 1+2 Inhalt PROLOG-1A: Mathematik? PROLOG-1B: Aussagen PROLOG-2: Mengen, Funktionen PROLOG-3A: Mathematik in Semestern 1+2 PROLOG-3B: Funktionen, Induktion, Ungleichungen Mathematik in Semestern 1+2 Mathematik

Mehr

Scheinklausur Analysis 1 Ws 2017/

Scheinklausur Analysis 1 Ws 2017/ Scheinklausur Analysis 1 Ws 2017/8 13.01.2018 Es gibt 10 Aufgaben. Die jeweilige Punktzahl steht am linken Rand. Die Maximalpunktzahl ist 40. Zum Bestehen der Klausur sind 16 Punkte hinreichend. Die Bearbeitungszeit

Mehr

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen 6. Zahlen Vom lieben Gott gemacht Menschenwerk: operativ oder Klassen äquivalenter Mengen oder axiomatisch (Peano 1889) 6. Zahlen GM 6-1 GM 6- Peano sche Axiome der natürlichen Zahlen Definition 6.1.1:

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 1 (Kapitel 1)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 1 (Kapitel 1) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 1 (Kapitel 1) Hinweis: Dieses Übungsblatt enthält

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen u, w, y, z: Aufgabe 1.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 2, 2, 2, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 2, 2, 2, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, u, w, y: Aufgabe 3.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (2, 3, 3, 3, 3, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (2, 3, 3, 3, 3, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y:

Aufgabe Gegeben sind die folgenden aussagenlogischen Formeln F, G, H über den Variablen s, p, w, y: Aufgabe 2.1 8 (a) Zeichnen Sie einen einfachen Graphen mit der Gradsequenz (1, 1, 2, 2, 4, 4). (b) Ist jeder einfache Graph mit der Gradsequenz (1, 1, 2, 2, 4, 4) zusammenhängend? (c) Hat jeder einfache

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Wintersemester 2012/13 Lösungsblatt Endklausur 9. Februar 2013

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik

Mehr

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen

6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen 6.1 Natürliche Zahlen 6.2 Induktion und Rekursion 6.3 Ganze, rationale, reelle und komplexe Zahlen 6.4 Darstellung von Zahlen 6. Zahlen GM 6-1 6.1 Natürliche Zahlen Vom lieben Gott gemacht Menschenwerk:

Mehr

Repräsentierbarkeit arithmetischer Prädikate

Repräsentierbarkeit arithmetischer Prädikate Repräsentierbarkeit arithmetischer Prädikate Michael Schatz 9. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.3 in [R], wobei es 2 wesentliche Änderungen zu beachten gilt: (a) Rautenberg arbeitet

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

2 Die naturlichen Zahlen

2 Die naturlichen Zahlen 2 Die naturlichen Zahlen 2.1 Historisches Schon fruh in der Kulturgeschichte stellte man die Frage nach dem Wesen der Zahlen. Wahrend sich jedoch die Agypter und Babylonier mit einer hoch entwickelten

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft RUD

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik 4. Abbildungen (Funktionen) MGS 4-1 08.10.02 Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik Rolf Linn Berechnung Ralf Linn Produkt * Kaufpreis MGS 4-5 08.10.02 1950.- 500000.- 495.- 4. Abbildungen

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 6. März 2017

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 6. März 2017 Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 6. März 2017 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.:

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

Diskrete Mathematik I Wintersemester 2007 A. May

Diskrete Mathematik I Wintersemester 2007 A. May Diskrete Mathematik I Wintersemester 2007 A. May Literatur Vorlesung richtet sich nach A. Steger: Diskrete Strukturen Band 1: Kombinatorik-Graphentheorie- Algebra Springer Verlag T. Schickinger, A. Steger:

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach Seminar Automatentheorie der Presburger Arithmetik Vorgetragen von Viktor Rach Vortragsgliederung: Kapitel 1 Presburger Arithmetik 1.1 Grundlagen der Presburger Arithmetik.... 3 1.2 Einführung in Presburger

Mehr

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz

Klausur zur Vorlesung Analysis I für Lehramtskandidaten. (Sommersemester 2008) Dr. C. Lange, J. Schütz Klausur zur Vorlesung Analysis I für Lehramtskandidaten (Sommersemester 008) Dr. C. Lange, J. Schütz Beginn: 17. Juli 008, 10:00 Uhr Ende: 17. Juli 008, 11:30 Uhr Name: Matrikelnummer: Ich studiere: Bachelor

Mehr

2. Schriftliche Leistungskontrolle (EK)

2. Schriftliche Leistungskontrolle (EK) TheGI 2: Berechenbarkeit und Komplexität Prof. Dr.-Ing. Uwe Nestmann - 13. Juli 2010 2. Schriftliche Leistungskontrolle EK Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte erreichbar.

Mehr