1 Radioaktivität in der Natur

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Radioaktivität in der Natur"

Transkript

1 1 Radioaktivität in der Natur

2 Entdeckung der Radioaktivität des Uran 1896 Henri Becquerel Untersuchungen zum Zusammenhang von X-Strahlung und Phosphoreszenz Schwärzung von Fotoplatten durch in schwarzem Papier verpackte Uransalze (Ausschluss des Sonnenlichtes) Schwärzungsintensität proportional der Uranmenge Becquerelstrahlung Entdeckung des Phänomens Radioaktivität

3 Entdeckung der Radioaktivität (Marie Curie , Pierre Curie ) 1898 Marie Curie (mit Pierre Curie, H. Becquerel) Th-Strahlung ähnlich Uran 1902 einige Uranerze waren radioaktiver als reines Uran (Polonium, Radium Entdeckung) Strahlung ist unabhängig vom chemischen und physikalischen Zustand

4 Entdeckung der Radioaktivität 1909 Geiger und Marsden Streuexperimente mit Alpha-Teilchen 1911 Interpretation durch Rutherford Atomkern 1919 Rutherford: 1. Kernumwandlung N + α O + ρ 1930 Cockcroft und Walton: 1. Beschleuniger Li + ρ α + α (1. Kernzertrümmerung) 1932 Entdeckung des Neutrons durch Chadwick Erklärung der Isotopie 1934 Irène Joliot-Curie und Frédéric Joliot Radioaktive Phosphor- und Silicium-Isotope durch Kernumwandlung 1938 Entdeckung der Kernspaltung durch Otto Hahn und Fritz Straßmann, Lise Meitner

5 Entdeckung der Radioaktivität 1938 Entdeckung der Kernspaltung durch Otto Hahn und Fritz Straßmann, Lise Meitner O. Hahn und F. Straßmann im Deutschen Museum München vor dem Arbeitstisch des Berliner Teams (1962) Teil des Arbeitstisches, auf dem O. Hahn und F. Straßmann Ende des Jahres 1938 die Kernspaltung experimentell nachwiesen Lise Meitner bei einem Vortrag in Bonn (1949)

6 Entdeckung der Radioaktivität 1939 Synthese/Abtrennung der Elemente Neptunium (Z=93), Plutonium (Z=94) Kernreaktor kritisch Enrico Fermi, Chicago Manhattan Projekt Atombomben auf Hiroshima und Nagasaki Kernreaktor zur Energiegewinnung Industrieelle Kernenergiegewinnung Kernbrennstoffkreislauf Radioaktive Nuklide und Bestrahlungsanlagen für Medizin und Wirtschaft Arbeiten zur Kernfusion Synthese schwerster Elemente

7 Definition der Radioaktivität - spontane Umwandlung instabiler Kerne unter Energieabgabe - Energieabgabe erfolgt in Form ionisierender Strahlung * direkt vom Atomkern aus * indirekt durch die Kernumwandlung in der Elektronenhülle erzeugt - spontaner exothermer Vorgang wird bezeichnet als: radioaktive Umwandlung radioaktiver Zerfall - Arten der Umwandlungen: Alphaumwandlung Betaumwandlung (β -, β +, Elektroneneinfang) Gammaübergänge (γ-strahlung, Kernisomerie, innere Konversion, Mößbauer Effekt) spontane Kernspaltung spontane Nukleonenemission spontane Emission schwerer Teilchen

8 Radioaktivität - Eigenschaft vieler Stoffe, die in der Natur vorkommen - Mensch hat kein Sinnesorgan zur direkten Wahrnehmung der Radioaktivität - Phänomen der Radioaktivität erst Ende des 19. Jahrhunderts entdeckt - entscheidende Auswirkungen auf Wissenschaft und Technik; auf Mensch und Umwelt

9 Periodensystem Suche nach einem Ordnungssystem für die bekannten Elemente: J.W. Döbereiner Triadenregel Element Masse Calcium Ca 40,078 u Strontium Sr 87,62 u Mittelwert von Ca und Ba = 88,5 u Barium Ba 137,327 u Diese Erkenntnis wurde in seiner Arbeit Versuch zu einer Gruppierung der elementaren Stoffe nach ihrer Analogie veröffentlicht. Er ordnete dabei 30 von damals 53 bekannten Elemente in Dreiergruppen, den Triaden an L. Meyer, D. Mendelejew verwandtschaftliche Beziehungen in chemischen und physikalischen Eigenschaften, Grundregeln der Veränderungen bei schweren Elementen relativistischen Effekt beachten H.J.G. Moseley freie Felder im PSE, Voraussagen möglich (für genaue Einordnung Moseleysches Gesetz wichtig) - Kernladungszahl = Zahl der Protonen / Elektronen = Ordnungszahl

10 Entdeckung der Elemente - stabile Elemente: ein großer Teil der Lücken im PSE wurde noch im vergangenen Jahrhundert geschlossen zuletzt wurden gefunden: Hafnium (Hf, 1922), Rhenium (Rh, 1925) in der Natur vorkommende radioaktive Elemente: Uran (U, 1789), Thorium (Th, 1828), Zerfallsprodukte des Urans und Thoriums: Polonium (Po), Radon (Rn), Francium (Fr), Radium (Ra), Actinium (Ac), Protactinium (Pa) - künstliche Elemente: fehlte noch Z = 43 Technetium (Tc), Z = 85 Astat (At) Herstellung durch Kernreaktionen: Neptunium (Np), Plutonium (Pu), Americium (Am) usw.

11 Moseleysches Gesetz (1913) - Wurzel aus der Frequenz v einer bestimmten Serie von Röntgenstrahlen proportional zur Ordnungszahl a, b Konstanten, b für Linien einer gegebenen Serie gleich (z. B. K α )

12 Isotopie - Untersuchung der natürlich vorkommenden Elemente führte zur Erkenntnis, dass ein Element in Form von verschiedenen Atomarten auftreten kann (Massenunterschied, Ausnutzung zur Trennung) Vorschlag von F. Soddy: Atomarten haben gleichen Platz im PSE Isotop (auf gleichem Platz) - z. B. Zinn (Sn) hat 10 stabile, 18 instabile (radioaktive) Isotope - natürliche Reinelemente eine stabile Atomart: Be, F, Na, Al, P, I

13 Nuklidkarte es hat sich als zweckmäßig erwiesen, alle Nuklide im Z (Ordinate), N (Abszisse) Diagramm aufzutragen

14 Ablesbare Angaben in Nuklidkarte - Elementsymbol - Nukleonenzahl - Häufigkeit in der Natur - Charakteristik der radioaktiven Umwandlung - Einfangquerschnitt Stabil ß - ß + α

15 Nuklidkarte -Isotope: gleiche Protonenzahl, ungleiche Nukleonenzahl Z = const., parallel zur N-Achse, chemisch gleich, Unterschiede in Nukleonenzahl, Kernvolumen, Kerndrehimpuls, mag. Dipolmoment Ne, 21 10Ne usw. -Isotone: gleich Neutronenzahl, unterschiedliche Protonenzahl N = const., parallel zur Z-Achse 3 1 H, 4 2 He, 5 3 Li - Isobare: Nuklide mit Atomkernen gleicher Nukleonenzahl N + Z = const., Diagonalreihen 17 7 N, 17 8 O, 17 9 F - Isodiaphere: Nuklide, deren Kerne den selben Neutronenüberschuss haben N Z = const., Diagonalreihen 7 3 Li, 9 4 Be, 15 7 N

16 Z Anordnung der Isotope, Isotone, Isobare, Isodiaphere in der Nuklidkarte

17 Kernaufbau - Atome haben Durchmesser von etwa m, Atomkern m (Rutherfordsches Streuexperiment) - positiv geladener Kern und Elektronenhülle Ladungsausgleich im Grundzustand - Differenz zwischen Neutronen- (N) und Protonenzahl (Z) = Neutronenüberschuss (NS) NS = N Z = A 2 Z A = Massenzahl, Nukleonenzahl

18 Kernmasse - Massen der Atome liegen in der Größenordnung von kg (H) bis kg (schwere Kerne) - um Rechnen zweckmäßiger zu gestalten wurde anstelle der absoluten die relative Atommasse eingeführt - die relative Atommasse gibt an, wie viel größer die Ruhemasse eines Nuklides als die atomare Masseneinheit (u) ist - als atomare Masseneinheit (u) wird der 12. Teil der Ruhemasse eines Atoms des Nuklides 12 6C definiert: m u = 1/12ma( 12 6C) = 1 u - Umrechnung zwischen atomarer Masseneinheit und SI Einheit: 1 u = 1,66654 x kg

19 Rutherford scher Streuversuch I Lord Ernest Rutherford (engl. Physiker, ) wollte 1911 die innere Struktur von Goldatomen untersuchen. Dazu ließ er schnelle Alphateilchen eines radioaktiven Präparats auf eine wenige mm dünne Goldfolie (Target) fallen. Um die Goldfolie herum wurde ein Zinksulfid (ZnS) beschichteter Detektorschirm gedreht, der durchgelaufene oder abgelenkte Teilchen registriert. Ein Alphateilchen verursacht auf dem ZnS-Schirm einen kleinen Lichtblitz, der durch ein Mikroskop mit bloßem Auge erkannt werden kann.

20 Rutherford scher Streuversuch IV Ergebnis: Neues Atommodell

21 Folgerungen aus Rutherford schem Experiment - Streuung im großen Winkel nur durch einzigen elastischen Streuprozess (keine Mehrfachstreuung) - nur durch ein starkes elektrisches Feld verursacht (Einfluss der Elektronen vernachlässigbar) - die positive Ladung und fast die gesamte Masse des Atoms ist konzentriert im Atomkern -Streuformel: Die Zahl der gestreuten α Teilchen nimmt mit dem Quadrat der Kernladungszahl Z der bestrahlten Substanz zu

22 Atomkern - gebildet von Nukleonen (Protonen Z und Neutronen N) - im Unterschied zu gebundenen Neutronen im Kern, zerfallen freie Neutronen: n (t ½ = 10.6 min) p + + e - + v + ΔE - deshalb Masse des Nukleons ist kleiner als die der freien Protonen und Neutronen (Zusammenhang Massendifferenz und Bindungsenergie) - Nukleonenzahl (Massenzahl) A = Z + N - Atom ist aufgebaut aus Neutronen, Protonen und Elektronen, andere Elementarteilchen und Antiteilchen erscheinen als Produkte der Kernzerfälle, Wechselwirkung mit hochenergetischen Teilchen z. B.

23 Bindungsenergie - Messungen ergaben, dass die Masse des Atomkerns (m K ) stets kleiner ist als die Summe der bildenden Nukleonen (m P,N ) - Fehlbetrag = Massendefekt Δm = Zm p + Nm n m k ( A ZX) - die dem Massendefekt (Δm) äquivalente Energie ist Maß für Festigkeit der Nukleonenbindung = Bindungsenergie E B ( A ZX) = Δmc O 2 - weitere Größe ist die mittlere Bindungsenergie je Nukleon (f) f = E B ( A ZX) / A

24 Bindungsenergie

25 Bindungsenergiekurve - für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel spiegelt gut den Kurvenverlauf wieder - Abfall zu leichten und schweren Kernen hin lässt Schluss zu, dass Kernbindungsenergie auf zwei Wegen freigesetzt werden kann, exotherme Vorgänge: * Verschmelzung leichter Atomkerne * Spaltung schwerster Atomkerne

26 Stabilität und Kerntypen Elemente bisher bekannt, nur 81 haben stabile Isotope Bi ist das schwerste stabile Isotop ( Publikation (2003): HWZ 1,9 x Jahre) daraus folgt: Pb - mehr als 1900 Nuklide bekannt, davon ca. 275 stabil, andere radioaktiv - Atomkerne können entsprechend ihrer Neutronen- und Protonenzahl in vier Z, N-Typen eingeteilt werden: * gerade Nukleonenzahl: gg Kerne uu Kerne * ungerade Nukleonenzahl: gu Kerne ug Kerne

27 Verteilung der stabilen Nuklide Z N A Kerntyp Anzahl g g g gg 162 g u u gu 55 u g u ug 50 u u g uu 5 - stabile uu Nuklide: 2 1 H, 6 3 Li, 10 5 B, 14 7N, V - gg-nuklide besonders stabil und auf der Erde sehr häufig: in Erdrinde 75 Masse% 16 8 O, Si

28 Magische Zahlen - bei Protonen oder Neutronenzahlen Z = 2, 8, 20, 28, 50, 82 N = 2, 8, 20, 28, 50, 82, 126 treten viele stabile (besonders stabile) Nuklide auf, dies resultiert aus dem Schalenmodell - ungewöhnlich hohe Stabilität haben die doppelt magischen Kerne: 4 2 He, 16 8 O, Ca, Pb - Vorhersage: Schalenabschlüsse für Z = 114 und N = 184 vorhergesagt gruppieren sich um doppelt magischen Kern X

29 Bindungsenergiefläche der Atomkerne

30 Regeln - 1. Isobarenregel von J. Mattauch: bei ungerader Nukleonenzahl A gibt es maximal nur ein stabiles Nuklid - 2. Isobarenregel von J. Mattauch: bei gerader Nukleonenzahl A gibt es meistens zwei, seltener drei stabile isobare Nuklide, deren Ordnungszahlen sich um zwei Einheiten unterscheiden - Astonsche Isotopenregel: bei ungerader Ordnungszahl Z gibt es höchstens zwei stabile Nuklide, bei geradem Z dagegen oft wesentlich mehr Ausnahme: Tc (Z = 43), Pm (Z = 61), Elemente Z > 83 haben nur instabile Nuklide

31 Definition der Radioaktivität - spontane Umwandlung instabiler Kerne unter Energieabgabe - Energieabgabe erfolgt in Form ionisierender Strahlung * direkt vom Atomkern aus * indirekt durch die Kernumwandlung in der Elektronenhülle erzeugt - spontaner exothermer Vorgang wird bezeichnet als: radioaktive Umwandlung radioaktiver Zerfall - Arten der Umwandlungen: Alphaumwandlung Betaumwandlung (β -, β +, Elektroneneinfang) Gammaübergänge (γ-strahlung, Kernisomerie, innere Konversion, Mößbauer Effekt) spontane Kernspaltung spontane Nukleonenemission spontane Emission schwerer Teilchen - Unterscheidung zwischen künstlicher und natürlicher Radioaktivität

32 Emission von Teilchen oder Energiequanten α-strahlung: Emission eines 4 He-Kernes: β-strahlung: Emission eines Elektrons: Emission eines Positrons: Elektroneneinfang: Ra Rn + α 14 6 C 14 7 N + e- + ν oder K Ar + e + + ν oder K + e Ar + ν γ-strahlung: Emission energiereicher elektromagnetischer Strahlung (γ-quanten oder Photonen)

33 Umwandlungsgesetz (Zerfallsgesetz) - bei großer Anzahl von Kernen kann man angeben, wie viele Umwandlungen sich im Zeitintervall ereignen - zum Zeitpunkt t, in einheitlicher Substanz N Atome, dann wandeln sich im Zeitintervall dt im Mittel dn = -λ Ndt um. λ = Umwandlungskonstante/Zerfallskonstante - Die Integration ergibt: -In N(t) InN(0) = -λt, daraus folgt das exponentielle Umwandlungsgesetz N(t) = N(0)e -λt N(t) = Zahl der Atome zur Zeit t N(0) = Ausgangszahl zur Zeit t = 0 - Im gleichen Zeitintervall wandelt sich stets die gleiche Anzahl der Teilchen um: τ= 1/λ mittlere Lebensdauer [N(0) auf N(0)/e abgefallen]

34 Halbwertzeit T ½ - diejenige Zeit, in der die Anzahl der Atome jeweils auf die Hälfte abnimmt: T ½ = τ ln 2 = ln 2 / λ = 0,6931 / λ - Halbwertzeiten liegen in einem Größenbereich von a a - lässt man 10 Halbwertzeiten verstreichen (1/2) 10, d.h. 1

35 Radioaktive Umwandlung Gesetz des radioaktiven Zerfalls N N 0 Anzahl radioaktiver Kerne N = N 0. λt e = N. λ : Aktivität - Anzahl der Zerfälle pro Zeitintervall N 0 /2 ln 2 T 1/2 : Halbwertzeit ( T 1/2 = ) λ λ : Zerfallskonstante N 0 /4 N 0 /8 N 0 /16 0 T 1/2 2T 1/2 3T 1/2 4T 1/2 t

36 Umwandlungsgesetz (Zerfallsgesetz) und Aktivität eine wichtige Größe eines radioaktiven Präparates ist seine Aktivität: - Anzahl der Umwandlungen pro Sekunde- Statistik des Zerfalls: - es gibt stabile und instabile Kerne - instabiler Kern kann in den nächsten Bruchteilen von Sekunden zerfallen oder Milliarden Jahre existieren - Zerfälle sind unabhängig voneinander - wann der einzelne Kern zerfällt ist nicht voraussagbar - misst man die Zählrate eines Radionuklides (t 1/2 >Messzeit) mehrmals hintereinander so findet man, dass die Zählrate um einen Mittelwert schwankt: x = 1/n3 x i

37 Aktivität - Zahl der Atomkerne einer radioaktiven Substanz ist der Messung nicht direkt zugängig - Es kann nur die Umwandlungsrate oder Aktivität A ermittelt werden. Diese Größe ist der Umwandlungsrate proportional: A = -dn/dt λn - früher Maßeinheit Curie (1 g Radium-226, Ra im radioaktiven Gleichgewicht) - SI-Einheit 1/s = Bq (Becquerel) - PBq, TBq, GBq, MBq, kbq, mbq = 10-3 s -1 - spezifische Aktivität A/m (Bq/kg) 1 Bq = 1 Zerfall / s - Aktivitätskonzentration C a =A/V (Bq/m 3 )

38 Einheit der Aktivität Kernumwandlungen ΔN = 4 Aktivität (A) = Anzahl der Kernumwandlungen Zeit Zeit Δt = 4 s A = ΔN Δt 4 = = 1 s -1 = 1 Bq 4 s 1 Ci = 3,7 x x s -1 = 3,7 x Bq

39 Impulsrate Aktivität - Aktivität wird mit einem Detektor gemessen. - gemessene Impulsrate I ist über die Zählausbeute mit der Aktivität verknüpft I = η A (η < 1) - η ist abhängig von Art der Strahlung, der Energie, der geometrischen Anordnung des Präparates, der Selbstabsorption der Strahlung im Präparat, Rückstreuung der Strahlung - zur Bestimmung der Zählausbeute werden Standardpräparate benutzt - Impulsrate setzt sich zusammen aus Impulsrate des Präparates und dem Untergrund I = I o e -λt auf halblogarithmischem Papier Gerade (Zerfallskurve des Radionuklides)

40 Umwandlungskurve eines radioaktiven Nuklids in linearer und halblogarithmischer Darstellung

41 Aktivität und Zählrate - Geometriefaktor (Raumwinkel < 4 π) - Absorption im Präparat, Luft, Fenster des Detektors ( α- und β- Teilchen) - Durchqueren des Detektors ohne Wechselwirkung (γ -Quanten) + Rückstreuung in Präparat und Träger

42 Masse trägerfreier radioaktiver Nuklide je 10 MBq Aktivität Nuklid Halbwertzeit Masse in kg je 10 MBq Ag 2,41 min 3,74 x Mn 2,58 h 1,25 x I 8,02 d 2,18 x P 14,3 d 9,47 x S 87,5 d 6,34 x Co 5,272 a 2,39 x Sr 28,5 a 1,94 x 10-9 C 5730 a 6,06 x 10-8 CI 3,0 x 10 5 a 8,16 x 10-6 U 4,468 x 10 9 a 8,04 x 10-1

43 Radioaktives Gleichgewicht 1 - mehrere radioaktive Nuklide stehen in einer genetischen Beziehung Nuklid 1 Nuklid 2 Nuklid 3 man spricht von Mutternuklid und Tochternuklid - Nettobildungsrate des Tochternuklids: dn 2 /dt = - dn 1 /dt - λ 2 N 2 = λ 1 N 1 - λ 2 N 2 - das radioaktive Gleichgewicht als Funktion der Zeit im Anschluss an die quantitative Abtrennung des Tochternuklids vom Mutternuklid ist erreicht, wenn: N 2 = λ 1 / λ 2 λ 1 * N 1 d.h. das Verhältnis der Atome N 2 / N 1 ist konstant - nicht mit thermodynamischen Gleichgewicht verwechseln, nicht von beiden Seiten erreichbar - unterscheidet vier grundsätzliche Fälle

44 Radioaktives Gleichgewicht 2 - Halbwertzeit des Mutternuklids ist sehr viel größer als die Halbwertzeit des Tochternuklids t 1/2 (1) >>> t 1/2 (2) Säkuläres Gleichgewicht (Dauergleichgewicht) - Halbwertzeit des Mutternuklids ist zwar größer als die Halbwertzeit des Tochternuklids (Halbwertzeit des Mutternuklids kann aber nicht unberücksichtigt bleiben) t 1/2 (1) > t 1/2 (2) Transientes Gleichgewicht (Laufendes Gleichgewicht) - Halbwertzeit des Mutternuklids ist kleiner als die Halbwertzeit des Tochternuklids t 1/2 (1) < t 1/2 (2) keine Einstellung des Gleichgewichtes - Halbwertzeit von Mutter- und Tochternuklid sind ähnlich t 1/2 (1) t 1/2 (2) siehe 2. bzw. 3. Anstrich

45 1. Säkulares Gleichgewicht t 1/2 (1) >>> t 1/2 (2) λ 1 <<< λ 2 zur Zeit t = 0 erfolgt quantitative Abtrennung: folgend aus: ergibt sich: - für die Einstellung des Gleichgewichtes ist nur die Halbwertzeit des Tochternuklids maßgebend - Zahl der Atome des Mutternuklids praktisch konstant N (0) 1 = N 1 - Tochternuklid bildet sich mit der gleichen Gesetzmäßigkeit nach, wie es zerfällt, wenn es vom Mutternuklid isoliert vorliegt - Nach ca. 10 Halbwertzeiten des Tochternuklids ist das radioaktive Gleichgewicht eingestellt N 2 /N 1 = λ 1 / λ 2 bzw. = t 1/2 (2)/t 1/2 (1) A 1 = A 2

46 Zerfall des abgetrennten Tochternuklids und Nachbildung des Tochternuklids aus dem Mutternuklid im Fall des säkularen Gleichgewichts

47 Säkulares Gleichgewicht - Gesamtaktivität und Einzelaktivitäten als Funktion der Zeit -

48 2. Transientes Gleichgewicht - Zerfall des Mutternuklides kann nicht mehr vernachlässigt werden - erfolgt zum Zeitpunkt t = 0 die quantitative Trennung gilt für die Einstellung des Gleichgewichtes: N 2 = λ 1 / λ 2 λ 1 x N o 1e -λ1t (1-e -(λ2-λ1)t ) Ausdruck vor Klammer beschreibt Zerfall des Mutternuklids, für Einstellung des Gleichgewichtes ist nun nicht mehr nur die HWZ der Tochter, sondern die Differenz der Zerfallskonstanten, wenn Ausdruck Klammer 1 ist = Gleichgewicht in - im Gleichgewicht zerfällt Gemisch mit der HWZ des Mutternuklides - im säkulärem Gleichgewicht ist Aktivität von Mutter und Tochter gleich - im transienten Gleichgewicht ist die Aktivität der Mutter kleiner als die der Tochter A 1 /A 2 = λ 1 N 1 /λ 2 N 2 = 1 - λ 1 /λ 2 = 1 t 1/2 (2) / t 1/2 (1)

49 Transientes Gleichgewicht - Gesamtaktivität und Einzelaktivitäten als Funktion der Zeit -

50 3. Kurzlebigeres Mutternuklid - Mutternuklid A 1 ist kurzlebiger als Tochternuklid A 2 es gilt: t 1/2 (1) < t 1/2 (2) bzw. λ 1 > λ 2 - Gleichgewicht wird nicht erreicht; Mutternuklid aufgezehrt, bevor Tochternuklid zerfallen ist

51 Kurzlebigeres Mutternuklid - Mutternuklid A 1 ist kurzlebiger als Tochternuklid A 2 es gilt: t 1/2 (1) < t 1/2 (2) bzw. λ 1 > λ 2 - keine Einstellung eines radioaktiven Gleichgewichtes - Mutternuklid aufgezehrt bevor Gleichgewichtseinstellung unter Berücksichtigung von: folgt unter der Voraussetzung ( e (λ1-λ2)t ) <<< 1, dass nur noch Zerfall des Tochternuklids beobachtet wird, ein Gleichgewicht wird nicht erreicht (auch nach Trennung ist N 2 proportional N(0) 1 ) Grenzfall: ähnlich HWZ von Mutter- und Tochternuklid 1. HWZ Mutternuklid > HWZ Tochternuklid allmähliche Einstellung eines transienten Gleichgewichtes 2. HWZ Mutternuklid < HWZ Tochternuklid kein Gleichgewichtseinstellung

52 Kurzlebiges Mutternuklid

53 3. Aufeinanderfolgende Umwandlungen (genetischer Zusammenhang) - radioaktives Gleichgewicht nach einer Vielzahl von Umwandlungen (1)... (2)... (3)... (4)... (n) - Verzweigung (dualer Zerfall) bei Umwandlung hat Radionuklid mehrere Umwandlungsmöglichkeiten, oft eine bevorzugt

54 Alpha - Umwandlung - dabei wird vom Atomkern ein Heliumkern 4 2 He α Teilchen mit hoher kinetischer Energie ausgestrahlt - Verringerung der Nukleonenzahl um vier, die Ordnungszahl um zwei Einheiten A Z X A-4 Z-2 Y + α / Ra Rn + α - aus energetischen Gründen ist die α - Umwandlung auf schwere Nuklide (A > 170, Z > 70) beschränkt - energetische Bedingungen: spontane Kernumwandlungen können nur stattfinden, wenn sie exotherm verlaufen - Bindungsenergie des Ausgangskerns muss geringer sein als die Summe der Bindungsenergien der entstehenden Kerne - wegen großer Bindungsenergie des α Teilchens E B = 28,3 MeV ist aber bei zahlreichen schweren Kernen spontane Umwandlung möglich - Reaktionsenergie: (ergibt sich aus der Massenbilanz e = m*c 2 ) Q = E B ( A-4 Z-2 Y) + E B (4 2 He) - E B (A Z X)

55 Modell zur Entstehung von Alphastrahlen

56 Theorie der α Umwandlung - Atomkern von Potentialwall umgeben - Höhe E c des Potentialwalls lässt sich berechnen = ca. 28 MeV - Kinetische Energie des mittleren α Teilchens beträgt nur E α = 4,8 MeV - Deutung durch G. Gamow: α Teilchen schwingt mit hoher Frequenz im Atomkern, dabei Anstoßen und Reflektion von Potentialtopf Wand Wellenmechanische Theorie; es besteht gewisse Wahrscheinlichkeit, dass Teilchen auch außerhalb des Atomkerns anzutreffen sind, selbst wenn seine Energie nicht ausreicht Coulomb Schwelle zu überwinden Teilchen tunnelt = Tunneleffekt (einfache Theorie vernachlässigt Bildung des α Teilchens selbst im Atomkern, enthalten keine Abhängigkeit vom Drehimpuls u.a.)

57 α Spektrum - Bei der Umwandlung der ca. 450 bekannten α Strahler werden α Teilchen mit diskreten Energien im Bereich von 4 MeV bis 9 MeV emittiert Differenz der Energie der Ausgangs- und Restkerne, bei gg - Kernen oft alle α Teilchen eine Energie - Bei anderen Kernarten oft Übergänge in angeregte Energieniveaus Aussendung von mehreren Gruppen von α Teilchen, die sich in der Energie unterscheiden - Beispiel für Auftreten verschiedener Gruppen ist Bi größtmögliche Energie ist Übergang in den Grundzustand

58 Geiger Nuttall - Regel - α Teilchen übernimmt wegen der kleinen Masse den überwiegenden Anteil der Energie, gesamte Umwandlungsenergie Q ist nur ca. 2% größer als kinetische Energie des α Teilchens - Halbwertzeit der α Strahler haben große Unterschiede: 0,3µs Po und 5*1015 a für Nd fanden Geiger und Nuttall eine empirische Beziehung zwischen Q Wert (Umwandlungsenergie) und der Umwandlungskonstante λ = ln2 / T 1/2 ln λ = k 1 + k 2 ln Q k 1, k 2 = Konstanten mit zunehmender Umwandlungsenergie wächst die Umwandlungskonstante des α Strahlers (siehe Kurve)

59 Beta - Umwandlung - Arten der Umwandlung: β - - Umwandlung β + - Umwandlung Elektroneneinfang - beruht auf gegenseitigen Umwandlung der Nukleonensorten Proton Neutron, Neutron Proton dabei Emission von Elektron / Positron ( Ladungserhaltung) Elektronen Neutrino bzw. Elektronen Antineutrino - Ausgangskern und Folgekern stets isobar - β Umwandlung kommt bei fast allen Elementen vor, etwa 20 natürliche und 1700 künstliche β Strahler - HWZ von 5 ms bis a

60 Beta - Umwandlung - Arten der Umwandlung: β - - Umwandlung β + - Umwandlung Elektroneneinfang - beruht auf gegenseitigen Umwandlung der Nukleonensorten Proton in Neutron; Neutron in Proton dabei Emission von Elektron oder Positron (Ladungserhaltung) Elektronen Neutrino bzw. Elektronen Antineutrino - Ausgangskern und Folgekern stets isobar - Isobare: Nuklide mit Atomkernen gleicher Nukleonenzahl N + Z = const., Diagonalreihen 17 7 N, 17 8 O, 17 9 F - β Umwandlung kommt bei fast allen Elementen vor, etwa 20 natürliche und 1700 künstliche β Strahler - HWZ von 5 ms bis a

61 Beta Umwandlung - β - Umwandlung: (Elektron + Elektron-Antineutrino) - β + Umwandlung: (Positron + Elektron-Neutrino) - Elektroneneinfang: Umwandlung eines Protons in ein Neutron, dabei wird ein Hüllenelektron (meist aus K-Schale) vom Kern aufgenommen und ein Elektronen-Neutrino emittiert Konkurriert oft mit β + Umwandlung, führt zu gleichen Folgekern

62 Modell zur Entstehung von Beta - - Strahlen

63 Modell zur Entstehung der Beta + - Strahlen

64 β - Spektrum - die freiwerdende Energie Q verteilt sich nach dem Wahrscheinlichkeitsgesetz auf die beiden emittierten Teilchen: Q = E β + E ve - Folgekern (große Masse) übernimmt zwar Impuls aber kaum Energie - je nach Verteilung der Umwandlungsenergie auf β Teilchen und Elektronen Neu/Antineutrino besitzen die von einem radioaktiven Nuklid abgegebenen Elektronen oder Positronen ein kontinuierliches Energiespektrum ( von E β = 0 bis E β = E β max ) E β max ~ Q, siehe Schema - bei niedrigen Energien ist zwischen dem Energiespektrum der Elektronen und Positronen ein Unterschied Grund positive Ladung des Kerns, Beschleunigung der Positronen durch Coulomb-Feld - bei β Umwandlung oft innere und äußere Bremsstrahlung

65 Schematische Darstellung von β - Energiespektren

66 Umwandlungsschema von 42 K 19

67 Gammaübergänge - auch Atomkern kann in energetisch angeregten Zuständen existieren (oft nach Kernumwandlungen) - Anregungszustände der Atomkerne liegen meist 10 4 bis 10 7 ev über dem Grundzustand angeregte Kerne: anderer Energieinhalt, anderer Kernspin, Größe des elektrischen und magnetischen Moments als Grundzustand - γ-übergang, Folgeerscheinung der Entstehung von angeregten Zuständen Abregung ohne Veränderung von Kernladungs- und Nukleonenzahl * Emission von Gammastrahlung * Kernisomerie * Innere Konversion * Mößbauer-Effekt

68 Abgabe eines Gammaquants aus einem Atomkern (Modell)

69 Umwandlungsschema von 60m Co 27

70 Emission von γ-strahlung - sehr oft Übergang in energetisch tiefer liegende Zustände durch Aussendung elektromagnetischer Strahlung (γ-quant, Photonen) - oft Erreichen des Grundzustandes über Zwischenzustände (siehe Schema Co) - Energie der γ-quanten ergeben sich aus den Energiedifferenzen der Niveaus zwischen denen die Übergänge stattfinden E γ = E 2 E 1 = hf (h = Planck-Konstante, f = Frequenz der emittierten Strahlung, ergibt Linienspektrum) Kernisomerie - in einigen Fällen kann angeregter Zustand über Sekunden, Stunden, Tage, Jahre gehen - angeregte Kerne mit messbarer Halbwertzeit = Isomere (Beispiel Umwandlung von Cs, siehe Schema)

71 Innere Konversion - angeregte Atomkerne können mit Hüllenelektronen in Wechselwirkung treten - γ-übergänge verlaufen dann strahlungslos, E γ geht direkt auf Hüllenelektronen über, statt γ-quanten werden Hüllenelektronen emittiert, dadurch Ionisation des Atoms Lücke in Elektronenhülle kann aufgefüllt werden durch Emission von Röntgenstrahlung (wie bei E-Einfang) oder Energieübertragung auf anderes Elektron in anderer Schale Aussendung Auger-Elektron - Konversionselektronen sind monoenergetisch E e = E γ E K,L,M...

72 Emission von γ - Strahlung Co 0,15% 99,85% β - γ β - 1,173 MeV γ 1,332 MeV Ni

73 Mößbauer-Effekt I Optischer Fall: Anregung zu Grundzustand: Abstrahlung von Lichtquanten Kernphysik: γ-emission angeregter Kerne Optischer Fall: Umkehrung des Emissionsprozesses = Resonanzabsorption Atome im Grundzustand vermögen die von gleichartigen Atomen emittierten Lichtquanten zu absorbieren, Anregungsenergie unter Fluoreszenzlicht abgegeben Kernphysik:? (Mößbauer-Effekt) angeregter Zustand besitzt mittlere Lebensdauer, nach Heisenbergscher Unschärferelation zwischen Energie und Zeit keine scharfe Energie, sondern Energieunschärfe bei Lebensdauer des angeregten Zustandes 10-8 s etwa 10-7 ev Beim Übergang angeregter Kerne in den Grundzustand erteilen die ausgesandten Quanten den emittierenden Kernen / Atomen einen Rückstoßimpuls Resonanzabsorption tritt dann auf, wenn sich beide Linien überlappen in Kernphysik treten dagegen Rückstoßenergien auf ev, sodass Überlappung der Linien und damit Resonanzabsorption verhindert wird

74 Mößbauer-Effekt II entdeckte R. Mößbauer die Möglichkeit, die Resonanzbedingung nicht durch Kompensation der Rückstoßenergieverluste, sondern durch dessen Vermeidung zu erfüllen - Atome des γ-strahlers und des Absorbers in das Kristallgitter eines Festkörpers einbauen das Kristallgitter übernimmt den gesamten Rückstoßimpuls M >> m Rückstoßenergie vernachlässigbar, Rückstoßenergie kann aber Kristall zu Schwingungen anregen, um dies zu verhindern, wird sich bei Kernresonanzexperimenten auf kleinen Quantenenergien E γ < 150 kev beschränkt, Messung bei tiefen Temperaturen - Experiment * Strahlungsquellen: Osm (129 kev) * Absorber: nat. Ir mit Ir (38,5 %) nat. Fe mit 57 26Fe (2,1 %) Strahlungsdetektor Absorber (Kryostat) - Strahlungsquelle

75 Mößbauer-Effekt

76 Spontane Kernspaltung - Spontanspaltung aus dem Grundzustand 1940 Flerov, Petrzak Entdeckung am Uran Konkurrenzreaktion zur α-umwandlung 40 spontan spaltende Nuklide bekannt 238 U HWZ Spontanspaltung: 8 x a, α-umwandlung 4,468 x 10 9 a für fm HWZ 3,2 h, man nahm an, dass höhere Elemente nicht existieren können aufgrund der Spontanspaltung, bei höheren Z > 106 dominiert α-umwandlung wieder - Spontanspaltung aus dem formisomeren Zustand schwere Transuraniumkerne besitzen keine Kugelgestalt, sondern sind elliptisch verformt = zwei Gleichgewichtszustände (Geometrieunterschiede-Formisomerie) 30 Nuklide bekannt, z. B Am (Beschuss von Pu mit Neonionen) Bildung eines Formisomeren HWZ 13 ms - Verzögerte Spontanspaltung nach Kernreaktion Elektroneneinfang entstehen angeregte Folgekerne, die spontan spalten Bi( Ne,3n) Np U (f)

77 Spontane Nukleonenemission - diese Kernumwandlungen meist nach vorherigen Kernreaktionen, Übergänge in stabile Zustände * Emission verzögerter Neutronen * Emission verzögerter Protonen * Protonenumwandlung - spontane Emission schwerer Teilchen ( Z > 6) Ra Pb C

78 Was sind Kernreaktionen?

79 Künstliche Kernumwandlungen ein ruhender Targetkern wird durch das Eindringen eines Geschosspartikels x in einen anderen Kern Y umgewandelt, wobei ein Teilchen y entsteht: X + x Y + y X (x,y) Y - Elastische Streuung - Unelastische Streuung - Austauschreaktion - Einfangreaktion - Kernphotoeffekt - Kernspaltung - Spallation

80 Energetik von Kernreaktionen

81 Künstliche Kernreaktionen Entdeckung Wie versuchten Physiker mehr über den Aufbau von Teilchen zu erfahren? Beschuss durch Teilchen Erster Versuch von E. Rutherford: Beschuss von Stickstoffkernen mit energiereichen α-teilchen (α-teilchen aus Umwandlung des Po, E α = 5,305 MeV) 14 7 N He 17 8 O H Synthese dann auch von künstlichen radioaktiven Nukliden gezeigt (1934: I. Curie, F. Joliot) 10 5 B (α,n) 13 7 N ( 13 6 C + β

82 Bildungs- und Umwandlungsmöglichkeiten des Zwischenkerns 18 9 F*

83 - Elastische Streuung, (x,x,)- Prozess Kernreaktionstypen 1 Nach der Wechselwirkung verlässt das Geschossteilchen selbst oder ein anderes Teilchen der gleichen Art den Targetkern. Im Schwerpunktsystem 1 haben beide Teilchen die gleiche kinetische Energie. 1 Bezugssystem, in dem der Schwerpunkt eines Systems von Teilchen ruht. - Unelastische Streuung, (x,x`)- Prozess - Bei der unelastischen Streuung wird der Targetkern angeregt. Geschossteilchen x und emittiertes Teilchen x` sind von der gleichen Art, jedoch hat x` im Schwerpunktsystem eine kleinere kinetische Energie als x.

84 - Austauschreaktion, (x,y)- Prozess Kernreaktionstypen 2 Das Geschossteilchen x dringt in den Targetkern ein, und ein anderes Teilchen y wird emittiert. Wenn sich die Kernladungszahlen beider Teilchen unterscheiden, tritt eine Elementumwandlung ein. Typische Austauschreaktionen sind die Prozesse (n,p), (n, α ), (p, α), (d,n), (d,p), (α,n), (α,p). Schwere Geschossteilchen können auch ganze Nukleonengruppen auf die Targetkerne (oder umgekehrt) übertragen. Solche Austauschprozesse werden Multinukleonen- Transferreaktionen genannt. 1. Kernreaktionen mit Neutronen als ungeladene Teilchen zu Kernreaktionen gut befähigt, Reaktionen hängen vom Targetkern und der Energie des Geschosses ab Klassifikation von Neutronen: 1. Langsame (thermische, epithermische) Neutronen; E n < 0,5 ev 2. Mittelschnelle (intermediäre) Neutronen; 0,5 ev < E n < 0,5 MeV 3. Schnelle Neutronen; 0,5 MeV < E n < 20 MeV 4. Sehr schnelle Neutronen; E n > 20 MeV

85 Zum Begriff des Wirkungsquerschnittes 1. - alle Geschossteilchen, die auf Zielscheibe treffen, lösen Kernreaktion aus 2. - mittels Wirkungsquerschnitt Anzahl der Kernreaktionen berechenbar 3. - σ = Barn 1b = m 2 = 100 fm SI-Einheit: 1 fm = m 2

86 Uran-235 Kernspaltungsreaktion

87 Schematische Darstellung der Spaltung eines Kernes nach dem Tröpfchenmodell

88 Aufteilung der Reaktionsenergie bei der Kernspaltung - Freigesetzte Reaktionsenergie von 200 MeV teilt sich wie folgt auf: kinetische Energie der Spaltprodukte kinetische Energie der Spaltneutronen Energie der prompten γ-strahlung Energie der β und γ-strahlung der Spaltprodukte Energie der Antineutrino-Strahlung der Spaltprodukte Summe 167 MeV 15 MeV 18 MeV 11 MeV 10 MeV 201 MeV

89 Änderung von Nukleonenzahl und Ordnungszahl bei den wichtigsten Kernreaktionen ( Reaktionsspinne )

90 Kernreaktionstypen V - Spallation, (x, s)-prozess sehr energiereiche Geschossteilchen können eine Zersplitterung des Targetkerns bewirken. Aus dem Kern wird eine größere Zahl von Nukleonen herausgeschlagen. Sehr energiereiche Protonen (Bereich: GeV E p > 100 MeV)

91 Beispiele für Kernreaktionen

92 Änderung von Nukleonenzahl (A) und Ordnungszahl (Z) bei den wichtigsten Kernreaktionen ( Reaktionsspinne )

93 Radioaktivität Natürliche Künstliche

94 Strahlungsquellen * Natürliche Strahlung - Strahlung aus dem Weltall kosmische Strahlung, Höhenstrahlung (überwiegend aus energiereichen Protonen, Heliumkernen, Kernreaktionen mit Atomen der äußeren Schicht unserer Atmosphäre) - Terrestrische Strahlung Strahlung resultierend aus Radionukliden der Umwandlungsreihen, primordiale Radionuklide * Künstliche (Zivilisationsbedingte) Strahlung Industrieprodukte, Röntgendiagnostik/Nuklearmedizin, Kernwaffentests, Kernenergiegewinnung

95 Kosmische Strahlung - Quellen der kosmischen Strahlung Sonne Supernovae Pulsare Doppelsternsysteme bis 10 9 ev bis ev bis ev bis ev Kosmische Strahlung ist Teilchenstrahlung 87 % Protonen 9 % Helium 1 % schwere Kerne 3 % Elektronen (bei 10 9 ev)

96 Kosmische Primärstrahlung

97 Kosmische Strahlung - Energie kosmischer Protonen kann bis 1014 MeV betragen - Wichtigste Radionuklide, die durch kosmische Strahlung erzeugt werden sind: Tritium, Beryllium-7, Kohlenstoff-14, Natrium C: 14 7 N n 14 6 C p Entstehung 14 6 C 14 7 N + 0-1e Zerfall, HWZ, 5730 a 3 H: 14 7 N n 3 1 H C Entstehung 16 7 N n 3 1 H N 3 1 H 3 2 He e Zerfall, HWZ 12, 323 a - Woher kommen Neutronen für diese Reaktionen?

98 Neutronen in Höhenstrahlung - Beim Eintreten kosmischer Strahlung in Erdatmosphäre (ca. 20 Km Höhe) kommt es zur Spallation von N- und O Atomen unter Freisetzung von Neutronen, Protonen und weiterer Elementarteilchen (Teilchenschauer) - Gebildete Neutronen können mit Atomen der Lufthülle reagieren - Kosmische Strahlung setzt Neutronen frei - Spallation Atomkern wechselwirkt mit Projektil (n, p, anderen Kernen, Elementarteilchen) hoher kinetischer Energie (100 MeV) Atomkern wird zerschmettert -> u.a. Neutronen, Protonen verlassen Targetkern, auf Erde gelangen nur Reaktionsprodukte -auch (α, n) Reaktionen möglich durch kosmische Teilchen (N, C, O, F, Na, Mg, Al, Si)

99 Terrestrische Strahlung * Radionukliden der Zerfallsreihen * primordiale Radionuklide

100 Zerfallsreihen

101 Die Uran / Radium-Zerfallsreihe

102 Entstehung des Rn-222 und Folgeprodukte in bodennaher Luft

103 Primordiale Radionuklide

104 Radioaktivität im Menschen

105 Strahlenexposition durch unterschiedliche Bodenarten - Terrestrische Strahlung Zerfallsreihen, primordiale Radionuklide Beispiele: über alle Bodenarten gemittelte Strahlungsexposition durch Gammastrahlung im freien etwa 400 µgy/jahr Summe terrestrischer Strahlung (Mittelwerte) - Deutschland 550 µgy/jahr - Polen 330 µgy/jahr - Indien (Kerala) 10 mgy/jahr ( Menschen, Gebiet reich an Monazitsand Cerphosphat, bis 10 % Thorium)

106 Beiträge ausgewählter Strahlenexpositionen Vergleich: 3,2 msv/jahr Summe natürlicher und künstlicher Strahlung 3200 µsv/jahr - Flug in den Urlaub 20 µsv/jahr - tritiumhaltige Leuchtziffern einer Uhr 0,3 µsv/jahr - Daueraufenthalt am Kernkraftwerkszaun 10 µsv/jahr - Röntgen der Lunge 1000 µsv/jahr - Eigenstrahlung des Menschen auf den anderen Menschen, 75 kg Mensch hat ca. 150 g Kalium, dies entspricht 4500 Bq (50 cm Abstand, 3000 Std./Jahr, K-40) 0,1 µsv/jahr

107 Künstliche (zivilisationsbedingte) Strahlung - Industrieprodukte Düngemittel (Uran, Thorium, K-40) Rauchmelder (Am-241, Ra-226) Leuchtfarben (Pm-147, H-3) - Nuklearwaffentests - Röntgendiagnostik / nuklearmedizinische Untersuchungen - Umgang mit Radionukliden in Forschung - Betrieb von Kernanlagen (Kernbrennstoffzyklus)

108 Kernbrennstoffzyklus Quelle künstlicher Radioaktivität Uranium mine Raffination Ore concentrate Processing Ore Waste depleted uranium Conversion U Enrichment uranium U Fabrication fuel elements Pu Minor actinides Fuel element Intermediate storage fuel elements Nuclear power plant U Reprocessing plant Conditioning fuel elements Conditioning waste Waste Intermediate storage waste Final nuclear waste disposal Waste

109 Atommüll - abgebrannte Brennelemente der Reaktoren - radioaktive Prozessabfälle (Glaskokillen), die bei der Wiederaufbereitung von Brennelementen entstehen - aktivierte, bzw. kontaminierte Bauteile von Reaktoren, Kernanlagen und Produktionsanlagen für radioaktive Isotope - anfallende radioaktive Abfälle aus nuklearmedizinischer, industrieller und forschungsseitiger Anwendung - Prozessabfälle bei der Urangewinnung und Aufarbeitung = Radioaktiver Abfall: jegliche radioaktiv kontaminierte, bei Betrieb und Abbau von Kernanlagen und den Umgang mit radioaktiven Stoffen anfallenden Reststoffe, die nicht dekontaminierbar und nicht wiederverwendbar sind. Vielfalt der Abfälle (kontaminierte Kleidung und Geräte, Bauschutt, Reinigungsmittel, Filter, Austauscherharze, Stahl- und Betonstrukturen)

110 Cs-137-Aktivität im Menschlichen Körper

111 Künstliche (zivilisationsbedingte) Strahlung Medizinische Anwendung: - Röntgenuntersuchung: Wirbelsäule 35 msv auf Hautoberfläche Lunge 1 msv auf Hautoberfläche Magen/Darm 160 msv auf Hautoberfläche Herzkatheter 410 msv auf Hautoberfläche - Szintigraphie: Schilddrüse Nieren 0,2 mgy auf Knochenmark 0,5 mgy auf Knochenmark Kernwaffentests: C-14 (HWZ 5730 Jahre) Folgedosis 2,6 msv, im Menschenleben 180 µsv (sonst natürlich 12 µsv pro Jahr) Berufliche Strahlenexposition: Mittelwert der überwachten Personen ( in BRD) betrug 0,75 msv, zugelassene Ganzkörperdosis 50 msv pro Jahr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Allgemeine Chemie. Der Atombau

Allgemeine Chemie. Der Atombau Allgemeine Chemie Der Atombau Dirk Broßke Berlin, Dezember 2005 1 1. Atombau 1.1. Der Atomare Aufbau der Materie 1.1.1. Der Elementbegriff Materie besteht aus... # 6.Jh.v.Chr. Empedokles: Erde, Wasser,

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

Begriffe zum Atombau

Begriffe zum Atombau Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zum Atombau Alphastrahlung Atom Atomhülle Atomkern Betastrahlung biologische Strahlenwirkung Elektronen Element Hierbei wird von einem Atomkern

Mehr

8.1 Einleitung... 2. 8.2 Aufbau der Atome... 3. 8.3 Radioaktive Elemente und ihre Eigenschaften... 5. 8.4 Radioaktiver Zerfall...

8.1 Einleitung... 2. 8.2 Aufbau der Atome... 3. 8.3 Radioaktive Elemente und ihre Eigenschaften... 5. 8.4 Radioaktiver Zerfall... Grundwissen Physik Lernheft 8 Atom- und Kernphysik Inhaltsverzeichnis: 8.1 Einleitung... 2 8.2 Aufbau der Atome... 3 8.3 Radioaktive Elemente und ihre Eigenschaften... 5 8.4 Radioaktiver Zerfall... 7 8.5

Mehr

Reichweite von ß-Strahlen

Reichweite von ß-Strahlen Reichweite von ßStrahlen Atommodell: Nach dem Bohrschen Atommodell besteht ein Atom aus dem positiven Atomkern und der negativen Elektronenhülle. Der Durchmesser eines Atoms beträgt etwa 1 1 m, der Durchmesser

Mehr

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar

Die Idee des Atoms geht auf Demokrit von Abdera und Leukipp von Milet zurück. (5. Jhdt. v. Chr.) atomos (griech.) = unteilbar 2Aufbau der Materie Hofer 1 2 Aufbau der Materie 2.1 Die Bestandteile der Materie Chemische Versuche und hoch auflösende Spezialmikroskope zeigen, dass alle Stoffe aus den chemischen Grundstoffen oder

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu ANALYSEN GUTACHTEN BERATUNGEN aktuelle Kurzinformationen zu Radioaktivität Stand Mai 2011 Institut Kirchhoff Berlin GmbH Radioaktivität Radioaktivität (von lat. radius, Strahl ; Strahlungsaktivität), radioaktiver

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung

37. Lektion Strahlenschutz und Dosimetrie. Reichweite und Abschirmung von radioaktiver Strahlung 37. Lektion Strahlenschutz und Dosimetrie Reichweite und Abschirmung von radioaktiver Strahlung Lernziel: Der beste Schutz vor radioaktiver Strahlung ist Abstand und keine Aufnahme von radioaktiven Stoffen

Mehr

Messung radioaktiver Strahlung

Messung radioaktiver Strahlung α β γ Messung radioaktiver Strahlung Radioaktive Strahlung misst man mit dem Geiger-Müller- Zählrohr, kurz: Geigerzähler. Nulleffekt: Schwache radioaktive Strahlung, der wir ständig ausgesetzt sind. Nulleffekt

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Radioaktivität und Radiochemie. Dr. Udo Gerstmann

Radioaktivität und Radiochemie. Dr. Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie 20.10.2011 Dr. Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Vorlesungsinhalte 1. Radioaktivität

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie

Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum. Strahlenart Versuch Energie Strahlenschutzbelehrung zum Umgang mit radioaktiven Quellen im Physikalischen Fortgeschrittenen-Praktikum Strahlenarten im F.-Praktkum Strahlenart Versuch Energie α-teilchen (Energieverlust) E α < 6 MeV

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Erzeugung von Molybdän-99 (I)

Erzeugung von Molybdän-99 (I) Erzeugung von Molybdän-99 (I) Tc-99-Chemie Technetium-99m Working Horse der Nuklearmedizin - Kurze, aber für nuklearmedizinische Untersuchungen ausreichende Halbwertzeit von 6,04 h - Die Emission niederenergetischer

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und 3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und Reinelemente 3.5. Häufigkeit der Elemente 3.6. Atomare Masseneinheit

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

H Wasserstoff. O Sauerstoff

H Wasserstoff. O Sauerstoff He Helium Ordnungszahl 2 Atommasse 31,8 268,9 269,7 0,126 1,25 H Wasserstoff Ordnungszahl 1 Atommasse 14,1 252,7 259,2 2,1 7,14 1 3,45 1,38 Li Lithium Ordnungszahl 3 Atommasse 13,1 1330 180,5 1,0 0,53

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen

Mehr

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung.

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung. Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch und benötigten sieben Jahre um das Geheimnis des Aufbaus

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Radiochemie - Radiochemische Methoden -

Radiochemie - Radiochemische Methoden - Professur Radiochemie Sommersemester 2008 Vorlesung: Radiochemie - Radiochemische Methoden - Vorlesung 2008/01 Gliederung: 0 Einleitung 0.1 Literatur 0.2 Definitionen 1 Radioaktivität in der Natur 1.1

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+)

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+) Radioaktivität erfallsarten Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β) Elektroneneinfang (EC) Gammaemission (γ) Henri Becquerel 1852-1908 Innere Konversion (IC) Protonenzerfall

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie

Allgemeine Chemie 1. Skript Allgemeine und Anorganische Chemie Allgemeine Chemie 1 Skript Allgemeine und Anorganische Chemie Inhaltsverzeichnis: 1. Atome...3 A Elektronen...3 B Protonen...4 C Neutronen...5 D Aufbau von Atomen...5 E Isotope...6 F Radioaktivität...6

Mehr

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität LaCh Seite 1 von 7 1. Grundlagen der Atomtheorie... 3 Aufbau eines Atoms... 3 2. Eigenschaften der radioaktiven

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Röntgenvorlesung. Sommersemester 2006 21.4.2006

Röntgenvorlesung. Sommersemester 2006 21.4.2006 Röntgenvorlesung Sommersemester 2006 21.4.2006 I. Röntgenvorlesung SS 2006 1.1 Röntgenvorlesung SS 2006 1.2 Röntgenvorlesung SS 2006 1.3 Röntgenvorlesung SS 2006 1.4 Röntgenvorlesung SS 2006 1.5 Röntgenvorlesung

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 01. Grundlagen der Radiochemie und des Strahlenschutzes. 1. Radioaktivität 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 01. Grundlagen der Radiochemie und des Strahlenschutzes. 1. Radioaktivität 2 ETH Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 01 Grundlagen der Radiochemie und des Strahlenschutzes INHALTSVERZEICHNIS Seite 1. Radioaktivität 2 2. Der Zusammenhang von Kernstabilität und

Mehr

er atomare Aufbau der Materie

er atomare Aufbau der Materie er atomare Aufbau der Materie 6. Jhd. v. Chr.: Thales von Milet Wasser = Urgrund aller Dinge 5. Jhd. v. Chr.: Demokrit Atombegriff 5. Jhd. v. Chr.: Empedokles vier Elemente: Erde, Wasser, Feuer, Luft (unterstützt

Mehr

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall

Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall Praktikum Radioaktivität und Dosimetrie Radioaktiver Zerfall 1. ufgabenstellung Bestimmen Sie die Halbwertszeit und die Zerfallskonstante von Radon 220. 2. Theoretische Grundlagen Stichworte zur Vorbereitung:

Mehr

Strahlenphysik Grundlagen

Strahlenphysik Grundlagen Dr. Martin Werner, 17.02.2010 Strahlentherapie und spezielle Onkologie Elektromagnetisches Spektrum aus Strahlentherapie und Radioonkologie aus interdisziplinärer Sicht, 5. Auflage, Lehmanns Media Ionisierende

Mehr

Die chemische Reaktion

Die chemische Reaktion Die chemische Reaktion Die Chemie beschäftigt sich mit Stoffen und ihren Eigenschaften. Die Dinge in unserer Umwelt bestehen aus vielen verschiedenen Stoffen, die häufig miteinander vermischt sind. Mit

Mehr

Struktur des Atomkerns

Struktur des Atomkerns Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische

Mehr

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle?

Bauchemie 1. 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? Bauchemie 1 1. Welche elementaren Teilchen enthält a) der Atomkern und b) die Atomhülle? a) Der Atomkern besteht aus Neutronen und Protonen, die zusammen auch Nukleonen genannt werden. Er befindet sich

Mehr

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I

Prof. Dr.-Ing. Wolfgang Schubert. Fachkunde im Strahlenschutz Kurs September Naturwissenschaftliche Grundlagen I Fachkunde im Strahlenschutz Kurs September 01 Naturwissenschaftliche Grundlagen I 1 Themen - Aufbau der Materie - Elemente, Nuklide - Radioaktiver Zerfall - Aktivität - Zerfallsarten - Strahlung, Strahlungsarten

Mehr

Neutronen aus Kernreaktionen, welche in Teilchenbeschleunigern ausgelöst wurden Beispiel: < 0,5 ev 0,5 ev bis 10 kev 10 kev bis 20 MeV > 20 MeV

Neutronen aus Kernreaktionen, welche in Teilchenbeschleunigern ausgelöst wurden Beispiel: < 0,5 ev 0,5 ev bis 10 kev 10 kev bis 20 MeV > 20 MeV KERN-/TEILCHENPHYSIK Neutronen Neutronenquellen Freie Neutronen werden durch Kernreaktionen erzeugt. Dabei gibt es eine Vielzahl von Möglichkeiten, die sich nach der Neutronenausbeute, der Neutronenenergie

Mehr

Institut für Physikalische Chemie und Radiochemie Strahlenphysikalische Grundlagen

Institut für Physikalische Chemie und Radiochemie Strahlenphysikalische Grundlagen Institut für Physikalische Chemie und Radiochemie Strahlenphysikalische Grundlagen Fachkundekurs Strahlenschutz S2.2 und S4. Prof. Dr.-Ing. Wolfgang Schubert Mannheim 9. September 206 Hochschule Mannheim

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter

Aufbau und Struktur der Materie. Wellen- und Teilchencharakter Aufbau und Struktur der Materie Atommodelle Energie Wellen- und Teilchencharakter Periodensystem der Elemente Radioaktivität Modell des Atomkerns Nukleonen: Teilchen des Atomkerns = Protonen+Neutronen

Mehr

1 Radioaktivität in der Natur

1 Radioaktivität in der Natur 1 Radioaktivität in der Natur Entdeckung der Radioaktivität des Uran 1896 Henri Becquerel Untersuchungen zum Zusammenhang von X-Strahlung und Phosphoreszenz Schwärzung von Fotoplatten durch in schwarzem

Mehr

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung.

Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. Als Radioaktivität bezeichnet den spontanen Zerfall von Radionukliden unter Emission ionisierender Strahlung. 1803 John Dalton, Atomtheorie 1869 D.I. Mendelejev, Periodensystem 1888 H. Hertz, experimenteller

Mehr

11. Kernphysik. [55] Ianus Münze

11. Kernphysik. [55] Ianus Münze 11. Kernphysik Der griechische Gott Ianus ist einer der ältesten römischen Gottheiten. Er gehört zur rein römischen Mythologie, das heißt es gibt in der griechischen Götterwelt keine vergleichbare Gestalt.

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

β + -Strahlung besteht aus positiven Elektronen (M, Z) (M, Z 1)

β + -Strahlung besteht aus positiven Elektronen (M, Z) (M, Z 1) Kernphysikalische Grundlagen und Stabilität der Atomkerne, Radioaktivität 9 eines negativen Elektrons, welches einen Teil der Energieabgabe übernimmt. Der restliche Teil wird von einem so genannten Antineutrino

Mehr

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Dozent: Prof. Dr. P. Reiter Ort: Seminarraum Institut für Kernphysik Zeit: Montag 14:00 14:45 Mittwoch 16:00 17:30 Kernphysik II

Mehr

Kapitel 08: Radioaktivität

Kapitel 08: Radioaktivität Kapitel 08: Radioaktivität 1 Kapitel 08: Radioaktivität Quelle Bild: public domain by United States Department of Energy, thank you; https://de.wikipedia.org/wiki/datei:castle_romeo.jpg Kapitel 08: Radioaktivität

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Grundwissen Atome und radioaktiver Zerfall

Grundwissen Atome und radioaktiver Zerfall Atome, Radioaktivität und radioaktive Abfälle Arbeitsblatt 6 1 Grundwissen Atome und radioaktiver Zerfall Repetition zum Atombau Die Anzahl der... geladenen Protonen bestimmt die chemischen Eigenschaften

Mehr

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Gammastrahlung Gammastrahlung ist die durchdringendste radioaktive

Mehr

Globale Eigenschaften der Kerne

Globale Eigenschaften der Kerne Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Physik. Semester III Teil 2. Abiturwiederholung

Physik. Semester III Teil 2. Abiturwiederholung Semester III Teil 2 Selbstständige Auswertung von Experimenten zu Emissions- und Absorptionsspektren Grundlagen einer Atomvorstellung (Größe, Struktur, einfache Termschemata) und qualitative Deutungen

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie 03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 08.Juni 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - γ-szintillationsspektroskopie - 1 Vorbetrachtung jedes radioaktive Präparat weist ein charakteristisches

Mehr

Kapitel 10. Radioaktivität. Radioaktivität

Kapitel 10. Radioaktivität. Radioaktivität Atommodell Atommodell - Ein Atom hat Z Elektronen, Z Protonen, N-Neutronen - Anzahl Protonen nennt man Ordnungszahl oder Kernladungszahl Beispiel: Helium: Z= 2 Masse des Atoms ist in seinem Kern konzentriert

Mehr