Data Warehouse Version: June 26, Andreas Geyer-Schulz und Anke Thede

Größe: px
Ab Seite anzeigen:

Download "Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede"

Transkript

1 Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude Rechenzentrum, 1. Stock, Zi. 169 Universität Karlsruhe (TH) D Karlsruhe Tel: Fax: Sprechstunde nach Vereinbarung ( )

2 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 1

3 Contents Contents 1 Data Warehousing Herkunft der Information über Kunden Datenquellen - operationale Systeme Notwendigkeit eines Data Warehouses Integrierte Kundendaten im Data Warehouse Was machen entscheidungsunterstützende Systeme Data Warehouse für analytisches CRM Unterschiede operational Data Warehouse Data Warehouse Eigenschaften eines Data Warehouse Data Marts Komponenten eines Data Warehouses 16 Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 2

4 Data Warehousing 1 Data Warehousing Kundenkontakt Firmenkontakt Produktlisten Umsätze Zahlungen Umsätze/Erträge Kundensegmente Promotionhistory Campaign Response Customer Value Score Kundenkontakte Trouble Tickets Fragebögen Umfragen Zahlungen SFA-DB Marketing-DB Call Center-DB Ein Unternehmen mehrere Datenbanken evtl. Inkonsistenz, Kunde erwartet aber konsistentes Verhalten! Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 3

5 Herkunft der Information über Kunden 1.1 Herkunft der Information über Kunden von - Direktverkaufsinteraktionen 60% - 50% - Call-Center Interaktionen 43% - Website Besuche 40% - Umfragen 28% - Fokusgruppen 28% - Messen 27% (Yankee Groups 2000) Fokusgruppen: speziell ausgewählte Gruppen, die repräsentativ für bestimmte Kundensegmente sind. Z.B. vor Erstellung eines Fragebogens zum Ausloten wichtiger Fragen. Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 4

6 Datenquellen - operationale Systeme 1.2 Datenquellen - operationale Systeme Rechnungssysteme Bestell- und Versorgungssysteme Provisionssysteme Enterprise Resource Planning Systeme Human Resource Systeme Point-of-sale Daten Web Server Marketing Datenbanken Call-Center Systeme Corporate Financial Packages interne, operative Systeme, meist beschränkt integriert, ursprünglich zur Unterstützung bestehender Geschäftsprozesse konzipiert. Externe Datenprovider Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 5

7 Notwendigkeit eines Data Warehouses 1.3 Notwendigkeit eines Data Warehouses Damit das Management strategische Entscheidungen treffen kann, braucht es die richtigen Informationen Operationale Systeme sind nicht in der Lage diese strategischen Informationen zu liefern Data Warehouse Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 6

8 Integrierte Kundendaten im Data Warehouse 1.4 Integrierte Kundendaten im Data Warehouse Umfrage Daten Demografische Daten Kauf geschichten Call Center Kontakte Data Warehouse Campaign Response Retouren Web Aktivität Verrechnung und Zahlung Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 7

9 Was machen entscheidungsunterstützende Systeme 1.5 Was machen entscheidungsunterstützende Systeme Werden eingesetzt zum Beobachten dess Geschäftsprozesses Zeig mir die meistverkauften Produkte an Zeig mir dir Problemregionen an Sag mir warum Zeig mir andere Daten Alarmiere mich, wenn in einem Bereich weniger verkauft wird als erwartet Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 8

10 Data Warehouse für analytisches CRM 1.6 Data Warehouse für analytisches CRM Customer Profiling Partner Contribution Measurement Revenue Analysis Customer Segmentation ERP SCM Workforce Optimization Analytical CRM Enterprise Data (Nicht aus CRM) Operational CRM Activity Management SRM Contact Management Customer Support PRM Campaign Management Pricing and Configuration e-commerce Customer Value Measurement Financial Supplier Evaluation Billing Product Channel Next-Sequential Analysis Propensity-to-Buy Purchase Analysis Modelling Churn Analysis and Prediction Risk Scoring Customer Satisfaction Analysis Campaign Measurement Prospect Qualification Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 9

11 Unterschiede operational Data Warehouse 1.7 Unterschiede operational Data Warehouse operational Data Warehouse Dateninhalt aktuelle Daten archivierte, abgeleitete, zusammengefasste Daten Datenstruktur optimiert für Transaktionen optimiert für komplexe Abfragen Zugriffshäufigkeit hoch mittel bis niedrig Zugriffsart lesen, updaten, löschen lesen Benutzung vorhersagbar, wiederholentisch Ad hoc, zufällig, heuris- Antwortzeit <1 sek. mehrere Sek. bis Min. Nutzer große Anzahl relativ kleine Anzahl Normalisierung ja meist denormalisiert Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 10

12 Data Warehouse 1.8 Data Warehouse Data Warehouse ist ein entscheidungsunterstützendes System Data Warehouse bezieht Daten von mehreren (verschiedenen) operationalen Systemen dazwischen werden die Daten bereinigt, aggregiert und transformiert, so dass sie das geeignete Format für das Data Warehouse haben das Data Warehouse bietet somit eine integrierte und komplette Übersicht über das Unternehmen das Data Warehouse ist eine benutzerfokussierte Umgebung Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 11

13 Eigenschaften eines Data Warehouse 1.9 Eigenschaften eines Data Warehouse " A Data Warehouse is a subject oriented, integrated, nonvolatile, and time variant collection of data in support of management s decicsions." (Bill Inmon) themenbezogene Daten / Subject-Oriented Data integrierte Daten / Integrated Data Data Warehouse bezieht Daten von mehreren (verschiedenen) operationalen Systemen Inkonsistenzen eliminieren Standardisierung(Namen,etc.) zeitlich variable Daten / Time-Variant Data operationales System: aktuelle Werte Data Warehouse: enthält historische Daten unvergängliche Daten / Nonvolatile Data Daten im Data Warehouse werden normalerweise nicht gelöscht oder geändert Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 12

14 Eigenschaften eines Data Warehouse Detailstufen der Daten / Data Granularity operationales System: höchste Detailstufe, keine zusammengefassten Daten Data Warehouse: mehrere Detailstufen möglich, da oft zusammengefasste Daten gewünscht Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 13

15 Data Marts 1.10 Data Marts Data Mart: ist ein Teilbereich eines Data Warehouses, der für einen bestimmten Organisationsbereich oder Anwendung geschaffen wird Verschiedene Architekturansätze: Top-down approach / " von oben nach unten" -Ansatz riesiges Data Warehouse füttert lokale, abteilungsspezifische Data Marts Vorteile: unternehmensweite Sicht, Konsistenz Nachteile: höheres Fehlerrisko Data Marts Data Staging Area globales Data Warehouse Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 14

16 Data Marts Bottom-up approach / " von unten nach oben" -Ansatz individuelle, lokale Data Marts verbinden zu Data Warehouse Vorteile: schnellere und einfachere Implementierung, geringeres Risiko Nachteile: jeder Data Mart hat nur eine auf seine eigenen Daten begrenzte Sicht blind für unternehmensweite Fragestellungen, redundante Daten in unterschiedlichen Data Marts Data Staging Area Data Staging Area Data Staging Area Data Mart Data Mart Data Mart globales Data Warehouse Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 15

17 Komponenten eines Data Warehouses 2 Komponenten eines Data Warehouses Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 16

18 Komponenten eines Data Warehouses Quelldaten Produktionsdaten: Daten von den verschiedenen operationalen Systemen (verschiedene Datenformate, verschiedene Plattformen, Inkonsistenzen in den Daten) interne Daten (z.b. aus Verkäufernotizen) archivierte Daten: historische Daten aus alten archivierten Daten gewinnen externe Daten: Daten von externen Quellen, Daten von/über Konkurrenten, Kennzahlen zur Überprüfung der Performance Industrietrends ausfindig machen, eigene Performance mit anderen vergleichen Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 17

19 Komponenten eines Data Warehouses Data Staging Extraktion, Transformation und Laden (ETL-Prozess) finden hier statt Extraktion Extraktion der Daten von den verschiedenen Quellen, angepasste Extraktionsprozesse Transformation Daten bereinigen: Schreibfehler und Duplikate entfernen, Standardwerte für fehlende Datenelemente einführen Standardisierung: Datentypen, Feldlängen für gleiche Datenelemente, Synonyme(>=2 Ausdrücke meinen das gleiche) und Homonyme(ein Ausdruck hat mehrere verschiedene Bedeutungen) auflösen unnütze Quelldaten werden gelöscht Zusammenfassung bestimmter Daten, wenn Details nicht wichtig sind Transformieren des Datenmodells Laden Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 18

20 Komponenten eines Data Warehouses erstes sehr großes Laden bei Inbetriebnahme Aktualisierung in gewissen Zeitabständen Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 19

21 Komponenten eines Data Warehouses Metadaten Data Warehouse Datenstrukturen Management und Kontrolle koordiniert die Dienste und Aktivitäten innerhalb eines Data Warehouses Administration des Data Warehouses erhält Informationen aus den Metadaten Information Delivery User mit unterschiedliche Data Warehouse-Kenntnissen brauchen unterschiedliche " information delivery" -Mechanismen Online, Intranet, Internet, , etc. [Pon01] Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 20

22 References References [Pon01] Paulraj Ponniah. Data Warehousing Fundamentals. John Wiley & Sons, Universität Karlsruhe (TH), Prof. Dr. Andreas Geyer-Schulz Seite 21

Inhaltsverzeichnis. Motivation. Analytisches CRM: Einführung. Version: 31. Juli 2009. 1 Motivation. Andreas Geyer-Schulz und Andreas Neumann

Inhaltsverzeichnis. Motivation. Analytisches CRM: Einführung. Version: 31. Juli 2009. 1 Motivation. Andreas Geyer-Schulz und Andreas Neumann Analytisches CRM: Einführung. Version: 31. Juli 2009 Andreas Geyer-Schulz und Andreas Neumann Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Contents. Data Warehouse Entwicklungsphasen. Data Warehouse - Entwicklung Version: June 28, 2007. 1 Data Warehouse Entwicklungsphasen

Contents. Data Warehouse Entwicklungsphasen. Data Warehouse - Entwicklung Version: June 28, 2007. 1 Data Warehouse Entwicklungsphasen Contents Data Warehouse - Entwicklung Version: June 28, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Neue Strategien und Innovationen im Umfeld von Kundenprozessen

Neue Strategien und Innovationen im Umfeld von Kundenprozessen Neue Strategien und Innovationen im Umfeld von Kundenprozessen BPM Forum 2011 Daniel Liebhart, Dozent für Informatik an der Hochschule für Technik Zürich, Solution Manager, Trivadis AG Agenda Einleitung:

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Welche Daten gehören ins Data Warehouse?

Welche Daten gehören ins Data Warehouse? Welche Daten gehören ins Warehouse? Dani Schnider Principal Consultant 9. Januar 2012 In vielen DWH-Projekten stellt sich die Frage, welche Daten im Warehouse gespeichert werden sollen und wie dieser Datenumfang

Mehr

Das Risikomanagement gewinnt verstärkt an Bedeutung

Das Risikomanagement gewinnt verstärkt an Bedeutung Das Risikomanagement gewinnt verstärkt an Bedeutung 3/9/2009 Durch die internationale, wirtschaftliche Verpflechtung gewinnt das Risikomanagement verstärkt an Bedeutung 2 3/9/2009 Das IBM-Cognos RiskCockpit:

Mehr

Der Mar a k r e k t e i t ng Bo B ost s e t r

Der Mar a k r e k t e i t ng Bo B ost s e t r Der Marketing Booster Inhaltsverzeichnis Seite Performancesteigerung durch den Marketing Booster 3 Die Entwicklung des Marketing Boosters 7 Planen und Steuern durch den Marketing Booster 12 Beispiele für

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

2.8. Business Intelligence

2.8. Business Intelligence 2.8. Zulieferer BeschaffungProduktion Kunde E-Procurement Customer Relationship (CRM) Supply Chain (SCM) Enterprise Resource Planning (ERP) Executive Information (EIS) Executive Support (ESS) Chef-Informations-

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse.

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse. 1 Einführung mysap Business Intelligence stellt mit Hilfe von Knowledge Management die Verbindung zwischen denen, die etwas wissen und denen, die etwas wissen müssen her. mysap Business Intelligence integriert

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Andrei Buhrymenka Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Für Unternehmen mit Business Intelligence Diplomica Verlag Andrei Buhrymenka Erfolgreiche Unternehmensführung

Mehr

SAP BI Business Information

SAP BI Business Information Aus der Praxis für die Praxis. SAP BI Business Information Thomas Wieland Berlin, 24. November 2006 SAP BW Architektur Seite 2 Business Intelligence Aufgaben Bereitstellung harmonisierter Daten, Informationen

Mehr

SAP CRM und ITML > CRM als Lösungen für professionelles Kundenmanagement. CRM Stammtisch der ITML GmbH 15.07.2008 /// Stefan Eller

SAP CRM und ITML > CRM als Lösungen für professionelles Kundenmanagement. CRM Stammtisch der ITML GmbH 15.07.2008 /// Stefan Eller SAP CRM und ITML > CRM als Lösungen für professionelles Kundenmanagement CRM Stammtisch der ITML GmbH 15.07.2008 /// Stefan Eller SAP CRM und ITML > CRM Neue Oberflächen für eine verbesserte Usability

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

NICE Performance Management. Albert Bossart, Sales Manager DACH, NICE Switzerland AG

NICE Performance Management. Albert Bossart, Sales Manager DACH, NICE Switzerland AG NICE Performance Management Albert Bossart, Sales Manager DACH, NICE Switzerland AG Performance Verbesserung für Mitarbeiter mit Kundenbeziehungen Aussendienst Tele- Sales Interner Verkauf Neuakuisition

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

HLUSS MIT BIG DATA! BASICS FÜR ONLINESHOPS. Februar

HLUSS MIT BIG DATA! BASICS FÜR ONLINESHOPS. Februar HLUSS MIT BIG DATA! BASICS FÜR ONLINESHOPS. Februar 2014 1. Schluss mit BIG DATA 2. BI-Basics: Best Practice ecommerce Reporting 3. Was muss ich mir anschauen? 4. Wie muss ich es mir anschauen? 5. Was

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Data Warehouse. dem Kunden auf der Spur. 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001. Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE

Data Warehouse. dem Kunden auf der Spur. 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001. Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE Data Warehouse dem Kunden auf der Spur 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001 Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE Copyright CSC PLOENZKE AG 1 Inhalt Agenda Data Warehouse

Mehr

Stand 2008.08. Vorstellung der EXXETA

Stand 2008.08. Vorstellung der EXXETA Stand 2008.08 Vorstellung der EXXETA Unternehmensprofil EXXETA optimiert ausgewählte Geschäftsprozesse ihrer Kunden auf Fach- und IT-Ebene. EXXETA bietet Fach- und Technologie-Beratung mit Branchen-, Prozessund

Mehr

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Sven Bosinger solution architect BI Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Agenda Kurze Vorstellung its-people Architektur als Erfolgsfaktor Verschiedene Architekturansätze

Mehr

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6

Summary... 4. Keywords... 4. Granularität der Daten... 5. Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Inhaltsverzeichnis Summary... 4 Keywords... 4 Granularität der Daten... 5 Mit Vorverdichtung hochaggregierte Daten bereithalten... 6 Partitionierung der Datenbestände... 7 Vergrößerter Aktionsradius von

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center Ing. Polzer Markus öffentlich Inhaltsverzeichnis 1 2 3 4 5 6 7 Kurzvorstellung Raiffeisen Solution Business Intelligence Strategie

Mehr

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Anforderungen von BI an Software- Entwicklungsprozesse

Mehr

Managed Infrastructure Service (MIS) Schweiz

Managed Infrastructure Service (MIS) Schweiz Pascal Wolf Manager of MIS & BCRS Managed Infrastructure Service (MIS) Schweiz 2011 Corporation Ein lokaler Partner in einem global integrierten Netzwerk Gründung im Jahr 2002 mit dem ersten full-outtasking

Mehr

Business Intelligence Center of Excellence

Business Intelligence Center of Excellence Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Corporate Performance Management als Weiterentwicklung von Business Intelligence

Corporate Performance Management als Weiterentwicklung von Business Intelligence Martin Kobrin Corporate Performance Management als Weiterentwicklung von Business Intelligence Grundlagen, Implementierungskonzept und Einsatzbeispiele Diplomica Verlag Martin Kobrin Corporate Performance

Mehr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr

Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Cockpits und Standardreporting mit Infor PM 10 09.30 10.15 Uhr Bernhard Rummich Presales Manager PM Schalten Sie bitte während der Präsentation die Mikrofone Ihrer Telefone aus, um störende Nebengeräusche

Mehr

OLAP im IT-Management. Dr. Markus Eberspächer, yourdata GmbH, 05. November 2008

OLAP im IT-Management. Dr. Markus Eberspächer, yourdata GmbH, 05. November 2008 OLAP im IT-Management Dr. Markus Eberspächer, yourdata GmbH, 05. November 2008 Inhalt 1. OLAP 2. Einsatz im CRM 3. Einsatz im IT-Management 4. Produkt 2 In eigener Sache? Gegründet 01. Januar 2008 als

Mehr

SPSS Cognos Positionierung. April 2010. Friedel Jonker Manager Business Development Analytics & PM SPSS Predictive Analytics Präsentation

SPSS Cognos Positionierung. April 2010. Friedel Jonker Manager Business Development Analytics & PM SPSS Predictive Analytics Präsentation SPSS Cognos Positionierung April 2010 Friedel Jonker Manager Business Development Analytics & PM SPSS Predictive Analytics Präsentation 2010 IBM Corporation Agenda 1. SPSS Positionierung 2. SPSS & Cognos

Mehr

WISSEN SAMMELN HEADLINE. WISSEN NUTZEN.

WISSEN SAMMELN HEADLINE. WISSEN NUTZEN. Quelle: T-Systems WISSEN SAMMELN HEADLINE. WISSEN NUTZEN. AUF DIESEM CHART BILD FÜR DEN TITELHINTERGRUND EINFÜGEN WOB B2B VERTRIEBSUNTERSTÜTZUNG PRÄSENTIERT DEN AUFTRITT DURCH VERNETZTE FÜR DIE MESSE DATENANALYSEN.

Mehr

Titel1. Titel2. Business Analytics als Werkzeug zur. Unternehmenssteuerung. Business Excellence Day 2015. Michael Shabanzadeh, 10.

Titel1. Titel2. Business Analytics als Werkzeug zur. Unternehmenssteuerung. Business Excellence Day 2015. Michael Shabanzadeh, 10. Titel1 Business Analytics als Werkzeug zur Titel2 Unternehmenssteuerung Business Excellence Day 2015 Michael Shabanzadeh, 10. Juni 2015 World Communication GmbH 2015 Seite 1 Definition Business Analytics

Mehr

Human Capital Management

Human Capital Management Human Capital Management Peter Simeonoff Nikolaus Schmidt Markt- und Technologiefaktoren, die Qualifikation der Mitarbeiter sowie regulatorische Auflagen erfordern die Veränderung von Unternehmen. Herausforderungen

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Mehrwerte schaffen durch den Einsatz von Business Intelligence

Mehrwerte schaffen durch den Einsatz von Business Intelligence Mehrwerte schaffen durch den Einsatz von Business Intelligence 1 Menschen beraten Menschen beraten BTC zeigt Wege auf - Sie entscheiden BTC zeigt Wege auf - Sie entscheiden Martin Donauer BTC Business

Mehr

Technische Integration des Informationssystems über SAP (1/6)

Technische Integration des Informationssystems über SAP (1/6) Technische Integration des Informationssystems über SAP (1/6) Software Systemsoftware Anwendungssoftware Betriebssysteme Standardsoftware Individualsoftware Übersetzungsprogramme Dienstprogramme andere

Mehr

Euroforum CRM, 07.06.2000 Jan Nikus Consultant Customer Management Mummert + Partner AG Mobil: (0178) 66 11 849

Euroforum CRM, 07.06.2000 Jan Nikus Consultant Customer Management Mummert + Partner AG Mobil: (0178) 66 11 849 Kritische Faktoren der Auswahl und des Einsatzes von Kampagnenmanagementsystemen Euroforum CRM, 07.06.2000 Jan Nikus Consultant Customer Management Mummert + Partner AG Mobil: (0178) 66 11 849 Agenda I.

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

MEHRWERK. Einheitliche Kundenkommunikation

MEHRWERK. Einheitliche Kundenkommunikation MEHRWERK Einheitliche Kundenkommunikation Alle Prozesse und Daten aus bestehenden Systemen werden im richtigen Kontext für relevante Geschäftsdokumente eingesetzt. Flexible Geschäftsprozesse Änderungszyklen

Mehr

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions

software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions software, hardware und wissen für business intelligence lösungen software, hardware and knowledge for business intelligence solutions Vom OLAP-Tool zur einheitlichen BPM Lösung BI orientiert sich am Business

Mehr

Bringing Customers and Companies Together Like Never Before. Dr. Marc Klose Principal Solution Consultant Aspect

Bringing Customers and Companies Together Like Never Before. Dr. Marc Klose Principal Solution Consultant Aspect Bringing Customers and Companies Together Like Never Before Dr. Marc Klose Principal Solution Consultant Aspect 1 Aspect ist der größte Hersteller mit der reichsten Erfahrung, der sich ausschließlich auf

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

CRM Architektur. New Economy CRM Architektur Page 1

CRM Architektur. New Economy CRM Architektur Page 1 CRM Architektur Titel des Lernmoduls: CRM Architektur Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.4.2 Zum Inhalt: Dieses Modul beschreibt mögliche Architekturen von CRM-Systemen. Insbesondere

Mehr

Die Finanzfunktion als Treiber des Wandels am Beispiel SAP

Die Finanzfunktion als Treiber des Wandels am Beispiel SAP Die Finanzfunktion als Treiber des Wandels am Beispiel SAP Luka Mucic, CFO, COO und Mitglied des Vorstands, SAP SE SAP-Forum für Finanzmanagement und GRC, 13. 14. April 2015 Public SAP s Line of Business

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Unternehmensdaten auswerten und planen - Vorstellung von Infor PM 10

Unternehmensdaten auswerten und planen - Vorstellung von Infor PM 10 Unternehmensdaten auswerten und planen - Vorstellung von PM 10 Global Solutions Dominik Lacić, Dr. Rolf Gegenmantel 12. Februar 2009 Copyright 2008. All rights reserved. www.infor.com. Agenda 1. Einführung

Mehr

Dr.Siegmund Priglinger. 23.03.2007 spriglinger@informatica.com

Dr.Siegmund Priglinger. 23.03.2007 spriglinger@informatica.com Vernetzung geschäftsrelevanter Informationen Dr.Siegmund Priglinger 23.03.2007 spriglinger@informatica.com 1 Agenda 2 Die Herausforderung Der Markt verbindet diese fragmenierten Daten Geschäftssicht M&A

Mehr

AMC-Partner bei der dmexco

AMC-Partner bei der dmexco -Partner bei der dmexco 16./17. September 2015 Finanzmarkt GmbH Nr. 1 Adobe Adobe ist der weltweit führende Anbieter für Lösungen im Bereich digitales Marketing und digitale Medien. Mit den Werkzeugen

Mehr

Software Engineering 2 (SWT2) Dr. Alexander Zeier. Chapter 3: Introduction to ERP Systems

Software Engineering 2 (SWT2) Dr. Alexander Zeier. Chapter 3: Introduction to ERP Systems Software Engineering 2 (SWT2) Dr. Alexander Zeier Chapter 3: Introduction to ERP Systems Standard Software vs. Individual Software 2 Software wird meist in 2 Phasen erstellt 1. Auftrag eines Kunden zur

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Management von Kundendaten mit Hilfe eines Data Warehouse

Management von Kundendaten mit Hilfe eines Data Warehouse Management von Kundendaten mit Hilfe eines Data Warehouse Abstrakt: Seitdem der CRM-Gedanke Verbreitung gefunden hat, werden an die Kenntnisse über Kunden hohe Anforderungen gestellt. Im gleichen Maße

Mehr

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services

COGNOS PERFORMANCE MANAGEMENT. Jörg Fuchslueger, COGNOS Austria Manager Professional Services COGNOS PERFORMANCE MANAGEMENT Jörg Fuchslueger, COGNOS Austria Manager Professional Services Agenda Cognos Performance Management Unternehmensweites Berichtswesen AdHoc Analysen Überwachung und Steuerung

Mehr

connect and get connected Wachstum durch CRM dank neuen Kunden

connect and get connected Wachstum durch CRM dank neuen Kunden connect and get connected Wachstum durch CRM dank neuen Kunden Swiss CRM Forum 2011 rbc Solutions AG, General Wille-Strasse 144, CH-8706 Meilen welcome@rbc.ch, www.rbc.ch, +41 44 925 36 36 Agenda Einleitung

Mehr

ONLINESHOPS ERFOLGREICH STEUERN: WIE BEHALTE ICH DIE ÜBERSICHT?

ONLINESHOPS ERFOLGREICH STEUERN: WIE BEHALTE ICH DIE ÜBERSICHT? ONLINESHOPS ERFOLGREICH STEUERN: WIE BEHALTE ICH DIE ÜBERSICHT? Transparenz durch Best Practice ecommerce Reporting Lennart Jansen! plentymarkets Online-Händler-Kongress Februar 2014 DAS PROBLEM:!! KEINE

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Warum sollte Ihr Unternehmen Adempiere einsetzen?

Warum sollte Ihr Unternehmen Adempiere einsetzen? Warum sollte Ihr Unternehmen Adempiere einsetzen? Authors Contribution Date Martine Lemillour (representing Posterita) Alexandre Tsang Mang Kin (representing Posterita) Joseph Brower (representing Nexus

Mehr

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie

Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Prozess- und Service-Orientierung im Unternehmen mehr als Technologie Presse Talk CeBIT 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Konzeption eines Master-Data-Management-Systems. Sven Schilling

Konzeption eines Master-Data-Management-Systems. Sven Schilling Konzeption eines Master-Data-Management-Systems Sven Schilling Gliederung Teil I Vorstellung des Unternehmens Thema der Diplomarbeit Teil II Master Data Management Seite 2 Teil I Das Unternehmen Vorstellung

Mehr

Historie der analyseorientierten Informationssysteme

Historie der analyseorientierten Informationssysteme Gliederung MSS 1. Einführung in die Management Support Systeme (MSS) 2. Data Warehouse als Basis-Konzept aktueller MSS 3. Business Intelligence (BI) als Weiterführung des DW-Ansatzes 1. Grundlagen zum

Mehr

++ + - -- Organisationen sind nicht für Wandel gemacht.

++ + - -- Organisationen sind nicht für Wandel gemacht. Work like a Network hhpberlin und Microsoft rollen den Bauplan für eine agile Organisation aus. Referenzkunde: hhpberlin Stefan Truthän Organisationen sind nicht für Wandel gemacht. ++ + - -- 1 28.05.2014

Mehr

Prozesse als strategischer Treiber einer SOA - Ein Bericht aus der Praxis

Prozesse als strategischer Treiber einer SOA - Ein Bericht aus der Praxis E-Gov Fokus Geschäftsprozesse und SOA 31. August 2007 Prozesse als strategischer Treiber einer SOA - Ein Bericht aus der Praxis Der Vortrag zeigt anhand von Fallbeispielen auf, wie sich SOA durch die Kombination

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

BMPI. Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Namics. Emanuel Bächtiger. Consultant.

BMPI. Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Namics. Emanuel Bächtiger. Consultant. BMPI. Siemens. 360 Performance Dashboard. Digitale Kanäle. Mehrwert. Emanuel Bächtiger. Consultant. 5. Dezember 2013 Agenda. à Ausgangslage à 360 Performance Dashboard à Projektvorgehen à Key Take Aways

Mehr

Contents. Datenanalysemethoden im analytischen CRM. Data Warehouse - OLAP Version: July 17, 2007. 1 Datenanalysemethoden im analytischen CRM

Contents. Datenanalysemethoden im analytischen CRM. Data Warehouse - OLAP Version: July 17, 2007. 1 Datenanalysemethoden im analytischen CRM Contents Data Warehouse - OLAP Version: July 17, 7 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude

Mehr

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder.

Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. Präsenzübung Service 2.1. CRM Customer-Relationship Management a) Anliegen des CRM Worum geht es beim CRM? Geben Sie den Inhalt des nachstehenden Textes mit eigenen Worten wieder. CRM, auch Beziehungsmanagement

Mehr

Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise

Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise A Company of Prof. Dr. Bernhard Humm OOP 2006 sd&m Developer Day München, 18. Januar 2006 sd&m AG, 18.1.2006, Seite 1 Anwendungslandschaften

Mehr

Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013

Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013 Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Immer wieder: Datenqualität Begann es 1805?

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

IT als Service. ein alternatives Leistungsmodell. Klaus Thomas Executive Partner Executive Programs. Gartner Deutschland

IT als Service. ein alternatives Leistungsmodell. Klaus Thomas Executive Partner Executive Programs. Gartner Deutschland IT als Service ein alternatives Leistungsmodell Klaus Thomas Executive Partner Executive Programs Gartner Deutschland 1 Gartner Weltweit größtes IT Research-Unternehmen 2008 45.000 Kunden in 10.000 Unternehmen

Mehr

Churn Prediction. Mit Datamining abwanderungsgefährdete Kunden rechtzeitig erkennen. CRM & Research / Ing. Werner WIDHALM.

Churn Prediction. Mit Datamining abwanderungsgefährdete Kunden rechtzeitig erkennen. CRM & Research / Ing. Werner WIDHALM. Churn Prediction Mit Datamining abwanderungsgefährdete Kunden rechtzeitig erkennen CRM & Research / Ing. Werner WIDHALM Juni 2012 Datamining in der Bank Austria Datamining Anwendungsgebiete im CRM der

Mehr

ERFOLGSFAKTOR CUSTOMER ENGAGEMENT 25.09.2014 UMSATZSTEIGERUNG IM OMNI-CHANNEL COMMERCE

ERFOLGSFAKTOR CUSTOMER ENGAGEMENT 25.09.2014 UMSATZSTEIGERUNG IM OMNI-CHANNEL COMMERCE ERFOLGSFAKTOR CUSTOMER ENGAGEMENT UMSATZSTEIGERUNG IM OMNI-CHANNEL COMMERCE 25.09.2014 NETCONOMY Software & Consulting GmbH Hilmgasse 4, 8010 Graz, Austria T +43(0) 316 / 815544, F +43(0) 316 / 815544-99

Mehr

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten von Jürgen Mauerer Foto: Avantum Consult AG Seite 1 von 21 Inhalt Mehrwert aufzeigen nach Analyse des Geschäftsmodells...

Mehr