Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 26. April 2010

Größe: px
Ab Seite anzeigen:

Download "Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 26. April 2010"

Transkript

1 Physik für Studierende der iologie und Chemie Universität Zürich, HS 2009, U Straumann Version 26 April 2010 nhaltsverzeichnis 54 Statische Magnetfelder Phänomenologie der statischen Magnetfelder Das Magnetfeld eines stationären Stromes: Ampere sches Gesetz Das Magnetfeld einer Spule: Das Magnetfeld eines Kreisstromes: Dipolfeld Die Lorentz - Kraft Das Zyklotron Massenspektrometer Kraft auf einen stromführenden Leiter Kräfte zwischen zwei parallelen Leitern Statische Magnetfelder 541 Phänomenologie der statischen Magnetfelder Wir beobachten die Existenz von Kräften zwischen magnetisierten Metallstücken (Magnete) Die magnetischen Kräfte scheinen zwei Pole zu kennen: Ungleiche Pole ziehen sich an, gleiche stossen sich ab Die Erde ist auch magnetisch: Kompassnadeln zeigen nach Norden Die Wirkung von Magneten auf Kompassnadeln wird durch ein magnetisches Feld beschrieben, das so aussieht, wie ein elektrisches Dipolfeld Das Erdmagnetfeld ist auch ein magnetisches Dipolfeld Aber magnetische Dipole lassen sich nicht trennen Es gibt keine magnetischen Ladungen (Monopole) Der Gauss sche Satz für Magnetfelder lautet demnach A V d A = 0 Der Fluss eines Magnetfeldes durch eine geschlossene Oberfläche ist immer null Dies ist die zweite Maxwellgleichung der Elektrodynamik Das Magnetfeld besitzt keine Quellen Deshalb kann eine magnetische Feldlinie nirgends anfangen oder aufhören Magnetfeldlinien müssen immer geschlossen sein 51

2 542 Das Magnetfeld eines stationären Stromes: Ampere sches Gesetz Wir beobachten, dass elektrische Ströme Magnetfelder erzeugen Abbildung 51 zeigt das Magnetfeld in der Nähe eines von einem elektrischen Strom (als bewegte Ladungen zu verstehen) durchflossenen Drahtes Sichtbar gemacht wird es durch Eisenfeilspäne, die wegen ihrer magnetischen Eigenschaften kleinen Kompassnadeln gleich sich entlang der magnetischen Feldlinien ausrichten Man beobachtet Feldlinien, die sich zu konzentrischen Kreisen mit dem Draht als Zentrum schliessen Abbildung 51: Magnetfeld eines stromdurchflossenen Drahtes; links: Schnitt in einer Ebene senkrecht zur Drahtachse, rechts: Schnitt in einer Ebene, die den Draht enthält Eine quantitative Analyse ergibt ausserdem, dass das Feld mit der Stromstärke zu, und dem Abstand abnimmt: bzw r 1 Die quantitativen Gesetze, die für ruhende Leiter formuliert wurden, sind aus den grundlegenden Arbeiten von Jean-aptiste iot ( ), Félix Savart ( ) und André Marie Ampère ( ) über die Kraftwirkung zwischen stationären Strömen hervorgegangen C Das Ampère sche Gesetz gilt für eine beliebige geschlossene Kurve C, die den Strom umschliesst Werden mehrere stromführende Leiter vom Weg C umschlossen, so sind die Stöme zu addieren: d r = µ 0 C m nebenstehenden eispiel sind nur 1 und 2, nicht aber 3 in der Summe zu berücksichtigen Die eiträge sind positiv zu zählen, wenn der Drehsinn der ntegration mit der Stromrichtung übereinstimmt, bzw negativ, wenn das Umgekehrte gilt i i 3 2 dr 1 dr θ ntegrationsrichtung Ein gerader Draht, in dem ein Strom fliesst, erzeugt demnach ein konzentrisches Magnetfeld Das Ampere sche Gesetz ergibt für einen Kreis mit Radius r um den Draht: 2πr = µ 0 = µ 0 2πr 52

3 5421 Das Magnetfeld einer Spule: Eine lange Spule der Länge L mit N Windungen erzeugt im nnern, abgesehen von Randeffekten, ein homogenes Feld Abbildung 52 zeigt wie sich das Feld aus der Summe der Felder der einzelnen Wicklungen zusammensetzt Wählen wir für das Ampère sche Gesetz einen ntegrationsweg, wie er in Abbildung 52 dargestellt ist, so gilt, wenn das kleine Feld ausserhalb der Spule vernachlässigt wird, a d r = dx = a = µ 0 N a L 0 N ist die Anzahl Windungen für die ganze Spule der Länge L, Na/L der vom ntegrationsweg umschlossene Anteil des Stroms Es ergibt sich für das Magnetfeld im Zentrum der Spule: = µ 0N L x = 0 P 2 C x = a P 1 Abbildung 52: Magnetfeld einer Spule Die eiträge der einzelnen Windungen sind im linken ild noch erkennbar n der Nähe des Drahts findet man wie erwartet konzentrische Feldlinien m Zentrum addieren sich die Felder zu einem homogenen Feld parallel zur Spulenachse Auch diese Feldlinien schliessen sich über den Aussenbereich Die Feldliniendichte und damit die Feldstärke ist aber im Aussenbereich sehr klein An den Rändern der Spule beobachtet man sogenannte Streufelder m rechten ild ist für die erechnung des Spulenfelds ein geschlossener ntegrationsweg C markiert 5422 Das Magnetfeld eines Kreisstromes: Dipolfeld Denkt man sich eine ganz kurze Spule, sieht man, dass ein Kreisstrom ein magnetisches Dipolfeld erzeugt! 53

4 n der Tat werden alle statischen Magnetfelder durch elektrische Ströme, das heisst durch bewegte elektrische Ladung erzeugt Die Dipolfelder der anfangs beobachteten Magnete werden durch Ueberlagerung der Magnetfelder einer grossen Zahl mikroskopischer Kreisströme in den Atomen des Stabmagneten erzeugt 543 Die Lorentz - Kraft Wir haben bereits in der Mechanik bei der Diskussion der fundamentalen Kräfte die Lorentz- Kraft erwähnt, d h die elektromagnetische Kraft, die auf ein bewegtes geladenes Teilchen in einem Magnetfeld wirkt: F L = q[ v ] Diese eziehung kann man als Definition für die Feldgrösse benutzen Die strenge historische ezeichnung für lautet magnetische nduktion, im lockeren Sprachgebrauch spricht man von Magnetfeld Die Präsenz eines Magnetfelds kann also durch die Kraft auf eine bewegte Ladung nachgewiesen werden Die Lorentz-Kraft definiert auch die Einheit des Magnetfeldes im MKS- System: [] = N Vs = Tesla = T = Am m 2 = 104 Gauss = 10 4 G Das Magnetfeld der Erde ist typisch 05 G, das Feld eines Permanentmagneten typisch 100 G, ein starker Elektromagnet erreicht etwa 2 T, mit supraleitenden Spulen sind 5 15 T möglich Hohe Magnetfelder finden Anwendungen in Medizin und iologie beim eschleunigerbau für die Strahlentherapie, bei Kernspinresonanztomographen für die Diagnostik und bei Elektronenmikroskopen Schwache geomagnetische Felder dienen der Orientierung gewisser Lebewesen Da die Lorentz-Kraft auf ein bewegtes Teilchen immer normal zur Geschwindigkeit zeigt, bleibt der etrag der Kraft konstant Die Lorentz-Kraft leistet keine Arbeit Sie kann, im Gegensatz zur Coulomb-Kraft in einem elektrischen Feld E, die kinetische Energie nicht verändern ewegt sich ein Teilchen parallel zu einem Magnetfeld ( v = v ), so gilt für das Vektorprodukt: v = 0 Es wirkt keine Lorentz-Kraft, die Geschwindigkeit v ist konstant st hingegen die Geschwindigkeit senkrecht zum Magnetfeld, ( v = v ), so lautet die ewegungsgleichung ma = m v2 r = qv Das Teilchen bewegt sich auf einem Kreis mit Radius r senkrecht zum Feld Seine Umlaufsfrequenz ν, bzw Winkelgeschwindigkeit ω = 2πν ist daher gegeben durch 54

5 S 2πν = ω = v r = q m Diese sogenannte Zyklotronfrequenz ist unabhängig von der Geschwindigkeit, d h Teilchen mit verschiedenen Geschwindigkeiten v und verschiedenen ahnradien r = (mv )/(q), die gleichzeitig im Punkt S starten, gehen wie gezeichnet verschieden lange Wege, kommen aber nach der gleichen Zeit zum Punkt S zurück Das Magnetfeld zeigt senkrecht zur Papierebene r r r 5431 Das Zyklotron Wohl die bekannteste Maschine zur eschleunigung geladener Atomkerne ist das Zyklotron (siehe Abbildung 53) n der zylinderförmigen Vakuumkammer, die sich in einem axialen Magnetfeld befindet, wird zwischen zwei hohlen, D-förmigen Elektroden ( Dee ), eine elektrische Wechselspannung angelegt Kerne, die im Zentrum aus einer onenquelle stammen, werden im elektrischen Feld zwischen den Dees beschleunigt, und werden dann innerhalb des Dees, wo es kein elektrisches Feld gibt, durch die Lorentz-Kraft auf einer Kreisbahn gehalten Wird die Wechselspannung mit der Umlaufbewegung richtig synchronisiert, so wird jeweils nach einem halben Umlauf durch das elektrische Feld die kinetische Energie erhöht Mit steigender Energie nimmt der Radius der kreisförmigen Segmente zu Es resultiert eine spiralartige ahn Die maximale Energie wird am äusseren Rand im Abstand r 0 vom Zentrum erreicht, T max = p2 max 2m = (Zer 0) 2 2m Diese eziehung gilt für Geschwindigkeiten v << c, d h im nicht-relativistischen Grenzfall "Dee" "Dee" Strahl S Abbildung 53: Arbeitsprinzip eines Zyklotrons (siehe Text für weitere Details) Ablenkplatte Hochfrequenzgenerator 5432 Massenspektrometer 55

6 Für die analytische Chemie ist es oft wichtig, die Masse von Molekülen oder deren estandteilen bestimmen zu können Dazu dient das Massenspektrometer Die Moleküle werden zunächst in einer onenquelle in geladene onen verwandelt, und dann in einem elektrischen Feld beschleunigt Durchläuft das on (Ladung Ze) eine Spannungsdifferenz V, so hat es anschliessend eine kinetische Energie von m 2 v2 = Ze Ed r = ZeV Die beschleunigten onen passieren dann ein homogenes Magnetfeld, das normal zu v steht Misst man den Krümmungsradius der ahn so kann man, falls Ladung, V und bekannt sind, die Masse bestimmen: r = mv Ze, m = 2 Zer2 2V Magnetfeld + _ konz NaCl-Lösung =0 Stabmagnet V + _ + onenstrom _ F L Schiffchen (a) (b) (c) Abbildung 54: Zwei Vorlesungsversuche, die den Einfluss der Lorentz-Kraft auf stromführende Leiter zeigen sollen Links: Die von einem Strom durchflossenen Metallstreifen werden je nach Stromrichtung im Feld eines Stabmagneten verschieden abgelenkt Rechts: Die Lorentz-Kraft wirkt auch auf den onenstrom in der Kochsalzlösung Der schwimmende Ring (Schiffchen mit Fähnchen) ändert den Drehsinn beim Umpolen der Stromrichtung 5433 Kraft auf einen stromführenden Leiter Die von einem Magnetfeld erzeugte Lorentz-Kraft wirkt auch auf Ladungen, die sich in einem Leiter bewegen (Abbildung 54) Die Stärke der Kraft lässt sich aus der Stromstärke und dem Magnetfeld berechnen m Linienelement d l des gezeichneten Leiterstücks befinden sich dq = ρdv = ρadl Ladungen, wenn ρ die als über den Leiterquerschnitt A als konstant angenommene Ladungsdichte ist dq lässt sich über die Stromdichte j und deren Zusammenhang mit der Ladungsdichte (v ist die Geschwindigkeit der Ladungen) mit dem Strom in Verbindung bringen: 56

7 = ja = ρva, dq = va Adl = v dl Der eitrag d F von d l zur Lorentz-Kraft ist dann df ( = dq v ) = ( v dl v d ) l dl ( = d l ) 1 v dl 2 Für das gesamte Leiterstück zwischen den Punkten 1 und 2 ergibt sich dann durch ntegration F L = 2 1 ( d l ) 5434 Kräfte zwischen zwei parallelen Leitern Ein stromführender Leiter erzeugt ein Magnetfeld Durch dieses Magnetfeld wirkt eine Lorentz- Kraft auf einen zweiten stromführenden Leiter Dessen Magnetfeld führt ebenfalls zu einer gleichgerichteten Lorentz-Kraft auf den ersten Leiter Die magnetische nduktion des Stroms 1 am Ort des Leiters 2 (im Abstand d) ist 1 = µ 0 1 2πd Die dazugehörige Kraft auf ein Leiterelement d l 2 ist d F L2 = 2 ( d l 2 1 ), df L2 = 2 dl 2 1 = µ dl 2 2πd d l d 2 df L Die Kraft pro Längeneinheit des zweiten Leiters ist df L2 dl 2 = µ πd Vertauschen der Rolle von Leiter 1 und 2 ergibt für die Kraft pro Längeneinheit des ersten Leiters df L1 = µ 0 l 2 dl 1 2πd Für parallele Ströme finden wir anziehende Kräfte, für antiparallele Ströme abstossende Die gesetzliche Definition der asiseinheit für den elektrischen Strom, Ampère, und damit auch derjenigen für die Ladung, Coulomb, beruht auf dieser eziehung Für zwei gleiche Ströme l = 2 = 1 A und einen Abstand von d = 1 m berechnen wir eine Kraft pro Längeneinheit von N/m, wie dies die Definition (Abschnitt 151) erfordert Die Wahl dieses Systems von Einheiten legt die nduktionskonstante auf den oben angegebenen Wert µ 0 = 4π 10 7 (Vs)(Am) fest Elektrische Kräfte treten nicht auf, da die Leiter nicht geladen sind 57

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Beschreibung Magnetfeld

Beschreibung Magnetfeld Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

Experimentalphysik II Strom und Magnetismus

Experimentalphysik II Strom und Magnetismus Experimentalphysik II Strom und Magnetismus Ferienkurs Sommersemester 2009 Martina Stadlmeier 08.09.2009 Inhaltsverzeichnis 1 Der elektrische Strom 2 1.1 Stromdichte................................. 2

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten

Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten Kapitel 3 Magnetostatik 3.1 Einführende Versuche Wir beginnen die Magnetostatik mit einigen einführenden Versuchen. Wenn wir - als für uns neues und noch unbekanntes Material - zwei Stabmagnete wie in

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

Das statische magnetische Feld

Das statische magnetische Feld Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Magnetfeld von Spulen

Magnetfeld von Spulen c Doris Samm 2014 1 Magnetfeld von Spulen 1 Der Versuch im Überblick Magnetfelder spielen überall eine große Rolle, sei es in der Natur oder der Technik. So schützt uns das natürliche Erdmagnetfeld vor

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Stabmagnete haben 2 verschiedene Enden, den sog. Nord- und den Südpol. Nordpol zieht Südpol an, gleichnamige Pole stoßen sich ab.

Stabmagnete haben 2 verschiedene Enden, den sog. Nord- und den Südpol. Nordpol zieht Südpol an, gleichnamige Pole stoßen sich ab. 13 8 Magnetostatik 8.1 Qualitatives Neben der Gravitationskraft und der elektrostatischen Kraft stellt an i Alltag eine weitere Kraft fest, die sowohl zwischen zwei elektrischen Ströen als auch zwischen

Mehr

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7

Das magnetische Feld. Kapitel Lernziele zum Kapitel 7 Kapitel 7 Das magnetische Feld 7.1 Lernziele zum Kapitel 7 Ich kann das theoretische Konzept des Magnetfeldes an einem einfachen Beispiel erläutern (z.b. Ausrichtung von Kompassnadeln in der Nähe eines

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen Einführung in die Theoretische Physik Der elektrische Strom Wesen und Wirkungen Teil II: Elektrische Wirkungen magnetischer Felder Siegfried Petry Fassung vom 19 Januar 13 I n h a l t : 1 Kraft auf einen

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

B oder H Die magnetische Ladung

B oder H Die magnetische Ladung B oder H Die magnetische Ladung Holger Hauptmann Europa-Gymnasium, Wörth am Rhein holger.hauptmann@gmx.de Felder zum Anfassen: B oder H 1 Physikalische Größen der Elektrodynamik elektrische Ladung Q elektrische

Mehr

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 26. April 2010

Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 26. April 2010 Physik für tudierende der iologie und Chemie Universität Zürich, H 2009, U. traumann Version 26. April 2010 Inhaltsverzeichnis 5.5 Zeitabhängige magnetische Felder: Das Faraday sche Induktionsgesetz......

Mehr

3.4. Magnetismus. Z: Feld, Dipol, Drehmoment. Z: E pot (θ) Z: Kraft im inhomogenen Feld. 3.4.1. Magnetisches Feld

3.4. Magnetismus. Z: Feld, Dipol, Drehmoment. Z: E pot (θ) Z: Kraft im inhomogenen Feld. 3.4.1. Magnetisches Feld - 183-3.4. Magnetismus 3.4.1. Magnetisches Feld Während die Wechselwirkungen zwischen statischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten bei

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld:

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld: Induktion. Induktion Phänomenologie. Induktion in einem zeitlich veränderlichen Magnetfeld: i. Induktionsgesetz ii. enzsche Regel iii. Wirbelströme 3. Induktivität einer eiteranordnung: i. Gegeninduktivität

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

Das magnetische Feld

Das magnetische Feld Dorn-Bader S. 33-54 Das magnetische Feld 1. Magnetische Grunderscheinungen Arbeitsauftrag: vgl. Dorn-Bader S. 34/35 2. Stärke des Magnetfeldes 2.1. Lorentzkraft auf bewegte Ladung Versuch B1 Nähern wir

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Das komplette Material finden Sie hier: Download bei School-Scout.de SCHOOL-SCOUT

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 R. rinkmann http://brinkmann-du.de eite 1 26.11.2013 Verhalten eines Leiters im Magnetfeld Kraftwirkungen im Magnetfeld. Gleichnamige Magnetpole stoßen sich ab, ungleichnamige ziehen sich an. Im Magnetfeld

Mehr

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 2

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 2 Experimentalphysik T Dortmund SS202 Shaukat. Khan @ T - Dortmund. de Kapitel 2 2. 5 Messung on Strom und Spannung Messung on Strömen (Amperemeter) el. Strom Wärme Temperaturerhöhung Längenausdehnung el.

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Physik 4. Felder Aufgaben Anhang

Physik 4. Felder Aufgaben Anhang Physik 4 Die meisten Teile von Physik 1-4 (MB/Diplom) sind in Physik 1 und Physik 2 (MB/Bachelor) eingegangen. Kapitel 2 von Physik 4 ist der Bachelor-Schere zum Opfer gefallen und findet sich hier: Felder

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Magnetodynamik elektromagnetische Induktion

Magnetodynamik elektromagnetische Induktion Physik A VL34 (5.0.03) Magnetodynamik elektromagnetische nduktion Das Faraday sche nduktionsgesetz nduktion in einem bewegten Leiter nduktion einem Leiterkreis/einer Spule Lenz sche egel Exkurs: Das Ohm

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Feldlinien charakterisieren das elektrische Feld...

Feldlinien charakterisieren das elektrische Feld... Feldlinien charakterisieren das elektrische Feld... Eisen- Feldlinien-Bilder kann man z.b. durch feilspäne sichtbar machen... Einige wichtige Regeln: Durch jeden Punkt verläuft genau eine Feldlinie, d.h.

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Elektrizität / Magnetismus.

Elektrizität / Magnetismus. Physik Elektrizität 3 Physik 2. Elektrizität / Magnetismus. Quelle: Wikipedia, Theo Schacht SS 16 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Elektrizität/Magnetismus 5 Themen Elektrostatik Elektrodynamik Magnetismus

Mehr

Grundlagen Physik für 9 II/III

Grundlagen Physik für 9 II/III Grundlagen Physik für 9 II/III Wärmelehre Innere Energie Die innere Energie eines Körpers kann als Summe der kinetischen und der poten- ziellen Energien aller seiner Teilchen betrachtet werden. Sie kann

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Kapitel 8 Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Im Jahre 1819 beobachtete der dänische Physiker Hans Christian Oersted (vgl. Abb. 8.1), dass sich Kompassnadeln ausrichten, wenn in ihrer Nähe

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte:

Magnetismus. Prinzip: Kein Monopol nur Dipole. Kräfte: Elektromagnetismus Magnetismus Prinzip: Kein Monopol nur Dipole Kräfte: S N Richtung des Magnetischen Feldes I B Kraft auf Ladungen im B-Feld + Proportionalitätskonstante B FM = q v B Durch Messung: LORENTZ

Mehr

5 Das magnetische Feld

5 Das magnetische Feld 5 Das magnetische Feld 5.1 Wirkung und Darstellung des magnetischen Feldes 5.1.1 Grunderscheinungen Entdeckung des Magnetismus Gewisse, in der Natur vorkommende Eisenerze (Magneteisen, Magnetkies) haben

Mehr

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes:

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes: Elektromagnetische Induktion Eperiment: Ergebnis: Ein Fahrraddynamo wandelt Bewegungsenergie in elektrische Energie um. Er erzeugt trom (zuerst pannung). Wir zerlegen einen Dynamo. Ein Dynamo besteht aus

Mehr

Magnetische Felder, Ferromagnetismus. Magnetische Felder, Ferromagnetismus

Magnetische Felder, Ferromagnetismus. Magnetische Felder, Ferromagnetismus Magnetische Felder, Ferromagnetismus 1.Einführung 1.1.Allgemeiner Zusammenhang Magnetische Wechselwirkungen bestimmen neben den elektrischen Wechselwirkungen wesentlich den Aufbau und die Eigenschaften

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

Magnetische Felder und Induktion

Magnetische Felder und Induktion PHYSIK LK 12 Magnetische Felder und Induktion Zusammenfassung Alexander Pastor An dieser Stelle sei darauf hingewiesen, dass als Quellen für diese Arbeit hauptsächlich die 3. Auflage des Lehrbuchs Metzler

Mehr

Elektrik Grundlagen 1

Elektrik Grundlagen 1 Elektrik Grundlagen. Was versteht man unter einem Stromlaufplan? Er ist die ausführliche Darstellung einer Schaltung in ihren Einzelheiten. Er zeigt den Stromverlauf der Elektronen im Verbraucher an. Er

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben 1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Wechselspannung, Wechselstrom, Generatoren

Wechselspannung, Wechselstrom, Generatoren Wechselspannung, Wechselstrom, Generatoren Ein Generator ist eine Maschine, die kinetische Energie in elektrische Energie umwandelt. Generatoren erzeugen durch Induktion Strom (z.b. Fahrraddynamo). Benötigt

Mehr

40 Magneti che Feld. 40.3 Magnetische Feldgrößen

40 Magneti che Feld. 40.3 Magnetische Feldgrößen 502 40 Magneti che Feld Bild 40.7: Homogenes Magnetfeld im Innem einer Zylinderspule und Rechtsschraubenregel für Feldrichtung und Strornlaufrichtung Bild 40.8: Magnetische Feldlinien einer RingspuJe 40.3

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Dienstag Daniel Jost Datum 21/08/2012 Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Feldgleichungen der Magnetostatik.....................

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Application Note PE010

Application Note PE010 Application Note PE010 Messbeispiele, Messanordnung Stabmagnet... 1 Zylinderspule... 2 Elektromagnet... 2 Feld eines Leiters... 3 Feld zweier Leiter... 4 Haftmagnetscheibe... 5 Lautsprechertopfmagnet...

Mehr

Mündliche Prüfung Physik Leitfragen

Mündliche Prüfung Physik Leitfragen Mündliche Prüfung Physik Leitfragen Themengebiete: - Optik - Elektrik - Mechanik 1 Themengebiet: Optik 1 Wie lautet das Reflexionsgesetz? 2. Wie lautet das Brechungsgesetz? 3. Benenne die folgenden Linsentypen:

Mehr

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgabe 1) Der Lehrer hat hnen die Funktionsweise eines Drehspulinstrumentes erklärt. Welche Kraft erfahren die 100 Drahtstücke der Länge s = 3,0 cm die sich

Mehr

Vorlesung 2: Elektrostatik II

Vorlesung 2: Elektrostatik II Einheit der elektrischen Ladung: Das Millikan-Experiment (1910, Nobelpreis 1923) Vorlesung 2: Elektrostatik II Sehr feine Öltröpfchen (

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule

Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule Elektrischer Strom erzeugt ein Magnetfeld Oersted Ein Kupferdraht wird so eingespannt, dass er in NordSüdRichtung verläuft. Wir schließen den Schalter für kurze Zeit (Kurzschluss!) und beobachten die Magnetnadel

Mehr

DE740-2M Motor-Generator-Einheit, Demo

DE740-2M Motor-Generator-Einheit, Demo DE740-2M Motor-Generator-Einheit, Demo Versuchsanleitung INHALTSVERZEICHNIS 1. Generator ELD MG 1.1 ELD MG 1.2 ELD MG 1.3 Die rotierende Spule Wechselstromgenerator Gleichstromgenerator 2. Motor ELD MG

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron

Nikolaus-von-Kues-Gymnasium BKS Sehr gute Leiter. Physik Der elektrische Strom. Cu 108. 1 Valenzelektron Sehr gute Leiter Cu Z=29 Ag Z=47 Au Z=79 64 29 Cu 108 47 Ag 197 79 Au 1 Valenzelektron Die elektrische Ladung e - p + Die Grundbausteine der Atome (und damit aller Materie) sind Elektronen und Protonen

Mehr

1. Einleitung Der Versuch wurde am Mittwoch den durchgeführt. Alle Versuche sind dem Teilgebiet der Experimente mit Elektromagneten entnomm

1. Einleitung Der Versuch wurde am Mittwoch den durchgeführt. Alle Versuche sind dem Teilgebiet der Experimente mit Elektromagneten entnomm Protokoll Magnetismus Michael Aichinger Für die 4.Klasse Teilgebiet: Elektromagnetismus Inhaltsverzeichnis: 1 Einleitung S.2 2 Lernziele S.2 3 Versuche S.3 3.1 Versuch nach Oersted S.3 3.2 Magnetfeld stromdurchflossener

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr