Schullehrplan Mathematik BM 1

Größe: px
Ab Seite anzeigen:

Download "Schullehrplan Mathematik BM 1"

Transkript

1 Schullehrplan Mathematik BM 1 1. Semester 1. Arithmetik/Algebra 1.1. Grundlagen - Summe, Differenz, Produkt, Quotient, Potenz - Einschlägige Terminologie anwenden - Hierarchie der Operationen berücksichtigen 1.2. Zahlen und zugehörige Grundoperationen - Mengen in aufzählender und beschreibender Form darstellen - Ordnungsrelationen mithilfe der Zahlengerade darstellen - Sinnvolles Runden von Resultaten, Anzahl signifikante Stellen - Korrekte Termbezeichnungen - Einführung in die mathematisch korrekte Schreibweise - Einhalten der mathematisch formalen Sprache 1.3. Grundoperationen mit algebraischen Termen - Variablen, Terme definieren - Addition, Subtraktion von algebraischen Termen, korrektes Auflösen von Klammerausdrücken unter Berücksichtigung der Vorzeichenregeln - Multiplikation von Klammerausdrücken, Binome - Addieren, multiplizieren und dividieren von Bruchtermen - Vollständige Vereinfachung eines algebraischen Terms Mehrere systematische Methoden zur Faktorisierung anwenden (inkl. binomischer Formel und Satz von Vieta) - Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen - den Aufbau der Zahlen verstehen (Vorzeichen, Betrag, Rundung, Ordnungsrelationen) und Zahlen nach Zahlenarten klassieren (\(\mathbb{n}\), \(\mathbb{z}\), \(\mathbb{q}\), \(\mathbb{r}\)) - Grundoperationen in verschiedenen Zahlenmengen unter Einhaltung der Regeln (Vorzeichenregeln, Hierarchie der Operationen) durchführen - algebraische Terme unter Einhaltung der Regeln für die Grundoperationen umformen, ohne Polynomdivision - Polynome 2. Grades in Linearfaktoren zerlegen

2 1.4. Potenzen - Das 10er Zahlensystem als Anwendung der Zehnerpotenz verstehen - Einführung in die wissenschaftliche Notation - SI-Präfixe und die technische Notation - Einfache Potenzterme mit ganzzahligen und rationalen Exponenten vereinfachen Gemischte Terme mit Potenzen mit ganzzahligen und rationalen Exponenten vereinfachen 1.5. Zehnerlogarithmen Anwendungsaufgaben - die Potenzgesetze mit ganzzahligen und rationalen Exponenten verstehen und auf einfache Beispiele anwenden - die Hierarchie der Operationen erkennen und anwenden - eine Exponentialgleichung in die entsprechende Logarithmusgleichung umschreiben und umgekehrt \(a^x=b \iff x=\frac{\log_{10}(b)}{\log_{10}(a)}\) mit \(a,b \in \mathbb{r}^+,a \neq 1\) 2. Semester 1. Arithmetik/Algebra 1.5. Zehnerlogarithmen Anwendungsaufgaben Anwendungsdiagramme lesen: lin-log, log-lin, log-log - eine Exponentialgleichung in die entsprechende Logarithmusgleichung umschreiben und umgekehrt \(a^x=b \iff x=\frac{\log_{10}(b)}{\log_{10}(a)}\) mit \(a,b \in \mathbb{r}^+,a \neq 1\) - logarithmische Skalen lesen und anwenden 2. Gleichungen und Gleichungssysteme 2.1. Grundlagen - Deklaration der Unbekannten mit Grösse und Einheit passend zum - gegebene Sachverhalte als Gleichung oder Gleichungssystem formulieren Lösungsansatz - Definitionsbereich der Unbekannten Nicht äquivalente Umformungen erkennen und deren Einfluss auf die - algebraische Äquivalenz erklären und anwenden Lösungsmenge berücksichtigen (Definitionsmenge, Fallunterscheidung, Kontrolle durch einsetzen)

3 - Algebraische Gleichungen: lineare Gl., quadratische Gl., Potenzgleichungen - Transzendente Gleichungen: Exponentialgleichungen Kpt Abhängigkeit der Lösungsmenge von der Grundmenge, der Definitionsmenge und dem Lösungsweg 2.2. Gleichungen - Quadratische Gleichung: Lösungsmethode der Ausgangslage anpassen (reinquadratische, gemischt quadratische Gleichungen) - Substitution - Satz von Vieta - Fallunterscheidungen anhand der Diskriminante - Substitution - Bruchgleichungen: Definitionsmenge, Hauptnenner, Scheinlösungen anhand der Definitionsmenge ausschliessen - Wurzelgleichungen (nur Quadratwurzeln) die durch maximal zweimaliges Quadrieren lösbar sind: Definitionsmenge, quadrieren, Scheinlösungen durch Kontrolle in der Bedingungsgleichung ausschliessen - Exponentialgleichung: Exponentenvergleich, Substitution, logarithmieren - Logarithmusgleichung: Definitionsmenge, Logarithmen zu einem Logarithmus zusammenfassen, entlogarithmieren 2.3. Lineare Gleichungssysteme - Additions-, Einsetz- und Gleichsetzmethode mit und ohne Parameter (ohne Fallunterscheidung) - Substitution (z.b: lineare Funktion aus 2 Punkten, quadratische Funktion aus 3 Punkten) - den Typ einer Gleichung bestimmen und beim Lösen entsprechend beachten, Lösungs- und Umformungsmethoden zielführend einsetzen sowie Lösungen überprüfen - lineare und quadratische Gleichungen lösen - elementare Potenzgleichungen mit ganzzahligen und rationalen Exponenten lösen - elementare Exponentialgleichungen lösen - ein lineares Gleichungssystem mit zwei Variablen lösen

4 3. Semester 2. Gleichungen und Gleichungssysteme 2.3. Lineare Gleichungssysteme - Additions-, Einsetz- und Gleichsetzmethode mit und ohne Parameter (ohne Fallunterscheidung) - Substitution (z.b: lineare Funktion aus 2 Punkten, quadratische Funktion aus 3 Punkten) - Lineare Gleichungen mit zwei Unbekannten als lineare Funktion grafisch darstellen und Schnittpunkt als Lösung des Gleichungssystems erkennen - Lösbarkeit der Gleichungssysteme mit 2 Variablen beurteilen 3. Funktionen 3.1. Grundlagen - Funktionsbegriff - Definitionsbereich, Wertebereich, Argument, Funktionswert, Nullstelle, y-achsenabschnitt - Graphen skizzieren 4. Semester - die Lösungsmenge eines linearen Gleichungssystems mit zwei Variablen grafisch veranschaulichen und interpretieren - die Lösungsmenge eines linearen Gleichungssystems mit zwei Variablen grafisch veranschaulichen und interpretieren - reelle Funktionen als Zuordnung/Abbildung zwischen dem reellen Definitionsbereich \(D\) und dem reellen Wertebereich \(W\) erklären 3. Funktionen 3.1. Grundlagen Anwendungen der linearen und exponentiellen Funktion - mit Funktionen beschreiben wie sich Änderungen einer Grösse auf eine abhängige Grösse auswirken und damit auch den Zusammenhang als Ganzes erfassen

5 Informationsgehalt und Anwendungsbereich der verschiedenen Darstellungsformen: Funktionsgleichung, Wertetabelle, Graph - Lineare Potenz (ganzzahlige Exponenten) und Exponentialfunktionen verbal, tabellarisch, grafisch (in kartesischen Koordinaten) sowie analytisch lesen, schreiben und interpretieren Anwendungsaufgaben - Funktionsgleichung, Wertetabelle und Graph kontextspezifisch anwenden - lineare Funktionen \((D \rightarrow W)\) in verschiedenen Notationen lesen und schreiben: Zuordnungsvorschrift \(x \mapsto f(x)\) Funktionsgleichung \(f:d \rightarrow W\) mit \(y=f(x)\) Funktionsterm \(f(x)\) 3.2. Lineare Funktionen - Wertetabelle - Verschiebung - Steigung - Graph aus Wertetabelle - Graph aus y-achsenabschnitt und Steigungsdreieck Geradenschnittpunkt als Lösung eines linearen Gleichungssystems verstehen - die Koeffizienten der Funktionsgleichung geometrisch interpretieren (Steigung, Achsenabschnitt) - den Graphen einer linearen Funktion als Gerade visualisieren - Schnittpunkte von Funktionsgraphen berechnen 3.3. Exponentialfunktionen Anwendungsaufgaben: Anfangswert, Wachstumsfaktor und Wachstumsrate, Zerfallsfaktor und Zerfallsrate, Sättigungswert, Zeitkonstante - die Koeffizienten \(a\), \(b\) und \(c\) der Exponentialfunktion \(f:x \mapsto a \cdot \mathbf{e}^{b \cdot x}+c\) interpretieren (Wachstums-, Zerfalls- und Sättigungsprozesse)

6 5. Semester 3. Funktionen 3.3. Exponentialfunktionen Anwendungsaufgaben: Anfangswert, Wachstumsfaktor und Wachstumsrate, Zerfallsfaktor und Zerfallsrate, Sättigungswert, Zeitkonstante - die Koeffizienten \(a\), \(b\) und \(c\) der Exponentialfunktion \(f:x \mapsto a \cdot \mathbf{e}^{b \cdot x}+c\) interpretieren (Wachstums-, Zerfalls- und Sättigungsprozesse) 4. Datenanalyse 4.1. Grundlagen - Statistische Abbildungen vs. mathematische Funktionen - Rohdaten erfassen: Teilerhebung/Stichprobe, Vollerhebung/Grundgesamtheit - Daten ordnen: Rohdaten/Urliste in geordnete Liste, klassifizierte Liste wandeln - Daten zählen: Strichliste, absolute und relative Häufigkeit bestimmen - Grundbegriffe der Datenanalyse (Grundgesamtheit, Urliste, Stichprobe, Stichprobenumfang, Rang) erklären Kritische Haltung fördern 4.2. Datenerhebung Prozess von der Fragestellung bis zur Auswertung durchlaufen und Unsicherheiten/Unklarheiten aufdecken Anwendungen Boxplot, Liniendiagramm - Datengewinnung und qualität diskutieren - die Zusammensetzung einer Stichprobe und die Methode zur Gewinnung der Daten (z.b. Fragebogen, Messungen) qualitativ beurteilen - mögliche Fehler in den Daten (z.b. Ausreisser, Extremwerte) erkennen und bei der Datenauswertung berücksichtigen

7 4.3. Diagramme - Punkt-, Balken-, Säulen-, Stabdiagramme: absolute und relative Häufigkeit in Abhängigkeit der Merkmale und deren Ausprägungen. - Skalierung der Häufigkeit - Liniendiagramme: für Verläufe (technische Messreihen) - Kuchen-/Kreis- und Stapeldiagramme: Kreissektor, Stapelhöhe - Histogramme für klassierte Listen - Eigenschaften der Diagramme 4.4. Masszahlen Masszahlen - Weitere Lagemasse: Maximum, Minimum, Spannweite - Quartilseinteilung berechnen und grafisch im Boxplot darstellen - Theoretische und empirische Standardabweichung - Variationskoeffizient zum Vergleich der relativen Streuung - Eigenschaften der Masszahlen - geordnete Datenmengen visualisieren (Balken- und Kuchendiagramm, Histogramm, Boxplot, Summenhäufigkeitsfunktion, Streudiagramm, Mosaikplot), erklären (symmetrisch/asymmetrisch, steil/schief, unimodal/bimodal/multimodal) und interpretieren - entscheiden, wann welches Diagramm angemessen ist - univariate und bivariate Daten charakterisieren (qualitativ/quantitativ, diskret/stetig), ordnen und klassieren (Rangliste, Klassenbildung, Häufigkeitstabelle, Kontingenztafel) - Lagemasse (Mittelwert, Median, Modus) und Streumasse (Standardabweichung, Quartilsdifferenz) berechnen, interpretieren sowie auf ihre Plausibilität hin prüfen - entscheiden, wann welche Masszahl relevant ist 6. Semester 5. Wahrscheinlichkeitsrechnung 5.1. Grundlagen 5.2. Elementare Wahrscheinlichkeitsrechnung - wahrscheinlichkeitstheoretische Frage- und Problemstellungen aus dem beruflichen Kontext erkennen, beschreiben und mit Spezialisten sowie Laien kommunizieren - die Grundregeln der Wahrscheinlichkeitsrechnung erklären

8 5.3. Zufallsexperimente Urnenmodell Terminologie Teil- und Vollerhebung - das Zufallsexperiment und seine Elemente als Modell von zufälligen Vorgängen in der realen Welt erklären - die Grundbegriffe aus der Theorie der diskreten Zufallsexperimente (Ergebnis, Ereignis, Wahrscheinlichkeitsverteilung) erklären sowie zwischen diskreten und stetigen Zufallsexperimenten unterscheiden - den Zusammenhang zwischen den Modellgrössen und den entsprechenden empirischen Grössen «Wahrscheinlichkeit», «Häufigkeit» (Wahrscheinlichkeits- und Häufigkeitsverteilung), «Erwartungswert» und «arithmetisches Mittel» erkennen und erklären - theoretische und empirische Standardabweichung erkennen und erklären 5.4. Einstufige Zufallsexperimente 5.5. Mehrstufige Zufallsexperimente - Unbedingte und bedingte Wahrscheinlichkeit - Pfadregeln 5.6. Statistisches Schliessen - Verteilungen der Ergebnisse von einstufigen Zufallsexperimenten beschreiben und visualisieren sowie für Wahrscheinlichkeitsberechnungen nutzen - den Erwartungswert und die Standardabweichung für quantitative, diskrete Merkmale berechnen, interpretieren und anwenden - Verteilungen der Ergebnisse von mehrstufigen, diskreten Zufallsexperimenten durch Baumdiagramme visualisieren sowie für Wahrscheinlichkeitsberechnungen nutzen - Vertrauensintervalle aus der Medizin und aus Umfragen bestimmen - die Methode des statistischen Tests anwenden sowie ihre korrekte Interpretation und mögliche Fehlinterpretationen zeigen

Schullehrplan Mathematik BM 2 Teilzeit (TZ)

Schullehrplan Mathematik BM 2 Teilzeit (TZ) Schullehrplan Mathematik BM 2 Teilzeit (TZ) 1. Semester 1. Arithmetik/Algebra 1.1. Grundlagen - Summe, Differenz, Produkt, Quotient, Potenz - Einschlägige Terminologie anwenden - Hierarchie der Operationen

Mehr

1. Sem. 2. Sem. Total

1. Sem. 2. Sem. Total Fachspezifischer Schullehrplan WSKV Chur Fach Mathematik BM 2 BM 2 1. Sem. 2. Sem. Total 120 120 240 Lehrmittel: Mathematik für die kaufmännische Berufsmaturität; Aeberhart und Martin; 6. Auflage; liberabbaci

Mehr

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015

Fachlehrplan Mathematik M-Profil, Typ Wirtschaft ab August 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015

Schullehrplan Mathematik Profil M/BM1 Typ Wirtschaft Ab 2015 1 20 Zahlen und zugehörige Grundoperationen mit algebraischen Termen Strukturen von algebraischen Ausdrücken erkennen und beim Berechnen sowie Umformen entsprechend berücksichtigen den Aufbau der Zahlen

Mehr

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3

Mathematik. Bündner Kantonsschule Scola chantunala grischuna Scuola cantonale grigione. 1. Stundendotation. 4 H 5 H 6 H Grundlagenbereich 3 3 Mathematik 1. Stundendotation 4 H 5 H 6 H Grundlagenbereich 3 3 2. Didaktische Hinweise und Allgemeine Bildungsziele nach RLP BM 12 Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende

Mehr

WD-D Grundlagenfach Mathematik

WD-D Grundlagenfach Mathematik BERUFSMATURITÄTSSCHULE GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN Schullehrplan Berufsmaturität WD-D Grundlagenfach Mathematik SLP_WD-D_Mathematik_G_V1.0 / 2015 1. Allgemeine Bildungsziele Mathematik im

Mehr

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen)

Die Komplexität der Aufgaben ist in einem Kompendium festgelegt. Lerngebiete und Teilgebiete 1. Arithmetik/Algebra. (50 Lektionen) Gruppe 3 Mit dem Beruf (EFZ) verwandter FH-Fachbereich: Wirtschaft und Dienstleistungen Verwendung von Hilfsmitteln im Typ Wirtschaft: Taschenrechner mit elementaren Finanzfunktionen, ohne ComputerAlgebraSystem

Mehr

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015

Lehrplan Mathematik. genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Lehrplan Mathematik genehmigt von der Schulkommission der Mittelschulen im Kanton Zug am 29. April 2015 Wirtschaftsmittelschule Zug Lüssiweg 24, 6302 Zug T 041 728 12 12 www.wms-zug.ch info@wms-zug.ch

Mehr

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen

Schullehrplan Mathematik BM II Wirtschaft. 1. Allgemeines. 2. Allgemeine Bildungsziele. 3. Überfachliche Kompetenzen Allgemeines Grundlagen - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Kant. Verordnung zum Einführungsgesetz

Mehr

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich

HKV BS BM1. Mathematik. Aeschengraben Basell. Fachlehrplan Vorlage Mathematik für HKV beider Basel. Grundlagenbereich HKV BS Aeschengraben 15 4002 Basell BM1 Fachlehrplan Vorlage Mathematik für HKV beider Basel Grundlagenbereich Mathematik HKV beider Basel FLP Vorlage - Mathematik für KVBZ Liestal 1 Mathematik 1.1 Allgemeine

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

STOFFPLAN MATHEMATIK

STOFFPLAN MATHEMATIK STOFFPLAN MATHEMATIK 1. Semester (2 Wochenstunden) Mengenlehre Reelle Zahlen Lineare Gleichungen und Ungleichungen mit einer Unbekannten Funktionen und ihre Graphen Lineare Funktionen Aufgaben aus der

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Fachbereich Mathematik Allgemeines

Fachbereich Mathematik Allgemeines Mathematik - Allgemein Mai 2011 Fachbereich Mathematik Allgemeines 1. Allgmeine Bildungsziele Die Mathematik stellt bewährte Methoden und Strukturen zur Verfügung, welche auch zum Verständnis einer komplexen

Mehr

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe

Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Schulinterner Lehrplan Mathematik Einführungsphase Oberstufe Halbjahr 10. 1 Schwerpunkt Inhaltsbezogene Prozessbezogene Arithmetik/Algebra Zahlenmengen (LS10 Kap. I) Angabe von Zahlenmengen mit der Intervall-

Mehr

Lehrplan Mathematik Informatikmittelschule 2015

Lehrplan Mathematik Informatikmittelschule 2015 1. Allgemeines Grundlagen Lektionenverteilung - Verordnung über die eidgenössische Berufsmaturität (Berufsmaturitätsverordnung BMV) 2009 - Rahmenlehrplan für die Berufsmaturität 2012 - Verordnung SBFI

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten

Mehr

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25

Inhaltsverzeichnis. Grundlagen. 1. Grundlagen 13. Algebra I. 2. Das Rechnen mit ganzen Zahlen (Rechnen in ) 25 Inhaltsverzeichnis I Grundlagen 1. Grundlagen 13 1.1 Von Mengen... 13 1.2 Mengenschreibweise... 13 1.3 Zahlenmengen... 14 1.4 Die Grundoperationen... 16 1.5 Rechenhierarchie (1. Teil)... 16 1.6 Reihenfolge

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

TALS Grundlagen- und Schwerpunktfach Mathematik

TALS Grundlagen- und Schwerpunktfach Mathematik BERUFSMATURITÄTSSCHULE GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN Schullehrplan Berufsmaturität TALS Grundlagen- und Schwerpunktfach Mathematik SLP_TALS_Mathematik_GuS_V1.0 / 2015 1. Allgemeine Bildungsziele

Mehr

Leistungsbeurteilung aus Mathematik 7. Klasse

Leistungsbeurteilung aus Mathematik 7. Klasse Leistungsbeurteilung aus Mathematik 7. Klasse Für die Leistungsbeurteilung wird ein Punktesystem herangezogen. Die Semesterpunktezahl setzt sich wie folgt zusammen: a) ca. 65% der erreichten Punkte bei

Mehr

Schulinterner Lehrplan Mathematik Stufe EF

Schulinterner Lehrplan Mathematik Stufe EF Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 7/8 Stand Schuljahr 2009/10 Klasse 7 UE 1 Prozent- und Zinsrechnung Anteile in Prozent Grundaufgaben der Prozentrechnung Promille Prozentuale Änderungen Zinsen

Mehr

Grundwissen Mathematik Klasse 8

Grundwissen Mathematik Klasse 8 Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)

Mehr

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE

Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA. Operationen, Gleichungen, Funktionen + DATENANALYSE Hans Marthaler, Benno Jakob, Reto Reuter ALGEBRA + DATENANALYSE Operationen, Gleichungen, Funktionen y x VORWORT Mathematik ist ein wichtiges Hilfsmittel und Werkzeug, um naturwissenschaftliche und technische

Mehr

konkrete Lerninhalte

konkrete Lerninhalte Thema Bezug zum Lehrbuch (LS 9 für G8) Kapitel I Quadratische quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktbestimmung quadratische Ergänzung 3 Lösen einfacher

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

PÄDAGOGISCHER LEITFADEN MATHEMATIK UND INFORMATIK 1.BIENNIUM SOGYM. Kompetenzen am Ende des 1. Bienniums

PÄDAGOGISCHER LEITFADEN MATHEMATIK UND INFORMATIK 1.BIENNIUM SOGYM. Kompetenzen am Ende des 1. Bienniums PÄDAGOGISCHER LEITFADEN MATHEMATIK UND INFORMATIK 1.BIENNIUM SOGYM Im Mathematikunterricht erhalten die Schülerinnen und Schüler die Möglichkeit wirtschaftliche, technische, natürliche und soziale Erscheinungen

Mehr

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Mathematik Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004 Fachcurriculum Standards 10 Johannes-Kepler-Gymnasium Weil der Stadt Stand vom 19.8.2008 1 Stand 19.08.2008 Stundenzahl in

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen

Kürzen und Erweitern Die drei Gesichter einer Vergröbern bzw. Verfeinern der Einteilung nutzen Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 6 (G8) - rationale Zahlen - mit Zahlen und Symbolen umgehen Grundregeln für Rechenaus- einfache Brüche und Größen, Rechnen mit rationalen

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

Jahrgangsstufe Klasse 8 Fach: Mathematik Stand 09/2011

Jahrgangsstufe Klasse 8 Fach: Mathematik Stand 09/2011 Terme und Gleichungen Vereinfachen von Termen mit mindestens einer Variable, Eigenschaften und Rechengesetze (Klammerregeln, Multiplikation von Summen) Binomische Formeln als Sonderfall der Multiplikation

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben IV:

Mehr

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,

Mehr

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25

Einführung 17. Teil I Am Anfang anfangen grundlegende Operationen 23. Kapitel 1 Zeichen bei Zahlen entschlüsseln 25 Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Konventionen in diesem Buch 18 Törichte Annahmen über den Leser 18 Wie dieses Buch aufgebaut ist 19 Teil I: Grundlegende Elemente und Operationen 19

Mehr

Berufsmaturität Schullehrplan der Berufsfachschule Wirtschaft der Kantonsschule Trogen

Berufsmaturität Schullehrplan der Berufsfachschule Wirtschaft der Kantonsschule Trogen 1.4 Fachlehrplan Mathematik Lektionen im Fach Mathematik 360 Lektionen verteilt auf drei Ausbildungsjahre Allgemeine Bildungsziele gemäss Rahmenlehrplan () Der römische Schriftsteller Stobäus berichtet,

Mehr

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10.

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10. M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 9

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 9 Klettbuch 978-3-1740491-3 Arithmetik/Algebra l 1 Lineare Gleichungssysteme Lesen Präsentieren Vernetzen Lösen Realisieren Recherchieren Ziehen Informationen aus einfachen authentischen Texten (z.b. Zeitungsberichten)

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Thema. Zeit in Wochen. Bleib fit im Umgang mit Termen und Gleichungen. Bleib fit im Umgang mit quadratischen Funktionen. 1.

Thema. Zeit in Wochen. Bleib fit im Umgang mit Termen und Gleichungen. Bleib fit im Umgang mit quadratischen Funktionen. 1. Stoffverteilungsplan Einführungsphase NRW Die Übersicht enthält die inhaltsbezogenen Kompetenzen des immer noch gültigen Lehrplans von 1999 für die Einführungsphase und die durch die Schulzeitverkürzung

Mehr

Stoffverteilungsplan Mathematik 7 auf der Grundlage des neuen G8 Kernlehrplans 2006 Lambacher Schweizer 7 Klettbuch 978-3-12-734471-4

Stoffverteilungsplan Mathematik 7 auf der Grundlage des neuen G8 Kernlehrplans 2006 Lambacher Schweizer 7 Klettbuch 978-3-12-734471-4 (Vorschlag vom 24.05.2011 für den internen Gebrauch von Abr, Net,Bra,Deu,Mue) Argumentieren / Kommunizieren Lesen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle, Graph)

Mehr

Zahlen. Bruchrechnung. Natürliche Zahlen

Zahlen. Bruchrechnung. Natürliche Zahlen Themenübersicht 1/5 Alle aktuell verfügbaren Themen (Klasse 4 10) Dieses Dokument bildet alle derzeit verfügbaren Themen ab. Die jeweils aktuellste Version des Dokuments können Sie auf der Startseite in

Mehr

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE

LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE STUNDENDOTATION GF EF 3. KLASSE 1. SEM. 4 2. SEM. 4 4. KLASSE 1. SEM. 3 2. SEM. 3 5. KLASSE 1. SEM. 3 2. SEM. 3 6. KLASSE 1. SEM. 3 2 2. SEM. 3 2 7. KLASSE 1.

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Rationale Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft

Die berufsbildenden Schulen im Land Bremen. Handelsschule. Mathematik. Rahmenplan. Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft Die berufsbildenden Schulen im Land Bremen Handelsschule Mathematik Rahmenplan Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen 2 Handelsschule Rahmenplan Mathematik Herausgegeben von

Mehr

In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob er wahr oder falsch ist.

In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob er wahr oder falsch ist. 9 9.1 Geschichte Bereits in den Keilschriften des alten Babylon, die bis 3000 v. Chr. zurückreichen, treten Aussageformen wie auf. Nach den Zahlen gehören sie zu den ersten mathematischen Errungenschaften

Mehr

Fachlehrplan Fachgymnasium

Fachlehrplan Fachgymnasium Fachlehrplan Fachgymnasium Stand: 9.2.2015 Mathematik Der vorliegende Fachlehrplan entstand auf der Grundlage des Fachlehrplans Mathematik Gymnasium/Fachgymnasium (2014). An der Erarbeitung des Fachlehrplans

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences

Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences Fachlehrplan Mathematik - Berufsmaturität Technik, Architektur, Life Sciences 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten

Mehr

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6

Stoffverteilungsplan Mathematik 5 / 6 Lehrwerk: Lambacher Schweizer 5/6 Klasse 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Zeitraum Natürliche Zahlen Stochastik Erheben: Daten erheben, in Ur- und Strichlisten zusammenfassen Darstellen: Häufigkeitstabellen, Säulendiagramme

Mehr

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase) Unterrichtsvorhaben I: Eigenschaften von (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: (A) Grundlegende Eigenschaften von Potenz-und Sinusfunktionen Zeitbedarf: 23 Std. Unterrichtsvorhaben

Mehr

Entwurf Schulcurriculum Mathematik Jahrgangsstufe 7 St.-Antonius-Gymnasium, Lüdinghausen

Entwurf Schulcurriculum Mathematik Jahrgangsstufe 7 St.-Antonius-Gymnasium, Lüdinghausen Entwurf Schulcurriculum Mathematik Jahrgangsstufe 7 St.-Antonius-Gymnasium, Lüdinghausen Kernlehrplan Jahrgang 7 Prozente und Zinsen Inhaltsbezogene Kompetenzen können Alltagsprobleme (z. B. aus Funktionen

Mehr

Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft. Handelsschule. Rahmenplan Sekundarstufe II. Berufliche Schulen.

Freie Hansestadt Bremen. Die Senatorin für Bildung und Wissenschaft. Handelsschule. Rahmenplan Sekundarstufe II. Berufliche Schulen. 1 Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Handelsschule Rahmenplan Sekundarstufe II Berufliche Schulen 2 Lernfeld 1 Mathematische Grundlagen siehe Hinweise Die Schüler und Schülerinnen

Mehr

Schulinternes Curriculum Mathematik 6

Schulinternes Curriculum Mathematik 6 Kapitel I Rationale Zahlen Einstieg: Erkundungen 1 (Teiler), 4 und 5 1 Teilbarkeit S. 14, Regeln; S. 17 Nr. 15 2 Brüche und Anteile S. 20, Nr. 2 & 3; S. 2 Nr. 8 &10 3 Kürzen und Erweitern S. 25, Nr. 7-9;

Mehr

Fach : Mathematik Klasse 5/6. Kerncurriculum Schulcurriculum Hinweise

Fach : Mathematik Klasse 5/6. Kerncurriculum Schulcurriculum Hinweise Fach : Mathematik Klasse 5/6 Kompetenzen siehe Bildungsplan 1. Leitidee Zahl ganze Zahlen rationale Zahlen Zehnerpotenzen Brüche Dezimalbrüche Prozentangaben 2. Leitidee Algorithmus Addieren Subtrahieren

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Schülerbuch 978-3-06-041672-1 Lehrerfassung des Schülerbuchs 978-3-06-041673-8

Mehr

Stoffverteilungsplan Fachbereich Mathematik OBF

Stoffverteilungsplan Fachbereich Mathematik OBF OSZ Kfz-Technik Berufsfachschule Mathematik Oberstufenzentrum Kraftfahrzeugtechnik Berufsschule, Berufsfachschule, Fachoberschule und Berufsoberschule Berlin, Bezirk Charlottenburg-Wilmersdorf Stoffverteilungsplan

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden.

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden. Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 7 (G8) Arithmetik / Algebra / Funktionen: Prozent- Zinsrechnung Funktionen mit eigenen Worten, Wertetabellen, als Graphen und in Termen

Mehr

Kinga Szűcs

Kinga Szűcs Kinga Szűcs 25.10.2011 Die Schülerinnen und Schüler werten graphische Darstellungen und Tabellen von statistischen Erhebungen aus, planen statistische Erhebungen, sammeln systematisch Daten, erfassen sie

Mehr

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN Bleib fit im Umgang mit Bruchzahlen Zahl Algorithmus Klasse 6 1. Prozent- und Zinsrechnung 1.1 Absoluter und relativer Vergleich Anteile in Prozent 1.2 Grundaufgaben der Prozentrechnung Im Blickpunkt:

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule)

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) Fachlehrpläne Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) M10 Lernbereich 1: Potenzen schreiben Produkte bestehend aus gleichen Faktoren als Potenz, um große und kleine Zahlen kürzer

Mehr

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden

[Ganze] [ ] Zahlen in verschiedenen Formen deuten können, als Zustände gegenüber einem Nullpunkt, als Punkte auf einer Zahlengeraden September Es geht weiter... 1 Ganze Zahlen 1.1 Zahlen gegensätzlich deuten 1.2 Die Zahlengerade 1.3 Ganze Zahlen ordnen 1.4 Ganze Zahlen addieren und subtrahieren 1.5 Ganze Zahlen multiplizieren und dividieren

Mehr

Fach Mathematik. Stundentafel. Bildungsziel

Fach Mathematik. Stundentafel. Bildungsziel Fach Mathematik Stundentafel Jahr 1. 2. 3. 4. Grundlagen 4 4 4 5 Bildungsziel Der Mathematikunterricht schult das exakte Denken, das folgerichtige Schliessen und Deduzieren, einen präzisen Sprachgebrauch

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF Der zeitliche Umfang der Unterrichtseinheiten ist eine Orientierung. In der ZAP werden immer zwei Themengebiete geprüft, aller Voraussicht nach sind diese im Wechsel: Analysis - Vektorrechung oder Analysis

Mehr

Neue Wege Klasse 7 Schulcurriculum EGW

Neue Wege Klasse 7 Schulcurriculum EGW Neue Wege Klasse 7 Schulcurriculum EGW Reihenfolgen Kapitel 4,5 zu Beginn des Schuljahres. Weitere Reihenfolge der Kapitel wird von den Fachlehrern im Jahrgang 7 festgelegt. Inhalt Neue Wege 7 Kapitel

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 6 6 Kapitel I Rationale Zahlen 1 Brüche und Anteile 2 Was man mit einem Bruch alles machen kann 3 Kürzen und Erweitern 4 Die

Mehr

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Stoffverteilungsplan Mathematik auf der Grundlage des Kernlehrplans Unterrichtsvorhaben I: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation), Inhaltsfeld: Funktionen

Mehr

3 Lineare und quadratische Funktionen

3 Lineare und quadratische Funktionen 3 Lineare und quadratische Funktionen 31 Lineare Funktion Eine Funktion der Art f : mx + t, sind reelle Zahlen) x D heißt lineare Funktion (m und t Man kann die Funktionsgleichung auf zwei verschiedene

Mehr

Lehrplan. Mediamatiker_ab_ Allgemeine Bildungsziele

Lehrplan. Mediamatiker_ab_ Allgemeine Bildungsziele Lehrplan 1. Allgemeine Bildungsziele Die Mathematik ist eine ausgesprochene Grundlagenwissenschaft. Sie ist im Erwerbs- und im Freizeitbereich präsent und bildet eine der Grundlagen der heutigen Zivilisation.

Mehr

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren In der Jahrgangsstufe 10 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Einführungsphase und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick auf den Einsatz bzw.

Mehr

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9 INHALTSVERZEICHNIS 1. Grundbegriffe:... 2 2. Das Lösen von Gleichungen... 5 3. Lineare Gleichungen... 8 4. Quadratische Gleichungen... 9 5. Bruchtermgleichungen... 13 6. Wurzelgleichungen... 13 7. Gleichungen

Mehr

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10)

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10) Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10% für den interdisziplinären Unterricht freizuhalten.

Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10% für den interdisziplinären Unterricht freizuhalten. 7. Mathematik Berufsmaturität gesundheitliche und soziale Richtung Vollzeitlicher Ausbildungsgang (BM II) 7.1 Allgemeines Die Lektionendotation im Fach Mathematik beträgt 200 Lektionen. Davon sind 10%

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Jahresplan Mathematik Klasse 10 auf Grundlage der Bildungsstandards 2004 Schnittpunkt 6 Klettbuch 978-3-12-740301-5

Jahresplan Mathematik Klasse 10 auf Grundlage der Bildungsstandards 2004 Schnittpunkt 6 Klettbuch 978-3-12-740301-5 Zufall - Wahrscheinlichkeitsaussagen verstehen - Wahrscheinlichkeiten bestimmen - logisch schließen und begründen - mathematische Argumentationsketten nachvollziehen - die Fachsprache adressatengerecht

Mehr

WWG Grundwissen Mathematik 10. Klasse

WWG Grundwissen Mathematik 10. Klasse WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische

Mehr

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

MATHEMATIK. Einleitung

MATHEMATIK. Einleitung MATHEMATIK Einleitung Der Anforderungskatalog geht von Schultypen mit drei Wochenstunden in jeder Schulstufe aus. Die kursiv gesetzten Inhalte sind für alle Schulstufen mit mehr als drei Wochenstunden

Mehr

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2

Grundwissen 9. Klasse 9/1. Grundwissen 9. Klasse 9/2 Grundwissen 9. Klasse 9/. Quadratwurzel Definition: a ist diejenige positive Zahl, deren Quadrat a ergibt: a =a z.b. 5=5 Bezeichnung: Die Zahl a unter der Wurzel heißt Radikand. Radikandenbedingung: a

Mehr

Fachcurriculum Mathematik 1. Biennium WFO / V+T

Fachcurriculum Mathematik 1. Biennium WFO / V+T Fachcurriculum Mathematik 1. Biennium WFO / V+T Die Fachlehrer: Messner Evi Baumgartner Michael Mair Gisella Neuhauser Matthias Wieser Jolanda Fachspezifische Kompetenzen Die Schülerin, der Schüler kann

Mehr

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19

Über den Autor 7 Über den Fachkorrektor 7. Einführung 19 Inhaltsverzeichnis Über den Autor 7 Über den Fachkorrektor 7 Einführung 19 Über dieses Buch 19 Törichte Annahmen über den Leser 20 Wie dieses Buch aufgebaut ist 20 Teil I: Ein paar statistische Grundlagen

Mehr

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen

inhaltsbezogene Kompetenzbereiche/Kompetenzen Überprüfung der Term Äquivalenz durch Einsetzen 7 8 Wochen Begründen der Lösungsschritte Bewerten alternativer Lösungswege Untersuchen von Texten auf Äquivalenz von Termen in den Formulierungen so groß wie. Verstehen von Termen als Rechenvorschrift

Mehr

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien Mathematik Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien I. Termumformungen II. Lineare Gleichungen und ihre Lösungsmengen III. Quadratische Gleichungen

Mehr