Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Größe: px
Ab Seite anzeigen:

Download "Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x"

Transkript

1 Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen mit beliebiger Basis a, wobei a > 0 ist. Durch die Verwendung nur einer Basis, nämlich der Eulerschen Zahl e (e = 2, ), ist die Anwendung der Exponentialfunktionen erheblich vereinfacht. Die Exponentialfunktion mit der Basis e hat den wesentlichen Vorteil, dass die Ableitungen dieser Funktionen im Wesentlichen gleich der Funktion bleiben. Die e-funktion reproduziert sich. Zur Überführung einer beliebigen Basis in die Basis e muss nur der Basiswechsel durchgeführt werden: Dabei macht man sich zunutze, dass e ln a = a ist und dass das Potenzieren einer Potenz durch die Multiplikation der Exponenten vereinfacht werden kann. Für Basen kleiner als Eins, die ja eine abfallende Funktion nach sich ziehen, wird der Exponent der e-funktion auch negativ, d.h. die Funktion ist auch abfallend. Dieser Zusammenhang sollte an einigen Beispielen nachvollzogen werden. Welche Wachstumsformen gibt es nun? Lineares Wachstum Exponentielles Wachstum Begrenztes Wachstum Logistisches Wachstum a x = e (lna) x = e k x Für alle Wachstumsarten gibt es zunächst einmal charakteristische Funktionsgraphen: Beschäftigen wir uns erstmal mit dem exponentiellen Wachstum.

2 Exponentielles Wachstum Diese Wachstumsart liegt vor, wenn sich ein Bestand in gleichen Zeiträumen immer um den gleichen Faktor verändert. Beispielsweise kann sich ein Bestand alle zwei Jahre verdoppeln, oder ein Bestand verringert sich alle drei Wochen um den Faktor 0,3. Beispiel 1: In der Tabelle ist das Gewicht eines Hefepilzes in einer Nährlösung zur Zeit n aufgetragen: n G (n) G (n) / G (n-1) , , , , , ,58 Die Zeit ist in h notiert, das Gewicht in mg. In dem Beispiel liegt ein Wachstumsfaktor von ca. 1,56 vor. Er lässt sich aus dem Mittelwert der tabellierten Faktoren errechnen. Wir erhalten also eine rekursive Darstellung des Prozesses mit: G(n) = 1,56 G(n 1) Damit folgt die explizite Darstellung: Mit der Basis e folgt: G(n) = 18 1,56 n (0,4447 n) G(n) = 18 e ln (1,56) = 0,4447 Wir müssen festhalten: Der Wachstumsfaktor a ist der Quotient aus zwei aufeinanderfolgenden Bestandswerten. Mit der e-funktion kommt eine Wachstumskonstante k ins Spiel, nämlich k = ln a. Beispiel 2: Die Messe Intersolar fand von 2002 bis 2007 in Freiburg statt. Wegen der steigenden Ausstellerzahlen zog sie in den Folgejahren nach München um. Später fanden auch Ableger der Messe in Kalifornien statt. Tabelle: Sind die in der Tabelle genannten Ausstellerzahlen näherungsweise exponentiell gewachsen? Bestimmen Sie eine Funktion, die das Wachstum modelliert. Wieviele Aussteller müsste die Messe demnach im Jahre 2010 haben? Jahr Aussteller Wachstumsfak tor , , , , ,23 Der Wachstumsfaktor ist in den letzten Jahren relativ konstant und kann über den gesamten Zeitraum mit dem Mittelwert a = 1,19 angegeben werden. Die Ausstellerzahlen sind näherungsweise exponentiell gewachsen.

3 Für die Bildung der Wachstumsfunktion sollen mehrere Wege gezeigt werden. Weg I: Eine mögliche Funktion wäre: A(t) = A 0 e ( lna t) A(t) = 236 e (ln1,19 t) A(t ) = 236 e ( 0,174 t ) Der Wachstumsfaktor wurde schon bestimmt und der Startwert kann aus der Tabelle entnommen werden. Weg II: Wir wählen einen Ansatz wie A(t) = A 0 e (k t ) A(t) = 236 e (k t) mit dem Startwert A 0 und setzen einen weiteren Wert aus der Tabelle ein, z.b. 560 Aussteller nach t = 5 Jahren. A(t) = 236 e (k t ) 560 = 236 e (k 5 ) ln = k 5 k = ln = 0,173 Damit folgt für die Funktion: A(t ) = 236 e ( 0,173 t) Weg III: Man ermittelt eine Wachstumsfunktion, indem man dem GTR beide Tabellenspalten als Listen eingibt und anschließend die exponentielle Regression durchführt. Jahre seit 2002 L 1 = {0,1,2,3,4,5} Ausstellerzahlen L 2 = {236, 256, 291, 372, 454,560} ExpReg L 1, L 2, Y 1 A(t) = 219,7 1,197 t A(t ) = 219,7 e ( 0,180 t ) Alle drei Wege führen zu ähnlichen Ergebnissen für das Wachstum. Welchen Weg man einschlägt, hängt davon ab, was aus der Aufgabenstellung zu erlesen ist, was gegeben ist und was der eigenen Vorliebe am besten entspricht... Das Jahr 2010 ist acht Jahre nach dem Jahr 2002, also t = 8. Eingesetzt in die Wachstumsfunktion: A(t) = 236 e ( 0,174 t) A(t) = 236 e (0,174 8) A(t) = 949,4 Man kann im Jahre 2010 mit ca. 949 Ausstellern rechnen.

4 Beim exponentiellen Wachstum ist es oft interessant, die Halbwertszeit / Verdoppelungszeit zu kennen. Die ermittelt man, indem man sagt, dass sich ein Bestand in der Zeit t = T H halbiert, bzw. in der Zeit t = T V verdoppelt. Daraus folgt: Begrenztes Wachstum A(t) = A 0 e ( k t) A(t) = 1 2 A 0 = A 0 e( k T H) 1 2 = e( k T H) T H = ln 0,5 k T H = 0,69 k A(t) = A 0 e (k t) A(t) = 2 A 0 = A 0 e ( k T V) 2 = e ( k T V) T V = ln2 k T V = 0,69 k Begrenztes Wachstum liegt vor, wenn das Wachstum in mehr oder weniger langen Zeiträumen gegen einen Grenzwert strebt und diesen nicht über- oder unterschreitet. Eine Folge des Wachsens gegen eine Grenze ist, dass der Restbestand, d.h. der Unterschied zwischen Grenze und Bestand, exponentiell abnimmt: R(n) = S B(n) Das begrenzte Wachstum kann durch folgende Funktion beschrieben werden: f ( x) = S (S f (0)) e ( k x ) Hier gilt: k = - ln a, f(0) ist der Startwert bei x = 0 und S bezeichnet den Grenzwert. Der Term S - f(0) wird auch mit c abgekürzt. Also: f ( x) = S c e ( k x ) Beispiel 3: In einer 35 cm² -Petrischale wird eine Bakterienkultur angesetzt. Die überdeckte Anfangsfläche beträgt 2 cm² ; nach einem Tag bedecken die Bakterien 5 cm². Nehmen Sie begrenztes Wachstum an. Ermitteln Sie eine Wachstumsfunktion. Welche Fläche wird nach fünf Tagen, bzw. nach fünf Stunden überdeckt? Wann ist die Petrischale zur Hälfte bedeckt? Wann beträgt die Wachstumsrate 0,5 cm² pro Tag? Was ist gegeben? S = 35 A 0 = 2 A(1) = 5 Die allgemeine Formel ist: f ( x) = S (S f (0)) e ( k x ) f (t) = 35 (35 2) e ( k t) f (t) = e ( k t )

5 Einsetzen des weiteren Wertepaars liefert die Wachstumskonstante k: ( k t) f (t) = e 5 = e ( k 1 ) k = ln( 30 33) = 0,0953 Das führt zu der Wachstumsfunktion: ( 0,0953 t) f (t) = e t = 5: f (5) = e ( 0,0953 5) f (5) = 14,5 Nach fünf Tagen sind ca. 14,5 cm² bedeckt. t = 5/24: f (5/24) = e ( 0,0953 f (5) = 2,65 Nach fünf Stunden sind ca. 2,65 cm² bedeckt. Wann ist A(t) = 17,5? 5 24) Weg I: Die Wachstumsfunktion muss nach t umgestellt werden: 17,5 = e 17,5 = 33 e ( 0,0953 t ) 17,5 33 ( 0,0953 t) = e( 0,0953 t) t = ln(0,53) 0,0953 = 6,66 Nach ca. 6 Tagen und 16 Stunden ist die Petrischale zur Hälfe bedeckt. Weg II: y 1 = f(t) y 2 = 17,5 intersect y 1, y 2 x S = 6,66 Nach ca. 6 Tagen und 16 Stunden ist die Petrischale zur Hälfte bedeckt. Die Wachstumsrate ist die erste Ableitung der Funktion. Also ein möglicher Weg ist, f'(t) zu bilden: ( 0,0953 t) f (t) = e f '(t) = 3,1449 e ( 0,0953t ) Die Rate soll 0,5 cm² pro Tag sein, also f'(t) = 0,5 und umstellen nach t liefert: 0,5 = 3,1449 e ( 0,0953t ) t = 19,3 Nach ca. 19 Tagen beträgt die Wachstumsrate 0,5 cm² pro Tag.

6 Ein anderer Weg: y 1 = nderiv(f(t)) y 2 = 0,5 intersect y 1, y 2 x S = 19,3 Nach ca. 19 Tagen beträgt die Wachstumsrate 0,5 cm² pro Tag. Logistisches Wachstum Das logistische Wachstum ist eine Kombination aus dem exponentiellen Wachstum in der Anfangsphase und dem begrenzten Wachstum in der Endphase. Die Wachstumsfunktion lautet: S f ( x) = 1 + a e kx Der Parameter S stellt wieder die Wachstumsgrenze dar. Beispiel 4: Ein Wachstum wird durch die Funktion f(x) beschrieben: 10 f ( x) = e 0,25 x Es handelt sich um das Wachstum von Schimmel an einer Zimmerwand, x wird in Tagen angegeben, f(x) in dm². Bestimmen Sie den Anfangswert und die Schranke des Wachstums. Nach welcher Zeit sind mindestens 90% der Wand von Schimmel befallen? Um wie viel dm² pro Tag wächst der Schimmel nach zehn Tagen? Wann beträgt die Wachstumsgeschwindigkeit 60 cm² pro Tag? Der Anfangswert ist der Funktionswert zum Zeitpunkt t = 0, also f(0): Der Anfangswert der Schimmelfläche ist 2 dm². f (0) = = 2 Die Schranke ist 10 dm², wahrscheinlich die Fläche der Zimmerwand. Frage nebenbei: Ist das sinnvoll? 90% von 10 dm² sind 9 dm². Wann ist f(x) = 9? Einsetzen und umstellen liefert: 10 9 = e 0,25 x e 0,25 x = 10 e 0,25 x = 1 36 ln( 36) 1 x = 0,25 = 14,33 Nach 14,33 Tagen sind 90 % der Zimmerwand bedeckt.

7 Die Wachstumsgeschwindigkeit ist die erste Ableitung der Funktion. Da der Wert nach 10 Tagen interessiert, brauchen wir f'(10). nderiv(f(x)) value: x = 10 y = 0,465 Nach zehn Tagen beträgt die Wachstumsgeschwindigkeit 0,465 dm² pro Tag. Wir müssen erstmal die Einheit anpassen, da der Funktionswert immer in dm² angegeben wird. Die Wachstumsgeschwindigkeit 60 cm² pro Tag ist gleich 0,6 dm² pro Tag. y 2 = nderiv (f(x)) y 3 = 0,6 intersect y 2, y 3 x S1 = 3,92 x S2 = 7,17 Nach etwa 4 Tagen und noch einmal nach 7 Tagen ist die Wachstumsgeschwindigkeit 60 cm² pro Tag. Beispiel 5: Bei einer Grippewelle in einem Dorf mit 1000 Einwohnern wächst die Zahl der Infizierten logistisch. Man geht davon aus, dass die Krankheit auf das Dorf beschränkt bleibt und dass etwa 30% der Bewohner immun sind. Anfangs waren nur 20 Personen erkrankt, nach einer Woche waren es schon 150. Wie viele Einwohner sind nach zwei Wochen infiziert? Wann sind 600 Einwohner infiziert? Wie groß ist jeweils die Wachstumsgeschwindigkeit? Aufstellen der Wachstumsfunktion: Grenze S = 700 ( %) f(0) = 20 f(7) = 150 S Funktionstyp: f ( x) = 1 + a e kx Durch Einsetzen von f(0) erhalten wir den Parameter a: f (0) = 20 = a a = 34 Durch den zweiten Funktionswert erhalten wir k: 700 f (7) = 150 = e k e k 7 = 700 e k 7 = 0,1078 k = 0,318

8 Damit erhalten wir die Funktion 700 f ( x) = e 0,318 x mit x der Zeit in Tagen und f(x) der Anzahl der Infizierten. Mit x = 14 erhalten wir: 700 f (14) = e 0, f (14) = 501 Nach zwei Wochen sind 501 Einwohner infiziert. Weg I: Einsetzen und umstellen liefert: Weg II: y 1 = f(x) y 2 = = e 0,318 x e 0,318 x = 700 x = 16,72 Nach ca. 16,7 Tagen sind 600 Personen infiziert. intersect y 1, y 2 x S = 16,72 Nach ca. 16,7 Tagen sind 600 Personen infiziert. Für die Wachstumsgeschwindigkeit brauchen wir die Ableitung an der entsprechenden Stelle. nderiv(f(14)) = 45,25 Nach zwei Wochen infizieren sich über 45 Personen pro Tag. nderiv(f(16,7)) = 27,4 Nach 16,7 Tagen infizieren sich noch über 27 Personen pro Tag.

9 Thema Differentialgleichungen bei Wachstum In manchen Aufgabe kann eine Beziehung zwischen der Wachstumsfunktion und der dazugehörigen Ableitung hergestellt werden. Eine solche Beziehung nennt man Differentialgleichung. Die Lösung der Differentialgleichung ist dann die gesuchte Wachstumsfunktion. Beispiel für die Anwendung einer Differentialgleichung: Eine Fläche A(t) wird von einem Pilz überdeckt. Wenn man z.b. weiß, dass die momentane Zuwachsrate jeweils 5% der befallenen Fläche beträgt, dann kann man die Differentialgleichung A'(t) = 0,05 A(t) aufstellen. Die Lösung ist dann eine Funktion, die die Differentialgleichung erfüllt: A(t) = c e 0,05t. Der Parameter c ist dabei der Anfangswert des Wachstums A(0). Tabelle der für die Wachstumsprozesse wichtigen Differentialgleichungen und ihre Lösungen Exponentielles Wachstum Begrenztes Wachstum Logistisches Wachstum Differentialgleichung f ' (x ) = k f ( x) f ' (x ) = k (S f (x )) f ' (x ) = k f (x )(S f (x )) S Lösung f ( x) = c e ( k x) f ( x) = S c e ( k x ) S f ( x) = 1 + a e kx Jeweils gilt: k = ln a a = Wachstumsfaktor; k = Wachstumskonstante

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen klaus_messner@web.de www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles

Mehr

Exponentialfunktionen Kenngrößen bestimmen (1)

Exponentialfunktionen Kenngrößen bestimmen (1) Arbeitsblatt: Exponentialfunktionen Kenngrößen bestimmen () Arbeitsblätter zum Ausdrucken von sofatutor.com Exponentialfunktionen Kenngrößen bestimmen () Beschreibe die richtigen Eigenschaften für die

Mehr

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung

Mehr

Exponentielles Wachstum:

Exponentielles Wachstum: Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Exponentialfunktionen

Exponentialfunktionen Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d. 1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

4 Potenzen Wachstumsprozesse Exponentialfunktionen

4 Potenzen Wachstumsprozesse Exponentialfunktionen 4 Potenzen Wachstumsprozesse Exponentialfunktionen 4.1 Potenzieren Radizieren 4.1.1 Potenzen mit natürlichen Exponenten Exponentielle Wachstumsvorgänge 4.1.1.1 Wiederholung zum Potenzieren ist eine Potenz

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

A5 Exponentialfunktion und Logarithmusfunktion

A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion A5 Exponentialfunktion und Logarithmusfunktion Wachstums- und Zerfallsprozesse. Beispiel: Bakterien können sich sehr schnell vermehren. Eine bestimmte Bakterienart

Mehr

Wiederholungen Wachstumsfunktionen IGS List

Wiederholungen Wachstumsfunktionen IGS List Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt

Mehr

Logistisches Wachstum

Logistisches Wachstum Logistisches Wachstum Themenheft Logistisches Wachstum Sehr viele Berechnungen werden auch mit TI Nspire CAS durchgeführt, was sich empfiehlt, weil die Rechnungen teilweise sehr anspruchsvoll sind. Hier

Mehr

Ergänzungsmathematik I Wachstum und Zerfall Seite 1

Ergänzungsmathematik I Wachstum und Zerfall Seite 1 Wachstum und Zerfall Seite 1 Aufgaben zum exponentiellen Wachstum und Zerfall. 1.0 Eine Bakterienkultur umfasst anfangs 50 000 Bakterien. Die Anzahl vergrößert sich alle 20 Minuten um 20 %. 1.1 Wie viele

Mehr

Konstante Zu- und Abflüsse (Veränderungen)

Konstante Zu- und Abflüsse (Veränderungen) Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute

Mehr

Volumen und Oberflächeninhalt der Kugel 10_01

Volumen und Oberflächeninhalt der Kugel 10_01 Volumen und Oberflächeninhalt der Kugel 10_01 Alle Punkte (des dreidimensionalen Raums), die von einem Punkt M die gleiche Entfernung r besitzen, liegen auf einer Kugel mit Mittelpunkt M und Radiuslänge

Mehr

Kapitel 7. Differenzengleichungen

Kapitel 7. Differenzengleichungen apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE

Mehr

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch. Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und

Mehr

Potenz- & Exponentialfunktionen

Potenz- & Exponentialfunktionen Potenz- & Exponentialfunktionen 4. Kapitel aus meinem ANALYSIS - Lehrgang MNprofil - MIttelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 24. Oktober 2011 Überblick über

Mehr

Exponential und Logarithmusfunktion. Wachstum und Zerfall

Exponential und Logarithmusfunktion. Wachstum und Zerfall Wachstum und Zerfall Erklärung exponentielles Wachstum (Zerfall): eine Anfangsgröße W 0 vervielfacht (verringert) sich in gleichen Zeitabschnitten mit einem gleichbleibenden Wachstumsfaktor q, der größer

Mehr

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t Abschlussprüfungen zu: Exponentielle Zunahme / Abnahme AP 2000 AI 2.0 Für den Wert W(t) eines Autos (in DM) in Abhängigkeit von der Zeit t 0 (in Tagen) gelte der Zusammenhang W(t) = W o e kt mit einer

Mehr

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt.

Die Anzahl der Keime in 1 cm 3 Milch wird im zeitlichen Abstand von 1 h bestimmt. 7. Anwendungen ================================================================== 7.1 Exponentielles Wachstum ------------------------------------------------------------------------------------------------------------------

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 10 (Kapitel 11) Hinweis: Dieses Übungsblatt enthält

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Fächerverbindende/- übergreifende Bezüge (inhaltlich/methodisch) Ergänzungen (nach VERA 8, ZAP) Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) Inhalte

Fächerverbindende/- übergreifende Bezüge (inhaltlich/methodisch) Ergänzungen (nach VERA 8, ZAP) Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) Inhalte Klasse 10 (E- und G-Kurs) 1. Verpackungen (E-Kurs S. 41 S. 58; G-Kurs S. 19 S. 34) Oberfläche und Volumen von Pyramide und Kegel Projektarbeit Kugel: Formelanwendung Pyramide und Kegel benennen und charakterisieren

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz (3) Wurzelfunktionen Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz Definition y = f (x) g(y) = x gilt. Für jedes k N ist

Mehr

Exponentialfunktion*

Exponentialfunktion* Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +

Mehr

Schulinterner Lehrplan Klasse 10

Schulinterner Lehrplan Klasse 10 Schulinterner Lehrplan Klasse 10 Unterrichtsvorhaben Klasse 10 (E- und G-Kurs) 1. Verpackungen (E-Kurs S. 41 S. 58; G-Kurs S. 19 S. 34) Oberfläche und Volumen von Pyramide und Kegel Projektarbeit Kugel:

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Vermischte Aufgaben als Probevorbereitung Posten 1

Vermischte Aufgaben als Probevorbereitung Posten 1 Vermischte Aufgaben als Probevorbereitung Posten 1 Aufgabe 1 Gegeben: f(x) = 2 x g(x) = log 3(x) a. Stelle die Funktion grafisch dar. b. Verschiebe die Kurve um 2 Einheiten nach oben und um 3 Einheiten

Mehr

1. Teil Repetitionen zum Thema (bisherige) Funktionen

1. Teil Repetitionen zum Thema (bisherige) Funktionen Analysis-Aufgaben: Rationale Funktionen 2 1. Teil Repetitionen zum Thema (bisherige) Funktionen 1. Die folgenden Funktionen sind gegeben: f(x) = x 3 x 2, g(x) = x 4 + 4 (a) Bestimme die folgenden Funktionswerte/-

Mehr

= 1 3 n3 n n 4. b n. b n gilt, reicht es zu zeigen, dass für irgendein n die Gleichheit a n

= 1 3 n3 n n 4. b n. b n gilt, reicht es zu zeigen, dass für irgendein n die Gleichheit a n 2005-2-2 Klausur 2 Klasse b Mathematik Lösung Zwei Folgen sind gegeben, in rekursiver und b n in expliziter Form: =2 4 ;a = 2 b n = 3 n3 n 2 8 3 n 4 a) Geben Sie die ersten drei Folgenglieder jeder Folge

Mehr

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t

6. Wachstumsformen. Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t 1 6. Wachstumsformen Definitionen: durchschnittliche Wachstumsrate im y Zeitintervall t: t geometrisch. Sekantensteigung, abhängig von t momentane Wachstumsrate: geometrisch: Tangentensteigung, unabhängig

Mehr

1 Das Problem, welches zum Logarithmus führt

1 Das Problem, welches zum Logarithmus führt 1 Das Problem, welches zum Logarithmus führt Gegeben sei die folgende Gleichung: a = x n Um nun die Basis hier x) auszurechnen, muss man die n-te Wurzel aus a ziehen: a = x n n ) n a = x Soweit sollte

Mehr

1 Die logistische Gleichung X t+1 = λx t (1 X t )

1 Die logistische Gleichung X t+1 = λx t (1 X t ) 1 Die logistische Gleichung X t+1 = X t (1 X t ) Bisher haben wir Rekursionen mit mehr oder weniger einfachem Verhalten betrachtet; wir konnten entweder eine explizite Lösungsformel aufstellen oder ohne

Mehr

n

n Die Zellteilung: Übung 1d) C(n) = 2 n 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 1 1 C(n) G C n 1 2 3 4 5 6 7 8 9 101112 Die Zellteilung: Übung 1g) n(c) = lb(c) 5 4 3 2 1 2 1 1 n(c) G n C 1 2 3 4 5 6 7 8 9 101112

Mehr

Ableitungsfunktion einer linearen Funktion

Ableitungsfunktion einer linearen Funktion Ableitungsfunktion einer linearen Funktion Aufgabennummer: 1_009 Prüfungsteil: Typ 1! Typ 2 " Aufgabenformat: Konstruktionsformat Grundkompetenz: AN 3.1! keine Hilfsmittel! gewohnte Hilfsmittel möglich

Mehr

e-funktionen Aufgaben

e-funktionen Aufgaben e-funktionen Aufgaben Die Fichte ist in Nordeuropa und den Gebirgen Mitteleuropas beheimatet. Durch Aufforsten wurde sie jedoch auch im übrigen Europa weit verbreitet. Fichten können je nach Standort Höhen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält! 1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.

Mehr

Didaktische Bemerkungen

Didaktische Bemerkungen zu den Rekursionsformeln und der Arbeit mit Derive 6.0 1 Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i)

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Die folgende Abbildung zeigt die Höhe h(t) einer Fichte (in Meter) in Abhängigkeit von der Zeit t in Jahren. h(t)

Die folgende Abbildung zeigt die Höhe h(t) einer Fichte (in Meter) in Abhängigkeit von der Zeit t in Jahren. h(t) Wachsttumsprrozesse Ableittung als Änderrungsrratte Im Kapitel 6.4 haben wir uns bereits mit Aufgaben im "realen Bezug" befasst. Eine große Rolle spielte dabei die Ableitung als Änderungsrate. Die folgende

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise

Mehr

Differenzialgleichung

Differenzialgleichung Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben.

Mehr

10 Zeit in Milliarden Jahren

10 Zeit in Milliarden Jahren a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10

Mehr

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P.

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P. Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Name: Erreicht Note von 48 P. Notenschlüssel 0 23 Nicht genügend 24-29 Genügend 30-36 Befriedigend 37-42 Gut 43-48 Sehr gut Aufgabe 1 Funktionen

Mehr

Die Lernlandkarte sollte den Lernenden ständig vor Augen sein!

Die Lernlandkarte sollte den Lernenden ständig vor Augen sein! Lernlandkarten...... sind Visualisierungen von gedanklichen Strukturen... enthalten Stichworte, Bilder, Skizzen, Grafiken, kurze Texte... verdeutlichen Beziehungen und Vernetzungen durch beschriftete Pfeile...

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel) Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)

Mehr

Vorbereitungskurs Lehrlinge

Vorbereitungskurs Lehrlinge Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von

Mehr

Infektionskrankheit auf einer Kreuzfahrt

Infektionskrankheit auf einer Kreuzfahrt Prozentuales Wachstum Begrenztes Wachstum DGL des begrenzten Wachstums Aufgaben zum begrenzten Wachstum Tropfinfusion Bevölkerungsschwund Erwärmung Abkühlung Regelung Infektionskrankheit auf einer Kreuzfahrt

Mehr

Absprachen / Hinweise. 5 Wochen

Absprachen / Hinweise. 5 Wochen Potenzen Mit Potenzen rechnen Rechengesetze exemplarisch begründen Gleichungen umformen und lösen, in einfachen Fällen auch hilfsmittelfrei Kreis- und Körperberechnungen Flächeninhalt und Umfang des Kreises

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Absprachen / Hinweise. Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler. 5 Wochen

Absprachen / Hinweise. Inhaltsbezogene Kompetenzen Die Schülerinnen und Schüler. 5 Wochen Potenzen mit Potenzen rechnen Rechengesetze exemplarisch begründen Gleichungen umformen und lösen, in einfachen Fällen auch hilfsmittelfrei Kreis- und Körperberechnungen Flächeninhalt und Umfang des Kreises

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Übungen zur Klausur über das Propädeutikum Dr. Daniel Bick 08. November 2013 Daniel Bick Physik für Biologen und Zahnmediziner 08. November 2013 1 / 27 Information

Mehr

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759. (4) Exponential- und Logarithmusfunktionen Satz Für jedes b > 1 gibt es eine eindeutig bestimmte Funktion exp b : R R + mit folgenden Eigenschaften. exp b (r) = b r für alle r Q Die Funktion exp b ist

Mehr

MATHEMATIK KLAUSUR K1 1

MATHEMATIK KLAUSUR K1 1 MATHEMATIK KLAUSUR K1 1 18.10.2010 Der Rechenweg muss ersichtlich sein. Für die Lösung der Aufgaben 3 und 4 ist der GTR erlaubt; der jeweilige Ansatz ist schriftlich festzuhalten. Lösungen auf dem Aufgabenblatt

Mehr

Übungsarbeit zum Thema: Exponentialfunktion und. Logarithmusfunktion

Übungsarbeit zum Thema: Exponentialfunktion und. Logarithmusfunktion Übungsarbeit zum Thema: Exponentialfunktion und Logarithmusfunktion a) Bestimme die Exponentialfunktion f (x) a x mit a R +, deren Graph durch den Punkt P (3 / 0,343) verläuft. b) Bestimme die Exponentialfunktion

Mehr

SCHRIFTLICHE MATURA 2010

SCHRIFTLICHE MATURA 2010 SCHRIFTLICHE MATURA 2010 Fach: Mathematik Klassen: 7SA Prüfer: Dr. Martin Holzer Name: Diese Arbeit umfasst 4 Aufgaben. Jede der 4 Aufgaben wird mit gleich vielen Punkten bewertet. Für die Darstellung

Mehr

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt: Lösungen Mathematik Dossier Funktionen b) Steigungen: Können entweder durch einzeichnen von Steigungsdreiecken bestimmt werden oder durch die rechnerische Form. Hier wird die rechnerische Form gezeigt:

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1.1

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion Matthias Birkner http://www.mathematik.uni-mainz.de/~birkner/biostatistik1011/ 5.11.2010 Inhalt 1 Exponential- und Logarithmusfunktion Potenzen

Mehr

1 Lineare Funktionen. 1 Antiproportionale Funktionen

1 Lineare Funktionen. 1 Antiproportionale Funktionen Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Einführung des Integrals 15

Mehr

(a b c = ) ( (

(a b c = ) ( ( Funktionssynthese / Trassierung Beide Themen gehören schon ein wenig zusammen, denn bei beiden Themen werden Eigenschaften, die die spätere Funktion haben soll, vorher definiert. Über die definierten Eigenschaften

Mehr

Exponentialfunktionen

Exponentialfunktionen Eponentialfunktionen 1. Eine Lotosblume bedeckt zum jetzigen Zeitpunkt eine Teichfläche von 0, m. Die bedeckte Teichfläche verdoppelt sich von Monat zu Monat. Nach welcher Zeit (nach Beginn der Beobachtung)

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Exponentialfunktionen Kenngrößen bestimmen (2)

Exponentialfunktionen Kenngrößen bestimmen (2) Arbeitsblatt: Eponentialfunktionen Kenngrößen bestimmen () Arbeitsblätter zum Ausdrucken von sofatutorcom Eponentialfunktionen Kenngrößen bestimmen () Benenne die richtigen Kenngrößen der angegebenen Graphen

Mehr

Kapital und Zinsen in Tabellen und Prozentstreifen

Kapital und Zinsen in Tabellen und Prozentstreifen 1 Vertiefen 1 Kapital und Zinsen in Tabellen und Prozentstreifen zu Aufgabe 1 Schulbuch, Seite 76 1 Sparansätze vergleichen zu Aufgabe 2 Schulbuch, Seite 76 a) Untersuche Sparansatz (A). Welche Auswirkungen

Mehr