Ergänzungsmathematik I Wachstum und Zerfall Seite 1

Größe: px
Ab Seite anzeigen:

Download "Ergänzungsmathematik I Wachstum und Zerfall Seite 1"

Transkript

1 Wachstum und Zerfall Seite 1 Aufgaben zum exponentiellen Wachstum und Zerfall. 1.0 Eine Bakterienkultur umfasst anfangs Bakterien. Die Anzahl vergrößert sich alle 20 Minuten um 20 %. 1.1 Wie viele Bakterien sind es nach 3 Stunden? 1.2 Nach welcher Zeit sind es 10 Millionen Bakterien? 2.0 Ein Distrikt eines Entwicklungslandes hatte Ende 1988 rund Einwohner. Die Bevölkerungszahl nimmt laut Statistik jährlich um 2,5 % zu. 2.1 Wie viele Einwohner wird dieser Distrikt Ende 2009 voraussichtlich haben? 2.2 Die Landwirtschaft dieses Distrikts konnte zum Jahresende 1988 nur Menschen ernähren. Ein Entwicklungsprogramm soll bis zum Ende des Jahres 2009 die landwirtschaftlichen Produkte um insgesamt 70% erhöhen. Wie viele Menschen sind demnach rechnerisch im Jahre 2000 noch auf eine Nahrungsmitteleinfuhr angewiesen, wenn sie nicht hungern sollen? 3.0 Das kleine Fürstentum Xco hatte 1960 gerade Einwohner waren es schon 1 Million Einwohner. 3.1 In der Annahme eines exponentiellen Wachstums ermitteln Sie die Wachstumsfunktion. 3.2 Wann werden es 1,2 Mill. Einwohner sein? 4.0 In einer Bakterienkultur sind zu Beginn einer Beobachtung 6000 Bakterien vorhanden. Es ist bekannt, dass sich bei diesen Bakterien in einen exponentiellen Wachstum die Anzahl in 5 Stunden verdreifacht. 4.1 Ermitteln Sie die Wachstumsfunktion. 4.2 In welcher Zeit werden es 1,0 Mill. Bakterien sein? 5.0 Mittels der 14 C-Methode ist es möglich, das Alter von Fossilien zu bestimmen. Dieses Isotop, das sich in äußerst geringen Mengen im Kohlendioxid der Luft befindet, wurde von den Pflanzen (und über diese auch von den Tieren) aufgenommen und zerfällt mit einer Halbwertszeit T 0,5 = 5730 a. 5.1 Zeigen Sie, dass für die Zerfallsfunktion in der Form ln 2 N(t) = N(0) e bt mit b = T0,5 gilt.

2 Wachstum und Zerfall Seite Bestimme Sie das Alter eines Fossils, dessen gemessener 14 C Anteil noch 14% beträgt. Ergebnis: t = 16256,6 a 6.0 In Holzresten aus der Höhle von Lascaux stellte man 12,5% des ursprünglichen 14 C- Gehalts fest. 6.1 Berechnen Sie das Alter dieser Holzreste, wenn für 14 C gilt T 0,5 = 5730 a. 6.2 Berechnen Sie bis zu welchem Alter sich die 14 C Methode verwenden lässt, wenn man noch 1% des ursprünglichen 14 C-Gehalts mit hinreichender Genauigkeit feststellen kann. Ergebnis: t = a 7.0 Ein Kontrastmittel enthält einen Stoff dessen Halbwertszeit T 0,5 = 8 h beträgt. 7.1 Welchen Anteil in Prozent ist noch nach 48 h übrig geblieben? Ergebnis: 1,6% 8.0 Ein Schmerzmittel (z.b. Ibuprofen) hat eine Halbwertszeit von T 0,5 = 2 h und hat den größten Teil seiner Wirksamkeit verloren, wenn nur noch 10 % vorhanden sind. 8.1 Berechnen Sie wie lange dieses Schmerzmittel wirksam ist. Ergebnis: T = 6,6 h 9.0 Eine Tierpopulation hat sich in 5 Jahren von 200 auf 250 Tiere vergrößert. Angenommen, die Vermehrung erfolgt exponentiell, d.h. nach der Formel N(t) = N(0)e bt 9.1 Berechnen sie die Konstante b. Ergebnis: b = 0,0446/Jahr 9.2 Wie viel Prozent p beträgt die jährliche Vermehrung? Ergebnis: p = 4,56% 9.3 Nach welcher Zeit t wird sich die Population verdoppeln? Ergebnis: t = 15,5 a

3 Wachstum und Zerfall Seite 3 Aufgaben zum logistischen Wachstum Das logistische Wachstumsmodell beschreibt die Wachstumsprozesse aus der Natur sehr gut, weil in ihm auch die Einschränkungen, die fast immer vorliegen, berücksichtigt werden. Ein Wachstum wird als logistisch bezeichnet, wenn die Bestands-Differenz (B(t+1) B(t)) proportional zum Produkt von Bestand (B(t)) und Restbestand (S-B(t)) ist. In der folgenden Rekursionsformel ist der Proportionalitätsfaktor q die Änderungsrate und S die Kapazitätsgrenze oder Sättigungsgrenze: B(t+1) B(t) = q B(t) (S B(t)) Die Explizite Formel für den Bestand B(t) lautet: S S B(0) B(t) =, wobei a= qst 1 + a e B(0) 10.0 Prognosen besagen, dass die Weltbevölkerung langfristig einem logistischen Wachstumsgesetz mit einer Sättigungsgrenze von 11,6 Milliarden Menschen gehorchen wird. In den letzten 30 Jahren hat sich die Weltbevölkerung (Population) folgendermaßen entwickelt: Jahr Population in Mrd.: 4,46 5,28 6, Berechnen Sie mit Hilfe der Rekursionsformel die Änderungsrate q wenn die Wachstumsperiode 10 Jahre beträgt. Ergebnis: q = 0, Bestimmen Sie die Weltbevölkerungsanzahl in den Jahren 2020 und Auf einer begrenzten Fläche von S m 2 wird für die Produktion eines Antibiotikums eine Pilzkultur angesetzt. Die täglichen Kontrollen liefern folgende (Kontrolldaten) Wachstumsdaten: Tage: Besiedelte Fläche in m 2 : 1,00 1,60 5,90 8, Begründen Sie weshalb ein logistisches Wachstumsmodell angebracht ist Berechnen Sie mit Hilfe der obigen Kontrolldaten die Änderungsrate q und die Sättigungsrate S. Ergebnisse: S = 19,46 m 2 und q = 0, Berechnen Sie den Stand nach 10 Tage? 11.4 Nach wie vielen Tagen wird die fast die Sättigungsgrenze erreicht, d.h ist die Kulturfäche = 19,45 m 2?

4 Wachstum und Zerfall Seite Von 6000 auf einer Insel lebenden Menschen infizieren sich in der ersten Woche 280 Personen an einer neuartigen Grippe und durch gegenseitige Ansteckung gibt es nach 2 Wochen bereits 400 Kranke Bestimmen Sie den Funktionsterm eines logistischen Wachstumsmodell Nach wie vielen Wochen ist die Hälfte der Bevölkerung erkrankt In einen neu angelegten Teich werden 400 Fische gesetzt. Da in diesem Teich nur ein begrenzter Vorrat an Nahrung und Platz vorhanden ist, können höchstens 1000 Fische darin leben. Im 2. und bzw. im 3. Jahr wurden 580 bzw. 650 Fische gezählt Bestimmen Sie die logistische Wachstumsfunktion B(t) Bestimmen Sie die Anzahl der Fische nach 6 Jahren Bei der Einführung des Walfangverbots lebten noch 1000 Grönlandwalen im Nordpolarmeer. Nach Schätzungen der Biologen liefert dieses Areal Lebensraum für Wale. Im ersten Jahr nach dem Verbot nahm die Anzahl der Wale um 12 % zu Bestimmen Sie den Funktionsterm B(t) des logistischen Wachstums für die Walpopulation Berechnen Sie die Anzahlen der Wale nach 10 bzw. 20 Jahren nach dem Walfang Verbot Ab dem Jahr 1900 wird für die elektrische Energie der Jahresenergieverbrauch W(t) gemessen in Terawattstunden (1 TWh = 10 9 kwh) in Deutschland als Funktion der Zeit modellhaft durch folgende logistische Wachstumsfunktion beschrieben: W(t) = e 0,1(t 75), wobei t in Jahren nach 1900 gezählt wird In welchem Jahr hat der Energieverbrauch 82% seines Sättigungswertes erreicht? 15.2 Die Planung und Bau eines Kraftwerks beanspruchen einen Zeitraum von 10 Jahren d.h. der Verbrauchszuwachs muss für 10 Jahre vorhergesagt werden. Für die Kraftwerksplanung von 1999 sind somit die Verbrauchswerte für 2009 zu schätzen. Teilergebnis: Der Energieverbrauch im Jahr 1999 war 458,4 TWh 15.3 Wie viele Kraftwerke mit einer durchschnittlichen Energieproduktion von 250 MWh müssten nach dem oberen Modell gebaut werden, um den zusätzlichen Bedarf im Jahre 2009 zu decken?

5 Wachstum und Zerfall Seite 5

6. Radioaktive Stoffe zerfallen nach dem Gesetz t

6. Radioaktive Stoffe zerfallen nach dem Gesetz t 1. Ein Distrikt eines Entwicklungslandes hatte Ende 1993 rund 120 000 Einwohner. Die Bevölkerungszahl nimmt laut Statistik jährlich um 2,5 % zu. a) Wie viele Einwohner wird dieser Distrikt Ende 2005 voraussichtlich

Mehr

Lineares Wachstum/exponentielles Wachstum

Lineares Wachstum/exponentielles Wachstum Seite 1 / 9 Lineares Wachstum/exponentielles Wachstum 1. Herr Apfalterer und Frau Bader haben ein Jahresgehalt von 18.000. Für die jährliche Gehaltserhöhung stehen zwei verschieden Möglichkeiten zur Auswahl.

Mehr

Exponentielles Wachstum:

Exponentielles Wachstum: Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme

Mehr

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen klaus_messner@web.de www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Vorbereitungskurs Lehrlinge

Vorbereitungskurs Lehrlinge Vorbereitungskurs Lehrlinge Freitag, 21. Mai 2010 14:00 BRP Mathematik Mag. Kurt Söser 2009/10 Maturavorbereitung Seite 1 Maturavorbereitung Seite 2 Maturavorbereitung Seite 3 Bsp. Die Halbwertzeit von

Mehr

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung

Mehr

3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum

3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum 3.3 Beschränktes(r) Wachstum/Zerfall und logistisches Wachstum Inhaltsverzeichnis 1 Beschränktes Wachstum und beschränkter Zerfall 2 2 Logistisches Wachstum 5 1 Beschr. Wachstum/Zerfall 30.10.2009 Theorie

Mehr

Analysis: exp. und beschränktes Wachstum Analysis

Analysis: exp. und beschränktes Wachstum Analysis Analysis Wahlteilaufgaben zu exponentiellem und beschränktem Wachstum inkl Differenzialgleichungen Gymnasium ab J1 Alexander Schwarz wwwmathe-aufgabencom Februar 2014 1 Aufgabe 1 Zu Beginn eines Experimentes

Mehr

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält!

a) Geben Sie eine Formel an, mit deren Hilfe man ermitteln kann, wie viel Wasser der Teich nach x regenlosen Tagen enthält! 1) Wasserstand Der Wasserstand eines Gartenteichs wird durch Verdunstung und Niederschlag reguliert. Im Sommer kann mit einer täglichen Verdunstung von 4 % des am Morgen vorhandenen Wassers gerechnet werden.

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Exponentielles Wachstum und Zerfall ( S. Riedmann)

Exponentielles Wachstum und Zerfall ( S. Riedmann) Exponentielles Wachstum und Zerfall ( S. Riedmann) Aufgabe (1) Ein Wald hatte 1990 einen Bestand von 33.000 m³ Holz. Im Laufe von 20 Jahren wurde kein Holz gefällt, so dass sich der Bestand von 1970 um

Mehr

Exponentialfunktion - typische Beispiele

Exponentialfunktion - typische Beispiele Exp_typBsp.odt Exponentialfunktion - 1/6 Exponentialfunktion - typische Beispiele Es geht um Wachstums- oder Abnahmevorgänge Nützlich in vielen Beispielen ist der folgende Ansatz : N(t)=N 0 a t t steht

Mehr

d) Berechne den Zeitpunkt, an dem der Flächeninhalt kleiner als 1 mm² wird

d) Berechne den Zeitpunkt, an dem der Flächeninhalt kleiner als 1 mm² wird 1) Text mit Prozent: Die Bakterienkultur ist jetzt 7000 mm² groß. Durch Zugabe eines Antibiotikums sterben die Bakterien, wobei die Fläche pro Stunde um etwa 35% kleiner wird. Es sei A(n) der Flächeninhalt

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition

Modul 241. Systemen. Modellierung des Wachstums der. Weltbevölkerung - Definition Modul 241 Modellierung von Systemen Modellierung des Wachstums der Weltbevölkerung Weltbevölkerung - Definition Der Begriff Weltbevölkerung bezeichnet die geschätzte Anzahl der Menschen, die zu einem bestimmten

Mehr

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles

Mehr

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall

Die Exponentialfunktion Kap Aufgaben zu exponentiellem Wachstum und Zerfall 1 von 5 19.11.2013 12:23 Doc-Stand: 11/19/2013 12:18:48 Die Exponentialfunktion Kap.6.3 - Aufgaben zu exponentiellem Wachstum und Zerfall Bei allen Aufgaben wird exponentielles Wachstum bzw. exponentieller

Mehr

Wachstum mit oberer Schranke

Wachstum mit oberer Schranke 1 1.1 exponentielles Wir haben das eines Kontos mit festem Zinssatz untersucht. Der jährliche Zuwachs (hier die Zinsen) sind proportional zum Bestand (hier dem jeweiligen Kontostand). Die Annahme, daß

Mehr

R. Brinkmann Seite Anwendungen der Exponentialfunktion

R. Brinkmann  Seite Anwendungen der Exponentialfunktion R. Brinkmann http://brinkmann-du.de Seite 6..2 Aufstellen der Funktionsgleichung : Anwendungen der Eponentialfunktion Coli Bakterien verrichten ihre Arbeit im menschlichen Darm. Sie vermehren sich durch

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014 BRP Mathematik VHS Floridsdorf Gruppe A / 15.02.2014 Seite 1/7 Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Februartermin 2014 Notenschlüssel:

Mehr

Vermischte Aufgaben als Probevorbereitung Posten 1

Vermischte Aufgaben als Probevorbereitung Posten 1 Vermischte Aufgaben als Probevorbereitung Posten 1 Aufgabe 1 Gegeben: f(x) = 2 x g(x) = log 3(x) a. Stelle die Funktion grafisch dar. b. Verschiebe die Kurve um 2 Einheiten nach oben und um 3 Einheiten

Mehr

Diskrete Wachstumsmodelle: Beispiele u. Übungen (Darstellung durch Rekursionsgleichungen)

Diskrete Wachstumsmodelle: Beispiele u. Übungen (Darstellung durch Rekursionsgleichungen) 1 Diskrete Wachstumsmodelle: Beispiele u. Übungen (Darstellung durch Rekursionsgleichungen) à A) Musterbeispiel Typ 1: a n = a n-1 q+d In einem abgegrenzten Gebiet besteht eine Nagetierpopulation in der

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 3 1 Exp.-funktion,Wachstum,Zerfall 27.08.2008 Theorie und

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

10 Zeit in Milliarden Jahren

10 Zeit in Milliarden Jahren a) Der radioaktive Zerfall von bestimmten Uran-Atomen lässt sich näherungsweise durch eine Exponentialfunktion N beschreiben (siehe nachstehende Abbildung). 100 Masse in mg 90 80 70 60 50 N 40 30 20 10

Mehr

4. Bei einem Versuch zur Vermehrung von Wasserlinsenkeimlingen wurde diese Tabelle angelegt: B(t) Anzahl der Keimlinge

4. Bei einem Versuch zur Vermehrung von Wasserlinsenkeimlingen wurde diese Tabelle angelegt: B(t) Anzahl der Keimlinge 1. Ein Geheimnis breitet sich aus Armin vertraut Bettina ein Geheimnis an. Obwohl Bettina versprach, das Geheimnis nicht weiterzuerzählen, erzählt sie es am folgenden Tag ihren Freunden Peter und Sabine.

Mehr

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t

W (t) = W (t) mit. ) [7] dt 3.2 Zeigen Sie, dass die Zeitdifferenz zwischen zwei unmittelbar aufeinander folgenden Maxima der Auslenkung konstant t Abschlussprüfungen zu: Exponentielle Zunahme / Abnahme AP 2000 AI 2.0 Für den Wert W(t) eines Autos (in DM) in Abhängigkeit von der Zeit t 0 (in Tagen) gelte der Zusammenhang W(t) = W o e kt mit einer

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Die folgende Abbildung zeigt die Höhe h(t) einer Fichte (in Meter) in Abhängigkeit von der Zeit t in Jahren. h(t)

Die folgende Abbildung zeigt die Höhe h(t) einer Fichte (in Meter) in Abhängigkeit von der Zeit t in Jahren. h(t) Wachsttumsprrozesse Ableittung als Änderrungsrratte Im Kapitel 6.4 haben wir uns bereits mit Aufgaben im "realen Bezug" befasst. Eine große Rolle spielte dabei die Ableitung als Änderungsrate. Die folgende

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum.

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum. Wachstumsmodellierung: Theorie Marius Bockwinkel Gliederung 1 Definition 2 Wachstumsarten 2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum

Mehr

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel) Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)

Mehr

Differenzialgleichung

Differenzialgleichung Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben.

Mehr

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen

Übungsblatt Wachstums- Zerfallsfunktionen Lösungen Übungsblatt Lösungen Beispiel 1: Man betrachtet das Wachstum der Weltbevölkerung im Zeitraum von 1950 (Zeitpunkt t = 0) bis 1990 (Zeitpunkt t = 40). Die Tabelle soll im Zuge der Rechnung von dir ausgefüllt

Mehr

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch.

Gruppe 1. Lies den folgenden Text aus einem Biologiebuch. Gruppe Lies den folgenden Text aus einem Biologiebuch.. Notiere das Wachstum der Salmonellen übersichtlich in einer Tabelle. Am Anfang soll eine Salmonelle vorhanden sein. Verwende dabei auch Potenzen..

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 4 Bevölkerungsentwicklung In dieser Aufgabe, die sich an eine Aufgabe aus der schriftlichen Abiturprüfung Hamburg 2005 anlehnt, geht es um eine allgemeine Exponentialfunktion und um die Frage,

Mehr

Exponentialfunktion / Wachstum

Exponentialfunktion / Wachstum 1. Die Eponentialfunktion Eponentialfunktion / Wachstum Spezialfall: = 0: a 0 = 1 P(0 1). Dies bedeutet, alle Graphen - unabhängig ihrer Basis - laufen durch den Punkt (0 1). Der Graph einer Eponentialfunktion

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen.

die Wachstumsrate ist proportional zur Anzahl der vorhandenen Individuen. Exponentielles Wachstum und Zerfall Angenommen, man möchte ein Modell des Wachstums oder Zerfalls einer Population erarbeiten, dann ist ein Gedanke naheliegend: die Wachstumsrate ist proportional zur Anzahl

Mehr

Wiederholungen Wachstumsfunktionen IGS List

Wiederholungen Wachstumsfunktionen IGS List Wiederholungen Wachstumsfunktionen IGS List Prozentuales Wachstum Wertetabelle Berechnen von Zwischenwerten Berechnen von Wachstumsraten und Wachstumsfaktoren Aufstellen von Funktionsgleichungen f ( )

Mehr

6. Ausgewählte Aufgabenstellungen Mathematik

6. Ausgewählte Aufgabenstellungen Mathematik 6. Ausgewählte Aufgabenstellungen Mathematik Bevölkerungsprognose (Teil-1-Aufgabe) In der angegebenen Tabelle der Statistik Austria ist die Bevölkerungsprognose für die österreichischen Bundesländer bis

Mehr

Vergleich verschiedener Wachstumsmodelle

Vergleich verschiedener Wachstumsmodelle BspNr: D0420 Ziele Entscheiden können, welche Wachstumsmodelle bei einem konkreten Beispiel sinnvoll sind Analoge Aufgabenstellungen Übungsbeispiele Lehrplanbezug (Österreich): Quelle: Dr. Alfred Eisler,

Mehr

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P.

Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Note. von 48 P Befriedigend. Aufgabe 1 Funktionen 2 P. Mathematik 6A 2. Schularbeit, 21. Dezember 2018 Gruppe A Name: Erreicht Note von 48 P. Notenschlüssel 0 23 Nicht genügend 24-29 Genügend 30-36 Befriedigend 37-42 Gut 43-48 Sehr gut Aufgabe 1 Funktionen

Mehr

Weltbevölkerungsprojektionen bis 2100

Weltbevölkerungsprojektionen bis 2100 Weltbevölkerungsprojektionen bis 2100 Die unterschiedlichen Varianten der Bevölkerungsprojektionen unterscheiden sich hauptsächlich durch die ihnen zugrunde liegenden Annahmen über die zukünftige Geburtenentwicklung.

Mehr

Exponentialfunktionen

Exponentialfunktionen Herr Kluge Mathematik Year 10 Exponentialfunktionen Ziel: Ich erkenne ein exponentielles Wachstum und kann es von einem linearen Wachstum unterscheiden. Ich weiß, wie man eine Gleichung zum exponentiellem

Mehr

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log

3 log. 2 )+log(1/u) g) log(2ux) 1+ a. j) log Logarithmen 1. 5 3 = 125 ist gleichbedeutend mit 5 log(125) = 3. Formen Sie nach diesem Muster um. a) 2 5 = 32 b) 10 4 = 10 000 c) 7 0 = 1 d) 3 2 = 1/9 e) 10 3 = 0.001 f) 5 1/2 = 5 g) 6 log(216) = 3 h)

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

ABITURPRÜFUNG 2017 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK

ABITURPRÜFUNG 2017 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK ABITURPRÜFUNG 17 ZUM ERWERB DER FACHGEBUNDENEN HOCHSCHULREIFE AN FACHOBERSCHULEN UND BERUFSOBERSCHULEN MATHEMATIK Nichttechnische Ausbildungsrichtungen Donnerstag, 1. Juni 17, 9. Uhr bis 1. Uhr Die Schülerinnen

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 2013 MATHEMATIK 3 STUNDEN DATUM : 10. Juni 2013, Vormittag DAUER DER PRÜFUNG: 2 Stunden (120 Minuten) ERLAUBTES HILFSMITTEL Prüfung mit technologischem Hilfsmittel 1/6 DE AUFGABE B1

Mehr

Zentrale Klassenarbeit 2003

Zentrale Klassenarbeit 2003 Zentrale Klassenarbeit 2003 Tipps ab Seite 21, Lösungen ab Seite 31 ZK Mathematik 2003 1. Aufgabe (8 Punkte) [ b 3 a) Vereinfache so weit wie möglich b) Löse die Gleichung 3 2x 3 x = 6. b5 : an 2 c 2n

Mehr

a) Begründen Sie, dass der Graph von achsensymmetrisch zur #-Achse ist. Zeigen Sie, dass die Nullstellen der Funktion unabhängig von sind.

a) Begründen Sie, dass der Graph von achsensymmetrisch zur #-Achse ist. Zeigen Sie, dass die Nullstellen der Funktion unabhängig von sind. Aufgabe M08A2.1 Ein Klimaforscher beschreibt die Entwicklung der globalen Durchschnittstemperatur modellhaft durch die Funktion mit 2,8, 0,0311,1 0 200. Dabei gibt die Zeit in Jahren seit Beginn des Jahres

Mehr

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d.

Das zyklische Wachstum wird mit Hilfe trigonometrischer Funktionen - meist der Sinusfunktion. f(x) = a sin(bx + c) + d. 1 Arten von Wachstum Wachstum bedeutet, dass eine Größe über die Zeit zu- oder abnimmt. Dabei kann diese Zu- oder Abnahme regelmäßigen Gesetzen folgen oder unregelmäßig sein. Uns interessieren die regelmäßigen

Mehr

Abschlussprüfung 2016 Mathematik schriftlich

Abschlussprüfung 2016 Mathematik schriftlich schriftlich Bemerkungen: Hilfsmittel: Punktetotal Die Prüfungsdauer beträgt 3 Stunden. Beginnen Sie jede Aufgabe auf einem neuen Blatt! Alle Zwischenergebnisse ungerundet weiterverwenden und nur das Endergebnis

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 4.02.204 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 60 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A2.a b Summe P. (max

Mehr

Didaktische Bemerkungen

Didaktische Bemerkungen zu den Rekursionsformeln und der Arbeit mit Derive 6.0 1 Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i)

Mehr

Klasse 10; Mathematik Kessling Seite 1

Klasse 10; Mathematik Kessling Seite 1 Klasse 0; Mathematik Kessling Seite Übungen Eponentialfunktionen/Logarithmus Aufgabe Beim Wachstum einer bestimmten Bakterienart der Bestand der Bakterien stündlich um 43% zu. Am Beginn des Beobachtungszeitraumes

Mehr

Exponentielle Abnahme

Exponentielle Abnahme Exponentielle Abnahme Typ 1 S Aufgabennummer: 1_00 Prüfungsteil: Aufgabenformat: Multiple Choice ( aus 5) Grundkompetenz: FA 5.3 keine Hilfsmittel S erforderlich gewohnte Hilfsmittel Typ besondere Technologie

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2012 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion an. Teilaufgabe Teil 1 1a (2 BE)

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Schriftliche Abiturprüfung 2017

Schriftliche Abiturprüfung 2017 MA-G-WTR 2017 NT Aufg Schriftliche Abiturprüfung 2017 Mathematik G-Kurs Datum: 19.05.2017 Bearbeitungszeit: 3 Zeitstunden Hilfsmittel: Zugelassener wissenschaftlicher Taschenrechner Zugelassene Formelsammlung

Mehr

(a) Wie lange braucht der Stein, um das Wasser zu erreichen? (b) Mit welcher Geschwindigkeit [km/h] kommt er an der Wasseroberfläche an?

(a) Wie lange braucht der Stein, um das Wasser zu erreichen? (b) Mit welcher Geschwindigkeit [km/h] kommt er an der Wasseroberfläche an? Mathematik für Biologen Aufgaben 1 Bestimmen Sie die Länge eines Kreisbogens: der Winkel sei, der Radius 0 km Der Kreisbogen hat die Länge km 2 Ein Stein fällt in einen Brunnen, dessen Wasseroberfläche

Mehr

Aufgabe P8/2010 Die Grafik veranschaulicht die Zuschauerentwicklung eines Fußballvereins von der Spielzeit 03/04 bis zur Spielzeit 08/09.

Aufgabe P8/2010 Die Grafik veranschaulicht die Zuschauerentwicklung eines Fußballvereins von der Spielzeit 03/04 bis zur Spielzeit 08/09. 6 Aufgaben im Dokument Aufgabe P8/2003 Das Diagramm zeigt die Aufteilung des Wasserverbrauchs eines Vier-Personen- Haushalts in den Jahren 1992 und 2002. Um wie viel Prozent liegt der Wasserverbrauch 2002

Mehr

Übungsklausur Analysis & Geometrie Bevölkerungsdichte & Pyramide Pflichtteil (ohne Hilfsmittel)

Übungsklausur Analysis & Geometrie Bevölkerungsdichte & Pyramide Pflichtteil (ohne Hilfsmittel) Pflichtteil (ohne Hilfsmittel) ) Berechne die erste Ableitung. 3x a) f(x) e cos(x x) b) 3x f(x) e cos(x x) (5VP) ) Berechne und vereinfache. a) cos x dx b) 5 dx (4VP) x 3) Bestimme die Lösungsmenge der

Mehr

Exponentialfunktion*

Exponentialfunktion* Exponentialfunktion* Aufgabennummer: 1_435 Aufgabentyp: Typ 1 T Typ Aufgabenformat: offenes Format Grundkompetenz: FA 5.1 Gegeben ist der Graph einer Exponentialfunktion f mit f(x) = a b x mit a, b R +

Mehr

Zu- und Abfluss Stausee

Zu- und Abfluss Stausee Zu- und Abfluss Stausee x Ein Stausee ändert seine Wassermenge. Zunächst wird er mit Wasser gefüllt. Die Zulaufratenfunktion ist gegeben durch f(x) = (x 2 10x+24) e 1 2 x, 0 x 6,5, x in Tagen, f(x) in

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

t dt Beispiel 11.6 Durchschnittsgeschwindigkeit Zeitraum? Lösung: Der zurückgelegte Weg ist gleich der farbigen Fläche im v-t-diagramm, also s = 2

t dt Beispiel 11.6 Durchschnittsgeschwindigkeit Zeitraum? Lösung: Der zurückgelegte Weg ist gleich der farbigen Fläche im v-t-diagramm, also s = 2 11..3 Mittttel lwerrttbi ildung mitt Inttegrral I lrrechung Beispiel 11.6 Durchschnittsgeschwindigkeit Die Abbildung zeigt das Weg-Zeit-Diagramm einer gleichmäßig beschleunigten Bewegung, a = 5 m/s. t.

Mehr

MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen. Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008

MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen. Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008 MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008 Frühstudium Alle Teilnehmer dieses Praktikums können sich zum

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik 3 (Diverses) Dozent: - Brückenkurs Mathematik / Physik 2016 Lineare

Mehr

4.1 Wachstum und Abnahme. Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in %

4.1 Wachstum und Abnahme. Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in % Wachstum 4.1 Wachstum und Abnahme Basisaufgabe zum selbstständigen Lernen Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in % 1 8 6 63 64 67 77 92 25 2 15 15 19,5 4 2 22 25 29 213

Mehr

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt.

Nach der Halbwertszeit τ ist nur noch die Hälfte der Atomkerne vorhanden. Durch diese Angabe ist b bestimmt. 1 9. Exponentieller Zerfall Von einer radioaktiven Substanz sind zu Beginn (0) Atome vorhanden. () ist die Anzahl der radioaktiven Atomkerne im Zeitpunkt t. () nimmt exponentiell ab, d.h. es gilt ()=(0)

Mehr

Vergleichsklausur 2006 für Jahrgangsstufe 11

Vergleichsklausur 2006 für Jahrgangsstufe 11 Vergleichsklausur 2006 für Jahrgangsstufe Termin: 3.05.2006, 3. und 4. Stunde reine Arbeitszeit: 90 min Jeder Schüler muss drei Aufgaben bearbeiten. Die. Aufgabe und 2. Aufgabe (Analysis) sind verpflichtende

Mehr

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse

ALGEBRA UND GEOMETRIE. 5. und 6. Klasse ü ALGEBRA UND GEOMETRIE 5. und 6. Klasse 1. VERKAUFSPREIS Für einen Laufmeter Stoff betragen die Selbstkosten S Euro, der Verkaufspreis ohne Mehrwertsteuer N Euro. a) Gib eine Formel für den Gewinn G in

Mehr

in Meter pro Sekunde beschrieben werden.

in Meter pro Sekunde beschrieben werden. Probematura September 2016 Seite 1/5 1. Mischungen Ein Kaufmann kauft im Großhandel Kaffee und Tee. Insgesamt kauft er 150 kg und bezahlt 1600. Für 1 kg Kaffee bezahlt er 13, für 1 kg Tee 8. (a) Jemand

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

2) 2 4 in der größtmöglichen Definitionsmenge

2) 2 4 in der größtmöglichen Definitionsmenge Abschlussprüfung Berufliche Oberschule 009 Mathematik 13 Nichttechnik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die Funktion f( x) ln ( x ) 4 in der größtmöglichen Definitionsmenge D f IR. Ihr Graph wird

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Beschränktes Wachstum Aufgaben. Medikament-Aufgabe. Wasserbecken-Aufgabe. Beschränktes Wachstum Regressionskurve. Flüssigkeitsmenge.

Beschränktes Wachstum Aufgaben. Medikament-Aufgabe. Wasserbecken-Aufgabe. Beschränktes Wachstum Regressionskurve. Flüssigkeitsmenge. Beschränktes Wachstum Aufgaben Medikament-Aufgabe Wasserbecken-Aufgabe Beschränktes Wachstum Regressionskurve Flüssigkeitsmenge Fieberkurve Motorboot Viruserkrankung Medikament-Aufgabe Wassertank-Aufgabe

Mehr

Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen

Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen Aufgaben zu exponentiellem Wachstum und Zerfall ausführliche Lösungen Aufgabe1 - Lösung a) Auf welchen Betrag wächst ein Waldbestand von 45 000m 3 bei einem jährlichen Zuwachs von 8% in 10 Jahren an? b)

Mehr

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + = ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

e-funktionen Aufgaben

e-funktionen Aufgaben e-funktionen Aufgaben Die Fichte ist in Nordeuropa und den Gebirgen Mitteleuropas beheimatet. Durch Aufforsten wurde sie jedoch auch im übrigen Europa weit verbreitet. Fichten können je nach Standort Höhen

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400.

Lösungen zu den Übungsaufgaben zu exponentiellem und beschränktem Wachstum mit Differenzialgleichungen. = a e mit a = f(0) = 400. wwwmathe-aufgabencom Lösungen zu den Übungsaufgaben zu exponentiellem und beschränem Wachstum mit Differenzialgleichungen Aufgabe 1 a) Ansatz für die Wachstumsfunion: f(t) = a e mit a = f(0) = 400 2k 1

Mehr

Exponentialfunktionen

Exponentialfunktionen Eponentialfunktionen 1. Eine Lotosblume bedeckt zum jetzigen Zeitpunkt eine Teichfläche von 0, m. Die bedeckte Teichfläche verdoppelt sich von Monat zu Monat. Nach welcher Zeit (nach Beginn der Beobachtung)

Mehr

Realschulabschluss Diagramme, Dreisatz, Anteile (Pflichtteil) ab Aufgaben im Dokument

Realschulabschluss Diagramme, Dreisatz, Anteile (Pflichtteil) ab Aufgaben im Dokument 3 Aufgaben im Dokument Aufgabe P7/2014 Die Polizei informiert: Bei insgesamt 640 Fahrzeugen wurde die Geschwindigkeit kontrolliert. Dabei überschritt jeder Achte der PKW-Fahrer die zulässige Höchstgeschwindigkeit.

Mehr

Wachstum 3. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 3. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Der normale Luftdruck beträgt auf Meereshöhe 1.013 Hektopascal (hpa). Er nimmt mit zunehmender Höhe über dem Meeresspiegel ab und zwar um rund 3% pro Kilometer. a) Wie hoch ist der Luftdruck auf dem

Mehr

allgemeine Informationen

allgemeine Informationen allgemeine Informationen Für das Zerfallsgesetz gilt der Zusammenhang N t =N 0 e t, wobei t die Zeit, N t die Anzahl der Kerne zum Zeitpunkt t, N 0 die Anzahl der Kerne zum Zeitpunkt t=0 (also zu Beginn

Mehr

Stochastik Musterlösung 3

Stochastik Musterlösung 3 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 3 1. Wir betrachten eine Krankheit, zu der es einen Test beim Arzt gibt. Wir wissen,

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t. Vorname:

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t. Vorname: Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t 2 Schüler(in) Nachname:. Vorname:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik B211 Quadratische Funktionen

Mehr

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen

Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen Abiturprüfungsaufgaben zu gewöhnlichen Differentialgleichungen Aufgabe 1: Abi 1999 / AI Ein erhitzter Körper kühlt sich im Laufe der Zeit allmählich auf die konstante emperatur a (in C) seiner Umgebung

Mehr

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 1) HRP BOS-

HRP 2007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag 1) HRP BOS- HRP 007 (BOS): Schriftliche Prüfungsaufgaben im Fach Mathematik (Vorschlag ) Bildung, Wissenschaft und Forschung HRP 007 -BOS- Name: Datum: Vorschlag : Aus 5 Aufgaben können Sie auswählen. Sie müssen dabei

Mehr

Die Durchschnittsgeschwindigkeit ergibt sich zu

Die Durchschnittsgeschwindigkeit ergibt sich zu Mittttel lwerrttbi ildung mitt Inttegrral I lrrechung Beispiel 11.6 Durchschnittsgeschwindigkeit Die Abbildung zeigt das Weg-Zeit-Diagramm einer gleichmäßig beschleunigten Bewegung, a = 5 m/s 2. t. Die

Mehr

Übungen PC - Kinetik - Seite 1 (von 5)

Übungen PC - Kinetik - Seite 1 (von 5) Übungsaufgaben PC: Kinetik 1) Für die Umlagerung von cis- in trans-dichlorethylen wurde die Halbwertszeit 245 min gefunden; die Reaktion gehorcht einem Geschwindigkeitsgesetz erster Ordnung. Wie viel g

Mehr