Didaktische Bemerkungen

Größe: px
Ab Seite anzeigen:

Download "Didaktische Bemerkungen"

Transkript

1 zu den Rekursionsformeln und der Arbeit mit Derive Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i) erhält man f t 1 =f 0 e k t 1 =f 0 e k t e k =f t e k und mit q=e k beschreiben beide Formeln exakt das exponentielle Wachstum. 2 Begrenztes Wachstumsmodell Aus der rekursiven Formel f t 1 =f t p G f t erhält man (*) f t 1 f t =p G f t. Die linke Seite entspricht dem Differenzenquotienten f t f t mit =1. Vergleicht man den Differenzenquotienten (*) mit der Ableitung von (**) f t =G G f 0 e k t, also f ' t =k G f 0 e k t und setzt noch die Umformung aus (**) G f t = G f 0 e k t ein, so sieht man, dass f ' t =k G f t ist und der Vergleich mit (*) sofort k p liefert. Wegen lim t 0 f t =f ' t ist dies somit nur eine Näherung. D. Müller CCS Bemerkung 1 -

2 Wir zeigen jetzt, wie groß der Fehler bei der Rekursionsformel für die Näherung f(t+1) - f(t) ist. Aus f t 1 =G G f 0 e k t 1 =G G f 0 e k t e k folgt f(t+1)-f(t)= G G f 0 e k t e k G G f 0 e k t = G f 0 e k t 1 e k mit der Reihenentwicklung e k =1 k k2 2! k3 3!... ergibt sich in erster Näherung für 1 e k =k. Die Rekursionsformel für das begrenzte Wachstum ist nur eine Näherung. Sie ist um so besser, desto kleiner k ist. Beispiel: Erwärmung eines Polar Ice von 3 C auf 15 C nach 32 Minuten bei 26 C Raumtemperatur. Mit Derive wurde k zu k=0,02305 bestimmt. Hier sind die Abweichungen minimal, da k klein ist. D. Müller CCS Bemerkung 2 -

3 3 Logistisches Wachstumsmodell Aus der rekursiven Formel f t 1 =f t q G f t f t erhält man a f t 1 f t =q G f t f t. Die linke Seite entspricht wieder dem Differenzenquotienten f t f t mit =1. Vereinfacht man die logistische Wachstumsfunktion f t = G f 0 f 0 e k t 1 zu G f 0 e k t f t = G ek t G f 0 f 0 e k t und setzt A=G f 0 und B= G f 0, so erhält man: A ek t f t = B f 0 e k t und f ' t = k A ek t [ ] A e k t k f 0 e k t [ ] 2 mit [ ]=B f 0 e k t. f ' t = k A ek t [ ] f 0 e k t = k A ek t [ ] 2 [ ] [ ] f 0 ek t [ ] = k f t 1 1 G f t = k G f t G f t. Der Vergleich mit der k rekursiven Formel (a) liefert G q. Bei Verwendung der rekursiven Wachstumsformel muss die Zeiteinheit klein gewählt werden, f t t f t damit die Näherung =f ' t gilt. Sonst sind die Abweichungen zwischen rekursiver und funktionaler Betrachtung groß. D. Müller CCS Bemerkung 3 -

4 Als Beispiel betrachte das Wachstum einer Fichte von 5.2 aus Elemente der Mathematik 10. Hier ist f(0)=2,1m, G=75m und nach f(56)=74,7m angenommen worden. Die folgende Tabelle gibt die Berechnungen für a) Wachstumsfunktion f(t) b) Rekursionsformel für Zeittakt 4a. Der Wert für q wurde in EXCEL ermittelt, so dass nach 56 Jahren gerade 74,7 erreicht werden. Es ergibt sich q = 0,008 für 4 Jahre und wegen f t 4 f t = q 4 4 f t G f t ist q/4 = 0,002. Aus a) ergibt sich k/g zu 0,00216 (Abweichung von 8%). c) Rekursionsformel für Zeittakt 1a. Der Wert für q wurde in EXCEL ermittelt, so dass nach 56 Jahren gerade 74,7 erreicht werden. Es ergibt sich q = 0, Die Abweichungen sind gering. D. Müller CCS Bemerkung 4 -

5 Hinweis zu DERIVE Rekursionen in DERIVE, besser nicht; denn sowie die Funktion mehrmals aufgerufen wird, werden die Berechnungszeiten extrem lang. Def.: In der Statuszeile wird folgender Term eingegeben: f(n) := IF(n=0, 2,1, f(n-1)+0,00216*f(n-1)*(75 - f(n-1) ) Mit f(n) und vereinfachen oder Tabelle lassen sich dann die Werte berechnen. Die Zeiten siehe Beispiel: D. Müller CCS Bemerkung 5 -

6 Berechnung von den Parametern k und G in der logistischen Wachstumsfunktion aus 2 Messwerten. Beispiel 6.2 Aufgabe 5) Sauna In Derive muss f0 statt f(0) geschrieben werden und die Eulersche Zahl e muss aus dem rechten unteren Auswahlmenü gewählt werden oder es muss die EXP(.. ) Funktion verwendet werden (nur Großbuchstaben für die Funktionsnamen verwenden, wenn Groß- und Kleinschreibung wird unterschieden - CASE Mode Sensitiv eingestellt wurde). Definiere: f(t) := f0*e^(k*t) / ( G + f0/g*(e^(k*t)-1) ) Anschliessend setze f0:=20 als Anfangswert. f(1)=40 löse diesen Ausdruck algebraisch und reell nach k auf. Man erhält k=ln 2 G 20 G 40. Definiere k :=ln 2 G 20 G 40 Jetzt löse den Ausdruck f(5)=231 numerisch nach G auf und vereinfache ihn mit zu G= Definiere G:= 301 und vereinfache die Funktion. Fertig, nun können Tabellenwerte (Analysis - Tabelle) berechnet und der Graph gezeichnet werden. Die Grenze läßt sich mit [t,g] zeichnen. Bei Aufgabe 5.3 Hefewachstum muss zuerst algebraisch nach G aufgelöst werden und anschliessend k numerisch bestimmt werden. Bei einigen Tabellenwerten gelingt die Auflösung nur mit numerisch und Grenzen 0<k<1. D. Müller CCS Bemerkung 6 -

7 Derive Ausdruck: Einstellungen beim Graphikfenster: Extras - Anzeige - Farbe - Farbe wählen und automatisch ändern deaktivieren und eine dunkle Farbe für den Druck auswählen. In Extras - Vereinfachen vor dem zeichnen aktivieren. D. Müller CCS Bemerkung 7 -

Vergleich verschiedener Wachstumsmodelle

Vergleich verschiedener Wachstumsmodelle BspNr: D0420 Ziele Entscheiden können, welche Wachstumsmodelle bei einem konkreten Beispiel sinnvoll sind Analoge Aufgabenstellungen Übungsbeispiele Lehrplanbezug (Österreich): Quelle: Dr. Alfred Eisler,

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

Fibonacci Zahlen Empirische Untersuchung der Aufrufe

Fibonacci Zahlen Empirische Untersuchung der Aufrufe Fibonacci Zahlen Empirische Untersuchung der Aufrufe Idee Um einen Überblick über die Rekursive Fibonacci Funktion zu erhalten könnte eine Untersuchung der Knotenpunkte Aufschluss über die Anzahl der Knoten

Mehr

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3)

- 1 - Eine Funktion f(x) heißt differenzierbar an der Stelle x 0, wenn der Grenzwert (siehe Kap. 3) - 1-4 Differentialrechnung 4.1 Ableitung einer Funktion Eine Funktion f() ist in einer Umgebung definiert. Abb.: Differenzenquotient Man kann immer einen Quotienten bilden, ( + ) f ( + h) f ( ) f h f +

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Analysis - Grundlagen der Differentialrechnung: Ableitungsfunktion Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT

Mehr

Informationen zum Gebrauch des Rechners TI 92

Informationen zum Gebrauch des Rechners TI 92 Kooperierende Fachgymnasien Wolfsburg Informationen zum Gebrauch des Rechners TI 92 Alle Besonderheiten und Möglichkeiten des TI 92 zu erkunden, wird uns in den nächsten zwei Jahren nicht gelingen. Zum

Mehr

Interpolation und Integration mit Polynomen

Interpolation und Integration mit Polynomen Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus

Mehr

Logistisches Wachstum

Logistisches Wachstum Logistisches Wachstum Themenheft Logistisches Wachstum Sehr viele Berechnungen werden auch mit TI Nspire CAS durchgeführt, was sich empfiehlt, weil die Rechnungen teilweise sehr anspruchsvoll sind. Hier

Mehr

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester

Univariate Analysis. Analysis und nichtlineare Modelle Sommersemester Analysis und nichtlineare Modelle Sommersemester 9 5 Univariate Analysis C. Berechnen Sie ohne Taschenrechner(!). Runden Sie die Ergebnisse auf ganze Zahlen. (a) 7 :, (b) 795 :.. Berechnen Sie ohne Taschenrechner(!):

Mehr

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab.

Aufgaben e-funktion. Gegeben sind die Funktionen f k (x) = x+k e x. a) Leite g(x) = 1 x k e x. ab. Aufgaben e-funktion 7 6 5 4 3-3 - - 3 u 4 - Gegeben sind die Funktionen f k () = +k e. a) Leite g() = k e ab. b) Die Graphen von f und f 3, die -Achse und die Gerade = u (u > 0) begrenzen die Fläche A(u).

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

Es geht um Graphen von Funktionen, Linien, Strecken, Dreiecke usw. Hier in 2D.

Es geht um Graphen von Funktionen, Linien, Strecken, Dreiecke usw. Hier in 2D. Wie 'malt' man mit Derive? Es geht um Graphen von Funktionen, Linien, Strecken, Dreiecke usw. Hier in D. #1: Zuerst Funktion definieren mit ':=' nicht mit '='! 4 3 x x #: f(x) - - x + x Zeile # anklicken

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 20 Wiederholung: Fehlerbetrachtung.

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem 27.0.205 um 0 Uhr im Kasten 9 Die

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

Zusatzmaterialien Funktionen von R. Brinkmann

Zusatzmaterialien Funktionen von R. Brinkmann Zusatzmaterialien Funktionen von R. Brinkmann http://brinkmann-du.de 6..0 Ausführliche Lösungen Kapitel. U U Finden Sie weitere Beispiele für solche Abhängigkeiten. Die Leistung eines Verbrennungsmotors

Mehr

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0

(x a) 3 + f (a) 4! x 4 4! Wir werden im Folgenden vor allem Maclaurin-Reihen betrachten, dies alles funktioniert aber auch. f (x) = sin x f (0) = 0 Taylor-Reihen Einführung Mathematik GLF / 6 Christian Neukirchen Oft können wir bestimmte mathematische Funktionen nicht genau ausrechnen, besonders die trigonometrischen Funktionen wie, cos x, oder die

Mehr

Johannes-Althusius-Gymnasium Emden

Johannes-Althusius-Gymnasium Emden Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)

(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4) 33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen

Mehr

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis

Thema aus dem Bereich Analysis Differentialrechnung I. Inhaltsverzeichnis Thema aus dem Bereich Analysis - 3.9 Differentialrechnung I Inhaltsverzeichnis 1 Differentialrechnung I 5.06.009 Theorie+Übungen 1 Stetigkeit Wir werden unsere Untersuchungen in der Differential- und Integralrechnung

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

A n a l y s i s Differentialrechnung I

A n a l y s i s Differentialrechnung I A n a l y s i s Differentialrechnung I BlueGene von IBM und dem LLNL ist gegenwärtig der schnellste Computer der Welt. Er soll ein PetaFLOP erreichen, das sind 0 5 = '000'000'000'000'000 Rechnungen pro

Mehr

Die Regeln von de l Hospital

Die Regeln von de l Hospital Die Regeln von de l Hospital Von Florian Modler Guillaume Francois Antoine de l Hospital war ein französischer Mathematiker und Aristokrat. Er wurde 66 geboren und verstarb 704 im Alter von 43 Jahren.

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen

Aufgaben zum logistischen Wachstum. Buscharten-Aufgabe. Punktsymmetrie zum Wendepunkt. Sonnenblumen-Aufgabe. Typische Fragestellungen Aufgaben zum logistischen Wachstum Kürbis-Aufgabe Buscharten-Aufgabe Punktsymmetrie zum Wendepunkt Sonnenblumen-Aufgabe Typische Fragestellungen Aufgaben zum logistischen Wachstum 1. Eine Untersuchung

Mehr

Exponential- und Logarithmusfunktionen:

Exponential- und Logarithmusfunktionen: Exponential- und Logarithmusfunktionen: Wachstum, Zerfall, Regression 1) Eva möchte sich ein Fahrrad kaufen Ihre Eltern wollen ihr einen Zuschuss geben Ihr Vater macht ihr folgendes Angebot: 5 Euro würde

Mehr

SciCa - Scientific Calculator

SciCa - Scientific Calculator SciCa - Scientific Calculator Version 3.0 Einleitung What's new...? Übersicht Berechnung Grafik Einleitung SciCa 3.0 ist bereits die vierte Auflage dieses wissenschaftlichen Taschenrechners. Das Programm

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen:

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen: Formalisierungspropädeutikum Aufgabensammlung Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer Oktober 2016 Aufgabe 1 (de Morgan sche Regeln) Veranschaulichen Sie die de Morgan

Mehr

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen:

Veranschaulichen Sie die de Morgan schen Regeln anhand von Venn-Diagrammen: Formalisierungspropädeutikum Aufgabensammlung Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer, C. Didden, A. Omar, P. Schwaferts Oktober 2017 Aufgabe 1 (de Morgan sche Regeln)

Mehr

e-funktionen Aufgaben

e-funktionen Aufgaben e-funktionen Aufgaben Die Fichte ist in Nordeuropa und den Gebirgen Mitteleuropas beheimatet. Durch Aufforsten wurde sie jedoch auch im übrigen Europa weit verbreitet. Fichten können je nach Standort Höhen

Mehr

Funktionen; Rekursion

Funktionen; Rekursion restart; Der Operator - Funktionen; Rekursion Mit dem - -Operator definiert man eine Funktion (Abbildung. '-' hat (zunächst einen Namen (den Formalparameter als linken und einen Ausdruck als rechten Operanden.

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Schulplan Mathematik Klasse 9 Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 3. Übung Übersicht ANALYSIS I FÜR TPH WS 208/9 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Konvergenz von Reihen (i) Aufgabe 2: Konvergenz von Reihen (ii) Aufgabe 3: ( ) Konvergenz von Reihen (iii) Aufgabe 4:

Mehr

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete

Mehr

1 elementare Integration mit Vereinfachung

1 elementare Integration mit Vereinfachung Um einen Ausdruck integrieren zu können, bedarf es ein wenig Scharfblick, um die richtige Methode wählen zu können. Diese werden (in der Schule) grob in die vier unten beschriebenen Methoden unterteilt.

Mehr

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION Fassung vom 3 Dezember 2005 Mathematik für Humanbiologen und Biologen 39 3 Exponentialfunktion 3 Exponentialfunktion Wir betrachten als einführendes Beispiel

Mehr

Verkettungs- und Umkehrfunktionen mit GeoGebra

Verkettungs- und Umkehrfunktionen mit GeoGebra Verkettungs- und Umkehrfunktionen mit GeoGebra. Verkettung zweier Funktionen Es sollen vorerst die Funktionen f(x) = x 2 und g(y) = sin(y) miteinander verkettet und die resultierende Funktion h = g f graphisch

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate 1. Phase: Methode der kleinsten Quadrate Einführung Im Vortrag über das CT-Verfahren hat Herr Köckler schon auf die Methode der kleinsten Quadrate hingewiesen. Diese Lösungsmethode, welche bei überbestimmten

Mehr

Einstieg in die Differential- und Integralrechnung mit Technologie

Einstieg in die Differential- und Integralrechnung mit Technologie Helmut Heugl, Hubert Langlotz Einstieg in die Differential- und Integralrechnung mit Technologie 1. Didaktische Voraussetzungen Gerade beim Begriffsbildungsprozess kann Technologie als Visualisierungswerkzeug

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Computeralgebrapakete CAS

Computeralgebrapakete CAS Computeralgebrapakete CAS µ MATH: einfaches CA-Paket für PC s. Derive: Nachfolger von µ MATH für PC s, Taschenrechner (TI 92), Einsatz in Schulen. Reduce: erstes weit verbreitetes System, auf Großrechnern,

Mehr

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise

Mehr

3.3 Absenkungsverlauf

3.3 Absenkungsverlauf 3.3 Absenkungsverlauf 3.3.1 Aufgabe 3.3.1.1 Verzögerungsfunktion Der Absenkungsverlauf des Grundwassers auf Grund einer Entnahme aus einem Brunnen (z.b. durch einen so genannten Pumpversuch) kann in erster

Mehr

Farben (2) Ein Unternehmen stellt unterschiedliche Farbprodukte für den Malerbedarf her.

Farben (2) Ein Unternehmen stellt unterschiedliche Farbprodukte für den Malerbedarf her. Farben (2) Aufgabennummer: B_082 Technologieeinsatz: möglich erforderlich S Ein Unternehmen stellt unterschiedliche Farbprodukte für den Malerbedarf her. a) Textilmalfarbe wird an Großkunden nur in ganzen

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Iterationsverfahren und Stabilitätsuntersuchung

Iterationsverfahren und Stabilitätsuntersuchung 1 FÜR INTERESSIERTE! NICHT TESTRELEVANT 1! Iterationsverfahren und Stabilitätsuntersuchung Unter Iterationsverfahren versteht man rekursive numerische Methoden mit welchen auch analytisch nicht lösbare

Mehr

Kennen, können, beherrschen lernen was gebraucht wird

Kennen, können, beherrschen lernen was gebraucht wird Inhaltsverzeichnis Inhaltsverzeichnis... 1 Erweiterte Summenfunktionen... 1 Die Funktion SummeWenn... 1... 1 Die Funktion SummeWenns... 2 Aufgabenstellung... 2 Die Funktion Summenprodukt... 3 Das Summenprodukt

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

Zentrale Klausur am Ende der Einführungsphase 2015 Mathematik

Zentrale Klausur am Ende der Einführungsphase 2015 Mathematik Teil I (hilsmittelrei) Seite 1 von 2 Zentrale Klausur am Ende der Einührungsphase 2015 Mathematik Teil I: Hilsmittelreier Teil Augabe 1: Analysis Die Abbildung zeigt den Graphen der Funktion mit der Gleichung

Mehr

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + = ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das

Mehr

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum

Abiturvorbereitung Wachstum S. 1 von 11. Wachstum Abiturvorbereitung Wachstum S. 1 von 11 Themen: Exponentielles Wachstum Exponentielle Abnahme Beschränktes Wachstum Logistisches Wachstum Modellieren bei gegebenen Daten Übungsaufgaben Wachstum Exponentielles

Mehr

DERIVE Termumformungen & Funktionen

DERIVE Termumformungen & Funktionen Ausgewählte Kapitel der Didaktik: Computerunterstützer Mathematikunterricht Vortrag: 04.05.2009 Claudia Bückner Derive: Termumformungen & Funktuionen DERIVE Termumformungen & Funktionen 1. Termumformungen

Mehr

Themenpools für die mündliche Reifeprüfung aus Mathematik 2018

Themenpools für die mündliche Reifeprüfung aus Mathematik 2018 Themenpools für die mündliche Reifeprüfung aus Mathematik 2018 Bei allen Themenpools werden das Wissen über Zahlenbereiche und der grundlegende Umgang mit Termen, Formeln, Gleichungen und Funktionen vorausgesetzt.

Mehr

49 Mathematik für Biologen, Biotechnologen und Biochemiker

49 Mathematik für Biologen, Biotechnologen und Biochemiker 49 Mathematik für Biologen, Biotechnologen und Biochemiker 43 Momentane Wachstumsrate, Zuwachsrate pro Zeiteinheit und die Verdoppelungszeit Jede Exponentialfunktion f(t) = c exp(t) ist durch die beiden

Mehr

Grundkompetenzkatalog. Mathematik

Grundkompetenzkatalog. Mathematik Grundkompetenzkatalog Mathematik AG - Algebra und Geometrie AG 1.1 AG 1.2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3.1 AG 3.2 AG 3.3 Wissen über Zahlenmengen N, Z, Q, R, C verständig einsetzen Wissen über

Mehr

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen klaus_messner@web.de www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2012 Konvergenz Definition Fourierreihen Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn es ein

Mehr

Beweise zum Ableiten weiterer Funktionen

Beweise zum Ableiten weiterer Funktionen Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die

Mehr

Abitur 2018 Mathematik Infinitesimalrechnung I

Abitur 2018 Mathematik Infinitesimalrechnung I Seite 1 Abitur 2018 Mathematik Infinitesimalrechnung I Teilaufgabe Teil A 1 (4 BE) Geben Sie für die Funktionen f 1 und f 2 jeweils die maximale Definitionsmenge und die Nullstelle an. f 1 : x 2x + 3 x

Mehr

Lineare Näherung. Anwendungen

Lineare Näherung. Anwendungen Lineare Näherung. Anwendungen Jörn Loviscach Versionsstand: 1. Januar 2010, 17:15 1 Lineare Näherung Ist eine Funktion f an der Stelle x 0 differenzierbar, existiert dort ihre Ableitung f und es gilt:

Mehr

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3

stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3 Aufgabe 4) Gegeben sind die Funktionen f mit f (x)= 4 x2 + 2 x+ 4 und g mit 3 g ( x)= 4 x2 + 5 2 x 3 4. a) Weisen Sie rechnerisch nach, dass der Graph Gf folgende Eigenschaften besitzt: Der Scheitelpunkt

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =

a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) = 50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht

Mehr

Kapitel 7. Differenzengleichungen

Kapitel 7. Differenzengleichungen apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE

Mehr

(5) Grafische Darstellung

(5) Grafische Darstellung (5) Grafische Darstellung Lineare Funktionen Das letzte Beispiel leitet sehr gut zur grafischen Darstellung über. Wir wollen die Graphen der Funktionen zeichnen. g: x + 2y = 3 h: 3x+ 2y = 1 Wir geben in

Mehr

Computer-Algebra-Systeme in einem modernen Mathematikunterricht

Computer-Algebra-Systeme in einem modernen Mathematikunterricht Computer-Algebra-Systeme in einem modernen Mathematikunterricht Edith Schneider edith.schneider@math.uni-augsburg.de Universität Augsburg Lehrstuhl für Didaktik der Mathematik Landshut, 10. 7. 2006 Vortragsgliederung

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Zentrale Klausur am Ende der Einführungsphase Mathematik

Zentrale Klausur am Ende der Einführungsphase Mathematik Teil I (hilfsmittelfrei) Seite von Name: Zentrale Klausur am Ende der Einführungsphase Teil I: Hilfsmittelfreier Teil Aufgabe : Analysis 05 Mathematik Die Abbildung zeigt den Graphen der Funktion f mit

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann. 1 Grundlagen 1.1 Das Rechnen mit Zahlen Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: N: natürliche Zahlen 1, 2, 3, 4, 5,... Z: ganze Zahlen..., 3, 2, 1, 0, 1, 2, 3,... Q: rationale Zahlen:

Mehr

8 Dezimalzahlen und Fehlerfortpflanzung

8 Dezimalzahlen und Fehlerfortpflanzung 7 Dezimalzahlen und Fehlerfortpflanzung 29 8 Dezimalzahlen und Fehlerfortpflanzung Lernziele: Konzepte: Dezimalzahlen und Runden Methoden: spezielle Umrechungen Kompetenzen: Einschätzen von Fehlerfortpflanzungen

Mehr

Blende die Achsen aus! Dein Resultat sollte in etwa wie in der folgenden Abbildung aussehen.

Blende die Achsen aus! Dein Resultat sollte in etwa wie in der folgenden Abbildung aussehen. Reihen mit GeoGebra 1. Reihe eine Folge von Teilsummen Wir wollen die Folge (a n ) n mit der Termdarstellung a n = 1/n (n N ) sowie die Folge (s n ) n von Teilsummen (a 1,a 1 +a 2,a 1 +a 2 +a 3,...) harmonische

Mehr

! Naturwissenschaftliches ORG! Gymnasium! Musisches ORG! andere:

! Naturwissenschaftliches ORG! Gymnasium! Musisches ORG! andere: Ein Evaluations-Projekt des Schülerfragebogen Familienname: Vorname: Alter: Geschlecht: M W Schule: Schulform: Realgymnasium Naturwissenschaftliches ORG Gymnasium Musisches ORG andere: Klasse: 5 6 7 8

Mehr

(Unvollständige) Zusammenfassung Analysis Grundkurs

(Unvollständige) Zusammenfassung Analysis Grundkurs (Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt.

Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt. Schulinterner Arbeitsplan Mathematik Klasse 9 & 10 Kompetenzen: s.u. Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt. KLASSE 9 Ähnlichkeit MA 1: erläutern

Mehr

Exponentielles Wachstum:

Exponentielles Wachstum: Exponentielles Wachstum: Bsp.: Ein Wald hat zum Zeitpunkt t = 0 einen Holzbestand von N 0 = N(0) = 20 000 m 3. Nach 0 Jahren ist der Holzbestand auf 25 000 m 3 angewachsen. a) Nimm an, dass die Zunahme

Mehr

( )** I J 4979 Alternativ: ( )** I J ( )** LME*****

( )** I J 4979 Alternativ: ( )** I J ( )** LME***** Lösung A1 Lösungslogik GTR-Einstellungen: Y1=30 800/ 5 Y2= 1 Y3=1 1 1 Y4=1 a) Aufstellen der Funktionsgleichung: Wir haben eine gebrochen rationale Funktion mit zwei Unbekannten, also benötigen wir zwei

Mehr

Ausgewählte Kapitel der Mathematikdidaktik Wie viel Termumformung braucht der Mensch?

Ausgewählte Kapitel der Mathematikdidaktik Wie viel Termumformung braucht der Mensch? Ausgewählte Kapitel der Mathematikdidaktik Wie viel Termumformung braucht der Mensch? Daniel Thieme 501744 Humboldt-Universität zu Berlin 28.10.2008 erstellt mit AMS-LATEX 28.10.2008 Derive Termumformungen

Mehr