GRUNDLEGENDE MODELLE. Caroline Herbek

Größe: px
Ab Seite anzeigen:

Download "GRUNDLEGENDE MODELLE. Caroline Herbek"

Transkript

1 GRUNDLEGENDE MODELLE Caroline Herbek

2 Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion) Differenz d aus den Werten N t und N t-1 ist die Zu- bzw. Abnahme innerhalb eines Zeitschrittes 2

3 Beispiel N t = 0,9 N t-1 +0,3 N 1 = 0,9 N 0 +0,3 N 2 = 0,9 N 1 +0,3 = 0,9² N 0 +0,3(0,9+1) N 3 = 0,9 N 2 +0,3 = 0,9³ N 0 +0,3(0,9²+0,9+1) N t = 0,9 t N 0 +0,3(0,9 t +0,9 t-1 +0,9 t ,9²+0,9+1) 3

4 Rekursion/Bildungsgesetz Rekursionsformeln => explizite Bildungsgesetze Explizites Bildungsgesetz Vorteil: jedes Folgenglied kann sofort berechnet werden, da man nicht wie bei der Rekursion den Wert des vorangehenden Folgengliedes kennen muss Nachteil: weniger Auskunft über Struktur des Systems Rekursives Bildungsgesetz Vorteil: Entwicklung: Schritt für Schritt: Verstehen des Prozesses Nachteil: immenser Rechenaufwand 4

5 Beispiel N t = 0,9 N t-1 +0,3 pendelt sich bei 3 ein Fixpunkt N t =N t-1 =N* N*=0,9N*+0,3 0,1N*=0,3 N*=3 Ab diesem Wert sind alle folgenden Werte gleich 5

6 Schulunterricht Zuerst Rekursionen erlernen, dann Bildungsgesetz Bildungsgesetz über Fixpunkt finden Formel: N t =a t (N 0 -N*)+N* N t =0,9 t (N 0-3)+3 Um Rekursionsformeln oder explizite Bildungsgesetze ausrechnen zu können, muss N 0 bekannt sein Sinnvoller Einsatz von Computern, um Rekursionen zu berechnen 6

7 Lineares Wachstum Folgenglieder liegen entlang einer Geraden Steigung: d (N t = N t-1 +d) d < 0 => fallende Gerade => lineare Abnahme d > 0 => steigende Gerade => lineare Zunahme Unbegrenztes Wachstum => Modell für reale Prozesse Wachstum von Fingernägeln und Haaren Größenwachstum von Menschen und Tieren 7

8 Exponentielles Wachstum Differenzengleichung N t = N t-1 (1+r) Rekursionsformel r Wachstumsrate q=(1+r) Wachstumsfaktor Lösung der Differenzengleichung: N t =N 0 q t Bakterienwachstum, Wachstum durch Zellteilung, Bevölkerungswachstum 8

9 Differentialgleichungen Funktion x(t) und Ableitungen x (t), x (t) kommen vor Lösung: jene Funktion x(t), die die Differentialgleichung und gegebenenfalls eine Anfangsbedingung x(0)=c erfüllt Nicht alle Differentialgleichungen sind lösbar Biomathematik: beliebtesten Werkzeuge zur Beschreibung kontinuierlicher Prozesse 9

10 Beispiel Es soll jene Lösung der Differentialgleichung gefunden werden, die die Anfangsbedingung x(0)=2 erfüllt Stammfunktion Umformung t=0, x(0)=2 => um C 1 auszudrücken 10

11 Differentialgleichungen Biomathematik: komplexere Modelle Nicht für den Schulunterricht geeignet Differentialgleichung in eine Differenzengleichung umwandeln => Beispiel Am qualitativen Verlauf ändert sich nichts In der Schule sinnvoll zu bearbeiten 11

12 Beispiel Differentialgleichung Differentialquotient Diskretisierungsschritt umformen 12

13 Beispiel Rekursionsformel x n = x n-1 +rx n-1 x n = x n-1 (1+r) 13

14 Euler sches Polygonzugverfahren Numerische Mathematik: Differentialgleichungen der Form x (t)=f(x(t)) näherungsweise zu lösen Möglichst kleine Schrittweite Berechnung: rekursiv ausgehend von einem Startwert x(t 0 )=x 0 Hilfe: Vorschrift: Graphisch: Polygonzug 14

15 Euler sches Polygonzugverfahren Strecke zwischen x i-1 und x i => Streckung k=f(x i-1 ) In jedem Schritt macht man einen Fehler mehr gegenüber der kontinuierlichen Lösungskurve Verkleinerung der Schrittweite: Fehler reduzieren => längere Rechenzeit Zwei oder mehrere schon vorher berechnete Werte heranziehen, um neuen Wert zu berechnen (Mehrschrittverfahren) => genauere Ergebnisse 15

16 Schulunterricht Schwierige Differentialgleichungen als Differenzengleichungen lösen, sonst Trennung der Variablen Exponentielles Wachstum wird als kontinuierliches als auch als diskretes Modell behandelt Schrittweises exponentielles Wachstum => Zinseszinsrechnung => Unterstufe Stetiges exponentielles Wachstum => Oberstufe Euler sches Polygonzugverfahren => adaptiert 16

17 Begrenztes Wachstum Differenzengleichung N t = N t-1 +r(k-n t-1 ) Rekursionsformel r Wachstumsrate K Kapazität Fixpunkt N t = N t-1 => N t = K führt nach Fixpunktberechnung zu N t =K-(K-N 0 )(1-r) t 17

18 Fixpunkte Existenz N t = N t-1 Fixpunkt Berechnung: N t = 0,9 N t-1 +0,3 N t =N t-1 =N* N*=0,9N*+0,3 0,1N*=0,3 N*=3 Rekursionsformel 18

19 Fixpunkte Aussage über Langzeitverhalten des Prozesses Anziehend oder abstoßend Ab dem Fixpunkt ändern sich die Folgenglieder nicht mehr Gibt es also einen Fixpunkt, so verharrt der dynamische Prozess genau dort 19

20 Schulunterricht Fixpunktberechnung einfacher zu berechnen als Grenzwert Explizites Bildungsgesetz über Fixpunkt finden In der Natur gibt es keine unbegrenzten Wachstumsvorgänge, somit pendelt sich der Wert ein 20

21 Logistisches Wachstum Verknüpfung des exponentiellen mit dem begrenztem Wachstum Differenzengleichung N t =N t-1 +rn t-1 (K-N t-1 ) Diskretes logistisches Wachstumsmodell => keine explizite Lösung => Näherungslösung 21

22 Diskretes logistisches Wachstum K = 1 N 0 = 0,1 r < 1 schrittweise Annäherung gegen 1 sigmoider Kurvenverlauf Anfangsstadium: N t-1 << K => exponentiell K-N t-1 ~K => N t ~N t-1 (1+rK) N t-1 ~K => K-N t-1 ~0 => Wachstum wird gebremst => begrenztes Wachstum 22

23 Diskretes logistisches Wachstum Vergrößert man r => Oszillation pendelt sich aber rasch wieder beim Fixpunkt K = 1ein r = 2,2 periodisches Verhalten Noch größere Werte r=2,5 doppelt-periodisches Verhalten 23

24 Diskretes logistisches Wachstum Periodenverdopplungen bei Vergrößerung von r Viererperiode, Achterperiode, ab r~3 => keine einheitlichen Perioden => völlig unvorhersehbare Schwankungen (deterministisches Chaos) Vergrößern von r => teilweise wieder geordnetes periodisches Verhalten 24

25 Alltag Wettervorhersage Wetter wird von unzähligen Parametern und Größen beeinflusst Sobald sich eine dieser Ursachen ändert, führt dies in einem kurzen Zeitraum zu völlig unprognostizierbaren Ergebnissen. Daher sind kaum längerfristige Vorhersagen möglich 25

26 Logistische Differentialgleichung Erstmals 1837 Beginn eines neuen Forschungsgebietes: mathematische Chaostheorie Differentialgleichung Trennen der Variablen: exakte Lösung 26

27 Schulunterricht Diskretes logistisches Wachstum als Näherungslösung angeben Wetter Klimawandel => fächerübergreifender Unterricht Logistische Differentialgleichung exakt zu lösen 27

Mathematische Grundlagen der dynamischen Simulation

Mathematische Grundlagen der dynamischen Simulation Mathematische Grundlagen der dynamischen Simulation Dynamische Systeme sind Systeme, die sich verändern. Es geht dabei um eine zeitliche Entwicklung und wie immer in der Informatik betrachten wir dabei

Mehr

Kapitel 7. Differenzengleichungen

Kapitel 7. Differenzengleichungen apitel 7 Differenzengleichungen I n h a ltsverze ichnis DIFFERENZENGLEICHUNGEN... 3 EINFÜHRUNG UND BEISPIELE... 3 DIFFERENZENGLEICHUNG 1. ORDNUNG... 3 ELEMENTARE DIFFERENTIALGLEICHUNGEN... 4 GEWÖHNLICHE

Mehr

Julia Lutnik, Seminar für Lehramt Mathematik SS2012

Julia Lutnik, Seminar für Lehramt Mathematik SS2012 Julia Lutnik, 0801309 Seminar für Lehramt Mathematik SS2012 Innermathematisches Potenzial Tabellenkalkulation Iteration Darstellungsformen Mathematisches Modellieren Außermathematisches Potenzial alltagsnahe

Mehr

Biomathematik als Unterrichtseinheit I. Jasmin Sima

Biomathematik als Unterrichtseinheit I. Jasmin Sima Biomathematik als Unterrichtseinheit I Jasmin Sima 0802181 Was ist guter Unterricht? Fachlich gehaltvolle Unterrichtsgestaltung Kognitive Aktivierung der Schülerinnen und Schüler Effektive und schülerorientierte

Mehr

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1

Euler-Verfahren. exakte Lösung. Euler-Streckenzüge. Folie 1 exakte Lösung Euler-Verfahren Folie 1 Euler-Streckenzüge Ein paar grundlegende Anmerkungen zur Numerik Die Begriffe Numerik bzw. Numerische Mathematik bezeichnen ein Teilgebiet der Mathematik, welches

Mehr

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz

Teil 2. Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung. Auch mit CAS-Einsatz Themenheft Exponentielles Wachstum Teil 2 Hier: Verwendung von Methoden aus der Analysis. Wachstumsrate, Wachstumsgeschwindigkeit Differenzialgleichung Auch mit CAS-Einsatz Datei Nr. 45810 Stand 23. Februar

Mehr

Didaktische Bemerkungen

Didaktische Bemerkungen zu den Rekursionsformeln und der Arbeit mit Derive 6.0 1 Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i)

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Differenzialgleichung

Differenzialgleichung Differenzialgleichung Die Differenzialgleichung ist die kontinuierliche Variante der Differenzengleichung, die wir schon bei den Folgen und Reihen als rekursive Form ( n+1 = n + 5) kennengelernt haben.

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen 10. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 22. Mai 2014 Gliederung 1 Aufgabenstellung und Interpretation

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen

ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

Gleichgewichte von Differentialgleichungen

Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Teil 1 Zur Erinnerung: Zur Erinnerung: Wir hatten lineare Differentialgleichungen betrachtet: in R 1 : Zur Erinnerung:

Mehr

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle

SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Logistisches Wachstum

Logistisches Wachstum Logistisches Wachstum Themenheft Logistisches Wachstum Sehr viele Berechnungen werden auch mit TI Nspire CAS durchgeführt, was sich empfiehlt, weil die Rechnungen teilweise sehr anspruchsvoll sind. Hier

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /18 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Kapitel 12. Differenzen- und Differenzialgleichungen

Kapitel 12. Differenzen- und Differenzialgleichungen Kapitel 12. Differenzen- und Differenzialgleichungen In diesem Kapitel wollen wir die grundlegenden Techniken erklären, mit denen das dynamische Verhalten von ökonomischen Systemen (und nicht nur solchen)

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 3 Folie 1 /16 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 3. Zahlenfolgen und Grenzwerte

Mehr

MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen. Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008

MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen. Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008 MuPAD Computeralgebrapraktikum: Modelle mit Differentialgleichungen Prof. Dr. Wolfram Koepf Prof. Dr. Werner Seiler Thomas Wassong SS 2008 Frühstudium Alle Teilnehmer dieses Praktikums können sich zum

Mehr

Fressen und Gefressen werden

Fressen und Gefressen werden Fressen und Gefressen werden Teilnehmer: Ssohrab Borhanian Kristin Emmrich Johannes Jendersie Sophia Ketterl Arne Müller Thao Phuong Nguyen Felix Rehn Heinrich-Hertz-Oberschule Heinrich-Hertz-Oberschule

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2

Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Mathematik für Biologen und Chemiker Prof. Scheltho - Übungen Mathe 2 Fortsetzung der komlexen Zahlen : 9. Radizieren und Potenzen a) Berechnen Sie (1+i) 20 und geben Sie das Resultat als Polarkoordinaten

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden

Differentialgleichung ausgehend von einem praktischen Beispiel aufstellen und lösen sowie die gefundene Lösung anwenden bernhard.nietrost@htl-steyr.ac.at Seite 1 von 17 Kettenlinie Mathematische / Fachliche Inhalte in Stichworten: Differentialgleichungen (1. und 2. Ordnung, direkt integrierbar, Substitution, Trennen der

Mehr

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum...

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum... Wirtschaftswissenschaftliches Zentrum 6 Universität Basel Mathematik Dr. Thomas Zehrt Differenzengleichungen Inhaltsverzeichnis 1 Einführung 1.1 Vermögenswachstum.............................. 3 1. Unbeschränktes

Mehr

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum...

1 Einführung Vermögenswachstum Unbeschränktes Bevölkerungswachstum Beschränktes (Bevölkerungs)wachstum... Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Mathematik 1 Dr. Thomas Zehrt Differenzengleichungen Inhaltsverzeichnis 1 Einführung 1.1 Vermögenswachstum.............................. 3 1. Unbeschränktes

Mehr

1. Schularbeit - Gruppe A M 0 1(1) 6C A

1. Schularbeit - Gruppe A M 0 1(1) 6C A . Schularbeit - Gruppe A M 0 () 6C 3 0 97 A. Ergänze folgende Tabelle: Potenz Bruch / Wurzel numerischer Wert 3-5 n -5 8 0,00 3 5 4 x 3 8 7. Berechne: a) ( x y) ( x + y) 0 = b) 9x 6ax : = 5 4a 3 3. Rechne

Mehr

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007 Differenzengleichung Differentialgleichung 1. Ordnung (konstante Koeff.) Gestalt x n+1 =ax n +b allgemeine Lösung x n = a n x 0 +b((a n -1)/(a-1)) für a 1 oder x n = x 0 +b n für a=1 partikuläre Lösung

Mehr

Jan Henrik Sylvester. 10. Februar 2003

Jan Henrik Sylvester. 10. Februar 2003 Seminar über gewöhnliche Differentialgleichungen Chaos in eindimensionalen diskreten dynamischen Systemen: Das Feigenbaum-Szenario Die logistische Abbildung Jan Henrik Sylvester 10. Februar 2003 1 Die

Mehr

8 Dynamische Systeme. 1 Begriff und Anwendung

8 Dynamische Systeme. 1 Begriff und Anwendung 8 Dynamische Systeme Jörn Loviscach Versionsstand: 23. März 2013, 15:56 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html This

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23

Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 23 Übungen zu gewöhnlichen Differentialgleichungen Lösungen zu Übung 3 3.1 Gegeben sei die Anfangswertaufgabe (AWA) Zeigen Sie, dass die Funktion y (x) = x y(x) mit y(0) = 1 die einzige Lösung dieser AWA

Mehr

Mathematik p sitiv! Österreichischer Lehrplan. Mathematik p sitiv! Wolfram Thorwartl Günther Wagner Helga Wagner. 8. Klasse AHS

Mathematik p sitiv! Österreichischer Lehrplan. Mathematik p sitiv! Wolfram Thorwartl Günther Wagner Helga Wagner. 8. Klasse AHS Mathematik positiv! 8 deckt den gesamten Lehrstoff nach dem neuen österreichischen Lehrplan der 8. Klasse AHS ab und hilft, mathematische Zusammenhänge zu analysieren, Lösungsmethoden zu erkennen und diese

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3))

Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung besprochen, Teile a) bis c) sind exakt die Aufgaben von Blatt 2, Aufgabe 3)) Formalisierungspropädeutikum Übungsblatt 3 Prof. Dr. Th. Augustin, Dr. R. Poellinger, C. Jansen, J. Plaß, G. Schollmeyer WiSe 2015/16 Aufgabe 1 (Exponentielles Wachstum, wird teilweise auch in Vorlesung

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Mathematik 1 (Studiengang Betriebsökonomie) Themenblock 2: Folgen und Reihen

Mathematik 1 (Studiengang Betriebsökonomie) Themenblock 2: Folgen und Reihen Mathematik 1 (Studiengang Betriebsökonomie) Building Competence. Crossing Borders. Lernziele Sie können erklären, was man unter einer Folge versteht. die explizite und rekursive Definition von Zahlenfolgen

Mehr

Prüfungsfragen zur Theorie

Prüfungsfragen zur Theorie Prüfungsfragen zur Theorie Formulieren Sie die Monotoniegesetze (Rechenregeln für Ungleichungen)! Satz: Für alle a,b,c,d gilt: a b und c.d a+c b+d Satz: Für alle a,b,c,d + o gilt: a b und c d ac bd 1 Satz:

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.

Mehr

Mathematik Curriculum Kursstufe

Mathematik Curriculum Kursstufe Mathematik Curriculum Kursstufe Kompetenzen und Inhalte des Bildungsplans Leitidee Funktionaler können besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen. Unterrichtsinhalte

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

7. Differentialgleichungen

7. Differentialgleichungen 7. Allgemeine Theorie 4 7. Differentialgleichungen 7. Allgemeine Theorie In diesem Kaitel betrachten wir Prozesse, welche kontinuierlich ablaufen, wie z.b. viele Naturvorgänge, technische Abläufe, chemische

Mehr

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13 Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

Mathematik 1 Folgen, Reihen und Finanzmathematik

Mathematik 1 Folgen, Reihen und Finanzmathematik Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Folgen, Reihen und Finanzmathematik Inhaltsverzeichnis 1 Zahlenfolgen 2 1.1 Grundlegende

Mehr

Übungsaufgabe Numerische Lösung DGL

Übungsaufgabe Numerische Lösung DGL Kallenrode, www.sotere.uos.de Übungsaufgabe Numerische Lösung DGL 1. Bestimmen Sie die Lösung der DGL ẋ = (t 2) 2 + t x mit x(0) = 1 im Bereich von t = 0 bis t = 5 mit Hilfe des Euler schen Streckenzugverfahrens,

Mehr

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 25. August 2006 Aufgaben Fibonacci-Folgen 28. April 2006 Blatt 3 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P9: Man betrachte n Münzwürfe, wobei man mit Null Wappen und mit Eins Zahl codiere. Man erhält

Mehr

Schulcurriculum Mathematik Kursstufe November 2011

Schulcurriculum Mathematik Kursstufe November 2011 Schulcurriculum Mathematik Kursstufe November 2011 Inhalte Leitidee / Kompetenzen Bemerkungen Die Schülerinnen und Schüler können Analysis Bestimmung von Extrem- und Wendepunkten: Höhere Ableitungen Bedeutung

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 2 Übung zur Vorlesung Modellierung und Simulation 3 (WS 2013/14) Prof Dr G Queisser Markus Breit, Martin Stepniewski Abgabe: Dienstag,

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Nachklausur am Donnerstag, den 7. August 2008

Nachklausur am Donnerstag, den 7. August 2008 Nachklausur zur Vorlesung Numerische Mathematik (V2E2) Sommersemester 2008 Prof. Dr. Martin Rumpf Dr. Martin Lenz Dipl.-Math. Nadine Olischläger Nachklausur am Donnerstag, den 7. August 2008 Bearbeitungszeit:

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum.

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum. Wachstumsmodellierung: Theorie Marius Bockwinkel Gliederung 1 Definition 2 Wachstumsarten 2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

Modellierung mit Dynamischen Systemen und Populationsdynamik

Modellierung mit Dynamischen Systemen und Populationsdynamik Modellierung mit Dynamischen Systemen und Populationsdynamik Dynamische Systeme in der Schule Fachtagung Göttingen 2017 Alfred J. Lotka (1880-1949) Technische Universität Dresden Vito Volterra 1860-1940

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x).

Aufgabenstellung: Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y = y(x). I Neunte Übungseinheit Inhalt der neunten Übungseinheit: Gewöhnliche Differentialgleichungen erster Ordnung I. Gewöhnliche Differentialgleichungen erster Ordnung Aufgabenstellung: Explizite gewöhnliche

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Diskret oder kontinuierlich modellieren?

Diskret oder kontinuierlich modellieren? Diskret oder kontinuierlich modellieren? Franz Pauer, Florian Stampfer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2017 21. April 2017

Mehr

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x

Wachstum und Zerfall / Exponentialfunktionen. a x = e (lna) x = e k x Wachstum und Zerfall / Exponentialfunktionen Mit Exponentialfunktionen können alle Wachstums- und Zerfalls- oder Abnahmeprozesse beschrieben werden. Im Allgemeinen geht es dabei um die Exponentialfunktionen

Mehr

1 Ein mathematisches Modell und die Änderungsrate

1 Ein mathematisches Modell und die Änderungsrate 1 Ein mathematisches Modell und die Änderungsrate Die Differenzial- und Integralrechnung 1 ist eine Sprache zur Beschreibung des quantitativen Zusammenhangs verschiedener Grössen in einem bestimmten Kontext

Mehr

Die Harmonische Reihe

Die Harmonische Reihe Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen

Mehr

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010 Rekursive Folgen für GeoGebraCAS Letzte Änderung: 07. März 2010 1 Überblick Zusammenfassung Innerhalb von zwei Unterrichtseinheiten sollen die Schüler/innen vier Arbeitsblätter mit GeoGebra erstellen,

Mehr

Lehrbuch der Analysis TeiM

Lehrbuch der Analysis TeiM Harro Heuser Lehrbuch der Analysis TeiM 17., aktualisierte Auflage Mit 127 Abbildungen, 811 Aufgaben, zum Teil mit Lösungen j^" i ;'*^'^^"'\ 1 STUDIUM VIEWEG+ TEUBNER Inhalt Einleitung 12 I Mengen und

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Das Newton-Verfahren

Das Newton-Verfahren 1/14 Das Newton-Verfahren 11./12. Jgst. Bayern Doris Behrendt Gymnasium Marktbreit Stand: 12. März 2016 2/14 Formelsammlung Seite 72 oben, vierter Punkt: Newton-Iterationsformel: x n+1 = x n f(x n) f (x

Mehr

4.1 Wachstum und Abnahme. Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in %

4.1 Wachstum und Abnahme. Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in % Wachstum 4.1 Wachstum und Abnahme Basisaufgabe zum selbstständigen Lernen Bundestagswahlen: Kosten in Mill. Euro Bundestagswahlen: Kostenanstieg in % 1 8 6 63 64 67 77 92 25 2 15 15 19,5 4 2 22 25 29 213

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

n(n + 1)(2n + 1). 6 j 2 = Hinweis: Setze für n IN n(n + 1)(2n + 1) 6 A(n) : und wähle die Bezeichnung s n := n (2j + 1) = n2 (2j + 1) = (n + 1)2

n(n + 1)(2n + 1). 6 j 2 = Hinweis: Setze für n IN n(n + 1)(2n + 1) 6 A(n) : und wähle die Bezeichnung s n := n (2j + 1) = n2 (2j + 1) = (n + 1)2 15. Dezember 2006 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner)

Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Lösungserwartung und Lösungsschlüssel zur prototypischen Schularbeit für die 7. Klasse (Autor: Gottfried Gurtner) Teil : Mathematische Grundkompetenzen ) Es muss (ausschließlich) die richtige Antwortmöglichkeit

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 07 Fixpunkte Hans Walser: Modul 07, Fixpunkte ii Inhalt Fixpunkte.... Worum es geht....2 Geometrische Beispiele von Fixpunkten....2. Stadtplan....2.2

Mehr