Versicherungstechnik

Größe: px
Ab Seite anzeigen:

Download "Versicherungstechnik"

Transkript

1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dipl.-Math. Rolf Wendt DOOR Aufgabe 5 Versicherungstechnik Übungsblatt 2 Abgabe bis zum Dienstag, dem um 0 Uhr im Kasten 9 Die bekannte und sehr praktische sog. 72er-Formel besagt: Wird ein Kapital B mit p % p. a. gemischt verzinst, so verdoppelt sich das Kapital in 72/p Jahren. Wie gut ist diese Näherung? (2 Punkte) Lösungsvorschlag: Gemischte/zusammengesetzte Verzinsung heißt Zinsen werden mitverzinst (also Zinseszinsrechnung). 72er-Formel : ( 2 B = B + p 00 ( 2 = + p ) n 00 ln 2 ln ( + p ) = n 00? =72/p Auflösung des Terms nur durch Abschätzung möglich! = Nach dem Satz von Taylor gilt für differenzierbare Funktionen f: f(x + t) = f(x) + f (x) t + f (x) 2! ) n t 2 + f (x) 3! t Mit f(x) = ln(x) und damit f (x) = x, f (x) = x 2, f (x) = 2 x 3 gilt für ein festes x = insbesondere ln( + t) = 0 + t 2 t t3... Für kleine t gilt also Man erhält also n = ln( + t) t. ln 2 ln ( + p ln 2 p ) ln 2 p 00! = n n 69,3 p. Die 72er-Formel erhält man, indem die 69,3 auf die nächstgrößere Zahl mit möglichst vielen Teilern, die 72, aufgerundet wird (2,3,4,6,8,9,...). ln ist eine differenzierbare Funktion

2 Aufgabe 6 In der Praxis werden Zinsen nicht kontinuierlich, sondern zu diskreten Zeitpunkten gezahlt. Es sei i der effektive Zins, der in einem Zeitintervall der Länge auf das Kapital der Höhe gezahlt wird. Wir bezeichnen dann mit j ( ) := i die nominelle jährliche Zinsrate bei -jähriger Verzinsung. a) Berechnen Sie bitte jeweils den effektiven Jahreszins i für nominelle Zinsraten von 0,06 und 0, bei ein-, halb-, vierteljähriger, monatlicher und täglicher Verzinsung. b) Welchem effektivem Jahreszinsfuß entspricht ein monatlicher effektiver Zinsfuß von 0,5 % und 0,75 % bei monatlicher Aufzinsung? c) Welcher effektive Monatszins ist bei monatlicher Aufzinsung zu Grunde zu legen, wenn der Jahreszinsfuß 6 % bzw. 8 % betragen soll? d) Bestimmen Sie bitte die nominelle jährliche Zinsrate j ( ) bei m-tel jährlicher Zahlung für m. In diesem speziellen Fall werde die nominelle Zinsrate mit ϕ bezeichnet. (3 Punkte) Lösungsvorschlag: Für = 2 (monatlich), 4 (vierteljährlich), 2 Bezeichnungen: (halbjährlich) usw. haben wir die folgenden i = effektiver Zins für Zeitintervall der Länge auf Kapital der Höhe. j ( ) = nominelle Jahreszinsrate bei -jähriger Verzinsung. Es gilt: j ( ) = i bzw. j ( ) = i Zusammenhang zum effektivem Jahreszinssatz i: + i = ( + i ) = ( + j ( ) ) bzw. ( + i) = + i = + j ( ) a) geg: nom. Jahreszinsraten j ( ) von 0,06 und 0, für =, 2, 4, 2, 360, ( 365 ). gesucht: effektiver Zinssatz i(= i ). i = ( + j ( ) ) liefert die in der folgenden Tabelle dargestellten Ergebnisse.

3 i für j ( ) = 0,06 für j ( ) = 0, 0,06 0, 2 0, , , , , , , , , , Man sieht: i j ( ). Und je größer =: m wird, desto öfter wird unterjährig verzinst größerer Zinseszinseffekt desto größer wird i gegenüber j ( ) b) Gesucht ist der effektive Jahreszinsfuß p (= 00 i) für einen monatlichen effektiven Zinsfuß i von 0,5 % und 0,75 % bei monatlicher Verzinsung. (i) i 2 = 0,005 Wegen i = ( + i ) gilt: i = ( + 0,005) 2 = 0,06 68 p = 6,7 % (ii) i 2 = 0,007 5 i = ( + 0,007 5) 2 = 0,093 8 p = 9,38 % c) Gesucht ist der effektive Monatszins i bei einem effektiven Jahreszins von i = 0,06 bzw. 2 i = 0,08. + i = ( + i ) i = ( + i) (i) i (6%) 2 (ii) i (8%) 2 =,06 2 = 0, =,08 2 = 0, d) Gesucht jährliche nominelle Zinsrate j ( ) bei m-tel jährlicher Zahlung. Es gilt: i = ( + j(m) m )m j (m) = m(( + i) m ) Grenzübergang für m liefert: Alternativ (Differenzenquotient): j(m) lim ( + m m )m = e j( ) =: e ϕ ϕ = ln( + i) ϕ m m(( + i) m ) t=/m tց0 ( + i) t t

4 also tց0 ( + i) t ( + i) 0 (0 + t) 0 = f (0) mit f(t) = ( + i) t f (t) = ln( + i) ( + i) t f (0) = ln( + i) = ϕ Alternativ (l Hospital): ϕ m j(m) m m(( + i) m ) Alternativ (Grenzwert nach Hurwitz): ( + i) m m m l Hospital ( + i) m 2 m ln( + i) m m 2 m ( + i) m ln( + i) = ln( + i) lim n n(a n ) = ln(a) für reelle a Bemerkung: Jakob Bernoulli (* 6. Januar 655 in Basel; 6. August 705) entdeckte die ersten Stellen der eulerschen Zahl bei der Untersuchung der Zinseszinsrechnung für kontinuierliche Verzinsung: mit j (m) und B = erhält man S = B ( + j(m) m )m, S m ( + m )m = e Aufgabe 7 Die Zinsintensität ϕ ist ein Maß für die Güte der Verzinsung in einem Zeitintervall [t 0, t 0 + t]. Beschreibt die Kapitalfunktion K(t) das vorhandene Kapital zum Zeitpunkt t 0, dann ist K(t 0 + t) K(t 0 ) ϕ(t 0 ) :. tց0 K(t 0 ) t a) Geben Sie bitte die Zinsintensität ϕ(t) zum Zeitpunkt t für die einfache Verzinsung an. (Hinweis: Einfache Verzinsung meint die lineare Verzinsung innerhalb eines Jahres.) b) Zu gegebener Zinsintensität lässt sich die Kapitalfunktion wie folgt berechnen: t K(t) = K(0) e ϕ(τ)dτ 0. Verifizieren Sie diese Formel bitte für die einfache Verzinsung.

5 c) Es werde vorausgesetzt, dass die Zinsintensität für einen n-jährigen Beobachtungszeitraum konstant ist, d. h. es gilt ϕ(t) ϕ für alle t [0, n]. Geben Sie den zentralen Zusammenhang zwischen ganzjähriger Verzinsung, m-tel jähriger Verzinsung bzw. kontinuierlicher Verzinsung mit Hilfe des effektiven Jahreszinssatzes i, der nominellen Jahreszinsrate j (m) und der Zinsintensität ϕ an, indem Sie zeigen, auf welchen Endwert K(n) ein Kapital K(0) in n Jahren anwächst. (3 Punkte) Lösungsvorschlag: a) Erinnerung: einfache Verzinsung ˆ= Verzinsung ohne Zinseszins, d.h. lineare Verzinsung innerhalb des Jahres. Kapitalfunktion: K(t) = B ( + t i) Dann gilt wegen Differenzierbarkeit von K(t): K(t 0 + t) K(t 0 ) ϕ(t 0 ) : = tց0 K(t 0 ) t Für K(t) = B( + t i) folgt = K(t 0 ) K (t 0 ) ϕ(t) = K(t 0 ) lim K(t 0 + t) K(t 0 ) tց0 t Def. der Abl. einer reellen Fkt ( = (ln(k(t0 ))) ) B i B( + t i) = i + t i b) Für gegebene Zinsintensität ϕ(t) erhält man die Kapitalfunktion mit ϕ(t) = i +t i K(t) = K(0) e t ϕ(τ)dτ 0, für einfache Verzinsung als Zinsintensität. Mit K(0) = B gilt dann t K(t) = B e 0 i +i τ dτ = B e [ln(+τ i)]t 0 = B e ln(+t i) = B ( + t i) c) Zusammenhang zwischen effektivem Jahreszins i, nomineller Jahreszinsrate j (m) und Zinsintensität ϕ. Darstellung über Zinsintensität: n K(n) = K(0) e = K(0) e ϕ(τ)dτ 0 n ϕdτ 0 = K(0) e [ϕ τ]n = K(0) e ϕ n ϕ 0 = K(0) e ϕ n

6 Darstellung über nominelle Jahreszinsrate: Darstellung über effektive Jahreszinsrate: K(n) = K(0) ( + j(m) m )m n K(n) = K(0) ( + i) n Fazit: Für beliebige n gilt folgende Gleichheit für die Verzinsung ( + i) n jährlich = ( + j(m) m )m n m-tel jährlich = e ϕ n }{{} kontinuierlich

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals für

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 1 2. Zinsrechnung 2.1. Grundbegriffe K... Kapital (caput das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen eines Kapitals

Mehr

ˆ zwei gleich große Rückzahlungen am und am

ˆ zwei gleich große Rückzahlungen am und am Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@th-koeln.de Übungen zu QM II Finanzmathematik) Gemischte Verzinsung

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Anzahl Zinstage? A: 0, B: 1, C: 2, D: 3, E: 4 # Mathe VL 30.11.2016

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel

Problemstellung worum geht es in diesem Kapitel? Kapitel 1 Zinsrechnung. Beispiel Anlage für ein Jahr. Ein einfaches Beispiel Kapitel 1 Zinsrechnung Problemstellung worum geht es in diesem Kapitel? 1 Verschiedene Verzinsungsverfahren 2 Häufig auftretende Fragestellung: Wenn man heute einen Betrag X anlegt, wie viel hat man dann

Mehr

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik. ISBN (Buch):

Leseprobe. Wolfgang Eichholz, Eberhard Vilkner. Taschenbuch der Wirtschaftsmathematik. ISBN (Buch): Leseprobe Wolfgang Eichholz, Eberhard Vilkner Taschenbuch der Wirtschaftsmathematik ISBN Buch): 978-3-446-43535-3 ISBN E-Book): 978-3-446-43574- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43535-3

Mehr

Finanzmathematik. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät HW.

Finanzmathematik. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät HW. Finanzmathematik Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät HW http://www.mathe.wiwi.uni-sb.de Mathematik Grundlagen& Grundbegriffe Ziel der Finanzmathematik:

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Soll innerhalb einer Reihe ein bestimmtes Intervall näher untersucht werden, bestimmt man da

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Soll innerhalb einer Reihe ein bestimmtes Intervall näher untersucht werden, bestimmt man da SS 2017 Torsten Schreiber 247 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Soll innerhalb einer Reihe ein bestimmtes Intervall näher untersucht werden, bestimmt man das, wobei durch das (aufgerundete)

Mehr

Mathematik 1 Folgen, Reihen und Finanzmathematik

Mathematik 1 Folgen, Reihen und Finanzmathematik Wirtschaftswissenschaftliches Zentrum 1 Universität Basel Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Folgen, Reihen und Finanzmathematik Inhaltsverzeichnis 1 Zahlenfolgen 2 1.1 Grundlegende

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n heißt

Mehr

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 =

= = x 2 = 2x x 2 1 = x 3 = 2x x 2 2 = 1 Lösungsvorschläge zu den Aufgaben 28, 29, 30 b), 31, 32, 33, 35, 36 i) und 37 a) von Blatt 4: 28) a) fx) := x 3 10! = 0 Wir bestimmen eine Näherungslösung mit dem Newtonverfahren: Als Startwert wählen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Taschenbuch der Wirtschaftsmathematik

Taschenbuch der Wirtschaftsmathematik Taschenbuch der Wirtschaftsmathematik Bearbeitet von Wolfgang Eichholz, Eberhard Vilkner 6., aktualisierte Auflage 013. Buch. 396 S. Kartoniert ISBN 978 3 446 43535 3 Format B x L): 1,7 x 19,5 cm Gewicht:

Mehr

Nach einem halben Jahr: 200 0,07 0, Nach eineinhalb Jahren: 200 0,07 1, Nach einem Jahr und 8 Monaten: 200 0, ,33

Nach einem halben Jahr: 200 0,07 0, Nach eineinhalb Jahren: 200 0,07 1, Nach einem Jahr und 8 Monaten: 200 0, ,33 Lineare Verzinsung Nach einem halben Jahr: 200, 0,07 200 0,07 0,5 200 207 Nach eineinhalb Jahren: 200 0,07 1,5 200 221 Nach einem Jahr und 8 Monaten: 200 0,07 1 8 200 223,33 12 Nach fünf Jahren: 200 0,07

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Unterjährige einfache Verzinsung In Deutschland Einteilung des Zinsjahres

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Kapitel 4 Folgen und Reihen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38 Folgen Eine Folge ist eine Anordnung von reellen Zahlen. Die einzelnen Zahlen heißen Glieder

Mehr

Finanzmathematik. Zinsrechnung I 1.)

Finanzmathematik. Zinsrechnung I 1.) Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen

Mehr

3.2 Reihen. Mathematik I WiSe 2005/

3.2 Reihen. Mathematik I WiSe 2005/ 3.2 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Die entsprechenden Beispiele werden

Mehr

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage. Seite 1

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage.  Seite 1 Finanzmathematik Aufgaben einfach gelöst mit FinCalcPro 1. Auflage von Francesco Grassi www.educationalapps.ch Seite 1 Inhaltsverzeichnis VORWORT... 3 SYMBOLLISTE...4 FORMELSAMMLUNG... 5 Kap.1 Prozentrechnung...7

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Unterjährige Verzinsung Zahlung von Zinsen nicht jährlich, sondern in kürzeren

Mehr

F-Mathe-Klausur am

F-Mathe-Klausur am F-Mathe-Klausur am 19.07.2017 Aufgabe 1 Jemand zahlt bei 4% Zinsen p.a. im Zeitraum vom 01.01.2010 bis 31.12.2015 jeweils zu Beginn eines Monats 200 und im Zeitraum vom 01.01.2016 bis 31.12.2018 jeweils

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4.1 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle.

Mehr

(a) Stellen Sie im Rahmen des Modells des beschränkten Wachstums eine Funktion auf, welche die Temperatur des Wassers nach t Stunden angibt.

(a) Stellen Sie im Rahmen des Modells des beschränkten Wachstums eine Funktion auf, welche die Temperatur des Wassers nach t Stunden angibt. Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 08/9 Universität Bielefeld Klausuraufgaben Erste Klausur zur Vorlesung Anwendungen der Mathematik 7. Februar 09 Lösungsvorschläge Aufgabe

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker UNIVERSITÄT SIEGEN Prof. Dr. Alfred Müller 12. Februar 2009 Klausuraufgaben Mathematik für Wirtschaftsinformatiker Beachten Sie folgende Hinweise: (1) Überprüfen Sie Ihr Exemplar auf Vollständigkeit! Die

Mehr

LÖSUNGEN Zinsrechnung

LÖSUNGEN Zinsrechnung M. Sc.Petra Clauÿ Wintersemester 2015/16 Mathematische Grundlagen und Analysis 6. Januar 2016 LÖSUNGEN Zinsrechnung Aufgabe 1. Am 3. März eines Jahres erfolgt eine Einzahlung von 3.500 e. Auf welchen Endwert

Mehr

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1.

Tilgungsrechnung. n = ln. K 0 + R / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. q 1. q 1. (K + R ) q 1 n = ln K 0 + R / ln(q) (nachschüssig) q 1 n = ln ( K q + R ) q 1 K 0 + R / ln(q) (vorschüssig) q 1 Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 3. entenrechnung Definition: ente = laufende Zahlungen, die in regeläßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzatheatisch sind zwei Gesichtspunkte

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Aufgabensammlung. Dieser Text enthält die Aufgaben und ausführliche Musterlösungen. aus den Texten

Aufgabensammlung. Dieser Text enthält die Aufgaben und ausführliche Musterlösungen. aus den Texten Finanzmathematik Teil 4 Aufgabensammlung Dieser Text enthält die Aufgaben und ausführliche Musterlösungen aus den Texten 18011 Zins und Zinseszins 18921 Ratensparverträge und Renten sowie 18931 Darlehen

Mehr

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix

z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i

Mehr

Eulersche Zahl und Exponentialfunktion

Eulersche Zahl und Exponentialfunktion Eulersche Zahl und Exponentialfunktion Raphael Dumhart 5. Juni 20 Inhaltsverzeichnis Vorwort 2 2 Die Eulersche Zahl 2 2. Einige Eigenschaften......................... 2 2.2 Die Entdeckung von e........................

Mehr

HTW Chur Tourism, Mathematik, T. Borer Repetitions-Aufgaben /10

HTW Chur Tourism, Mathematik, T. Borer Repetitions-Aufgaben /10 Repetitions-Aufgaben Aufgaben R. Die Mengen U, A und B sind wie folgt gegeben: U = {, 2, 3, 4, 5, 6, 7, 8, 9, 0} A = {, 2, 3, 9} B = {, 3, 5, 6, 7, 8, 9} Bestimmen Sie die Elemente der folgenden Mengen:

Mehr

Elementare Zinsrechnung

Elementare Zinsrechnung Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)

Mehr

Inhaltsübersicht. Teil I Mathematik 13. Teil II Statistik 255. Vorwort 12

Inhaltsübersicht. Teil I Mathematik 13. Teil II Statistik 255. Vorwort 12 Inhaltsübersicht Vorwort 12 Teil I Mathematik 13 Kapitel 1 Algebra 14 Kapitel 2 Gleichungen 25 Kapitel 3 Summen, Produkte, Logik, Mengen, Abbildungen 30 Kapitel 4 Funktionen einer Variablen 47 Kapitel

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Einleitung. Einige grundlegende Konzepte ziehen sich durch die gesamte Finanzmathematik:

Einleitung. Einige grundlegende Konzepte ziehen sich durch die gesamte Finanzmathematik: 1 Einleitung Finanzmathematik durchzieht gewissermaßen das ganze Leben: Wir legen Geld auf ein zinsbringendes Konto, wir zahlen wiederholt denselben Betrag oder unterschiedliche Beträge zu beliebigen Zeitpunkten

Mehr

Versicherungstechnik

Versicherungstechnik Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Marius Radermacher, M.Sc. DOOR Aufgabe 16 Versicherungstechnik Übungsblatt 5 Abgabe bis zum Dienstag, dem 22.11.2016 um 10 Uhr im Kasten

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Definition der Reihe Gegeben: (a n) unendliche Folge in R Dann heißt (s n) mit Beispiel: eine unendliche Reihe. s n

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 9.2.28 A Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 7 gesamt erreichbare P. 5 3 3+5

Mehr

Grundzüge der Finanzmathematik

Grundzüge der Finanzmathematik Markus Wessler Grundzüge der Finanzmathematik Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 2.4 Kalenderjährliche Verzinsung

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite

(Grob-) Gliederung. B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite (Grob-) Gliederung A Einführung Thema: Zinsrechnungen B Finanzmathematische Grundlagen C Zinsrechnungen D Rentenrechnungen E Tilgungsrechnungen F Kurs und Rendite Dr. Alfred Brink Dr. A. Brink Institut

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1

Exponentialfunktion. e x+y = e x e y. Insbesondere ist e x = 1/e x. Exponentialfunktion 1-1 Exponentialfunktion Die Potenzfunktion y = e x = exp(x) mit der Eulerschen Zahl e = 2.71828... wird als Exponentialfunktion bezeichnet. Sie ist für alle x R positiv und erfüllt die Funktionalgleichung

Mehr

Klausur Mathematik, 1. Oktober 2012, A

Klausur Mathematik, 1. Oktober 2012, A Klausur, Mathematik, Oktober 2012, Lösungen, A 1 Klausur Mathematik, 1. Oktober 2012, A Die Klausureinsicht ist Do, 8.11.2012 um 18:00 in MZG 8.136. Die Klausur ist mit 30 Punkten bestanden. Falls Sie

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik für die Betriebswirtschaftslehre (B.Sc.) Sommersemester 2017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Finanzmathematik (nach der Ausarbeitung von S. Puth) Verzinsung

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Finanzmathematik. Aufgabe 71

Finanzmathematik. Aufgabe 71 Finanzmathematik Aufgabe 71 Finanzmathematik: Einfach (FIMA.1) Eine Rechnung über 3.250 wird nicht sofort bezahlt. Daher sind Verzugszinsen in Höhe von 144,45 zu bezahlen. Für welche Zeitspanne wurden

Mehr

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen

Mathematik I Herbstsemester 2018 Kapitel 6: Potenzreihen Mathematik I Herbstsemester 208 Kapitel 6: Potenzreihen Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 58 6. Potenzreihen Reihen (Zahlenreihen) Konvergenzkriterien für Reihen Notwendiges

Mehr

Zusatzübung Wintersemester 2010/11 1

Zusatzübung Wintersemester 2010/11 1 Zusatzübung Wintersemester 2010/11 1 Aufgabe 1: (8 Punkte) Zeigen Sie durch vollständige Induktion die folgende Formel für die Potenzen der Matrix A: A = 1 1 0 1 1 1 n 0 : A n = 1 a n n a n n 1 n n (n

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Exponentielles Wachstum ein (Kurz-)Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 16. Februar 2016 Inhaltsverzeichnis

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Kreistreue der Möbius-Transformationen

Kreistreue der Möbius-Transformationen Kreistreue der Möbiustransformationen Satz Möbius Transformationen sind kreistreu. Beweis Verwende eine geeignete Zerlegung für c 0: a az + b cz + d = c (cz + d) ad c + b cz + d = a c ad bc c cz + d. Wir

Mehr

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft

Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Lösungen zur Klausur A Grundkurs Mathematik für Wirtschaftswissenschaft Wintersemester 29/21 16.2.21 Aufgabe A.1. Betrachten Sie die Polynomfunktion p : R R, welche durch die Abbildungsvorschrift p(x)

Mehr

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins

Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins SS 2017 Torsten Schreiber 287 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Im Bereich der Zinsberechnung wird zwischen der einfachen ( ) Verzinsung und dem Zinseszins ( ) unterschieden. Bei

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler Mathematik I für Wirtschaftswissenschaftler Bitte unbedingt beachten: Lösungsvorschläge zur Klausur am 2.2.23. a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

= 1 3 n3 n n 4. b n. b n gilt, reicht es zu zeigen, dass für irgendein n die Gleichheit a n

= 1 3 n3 n n 4. b n. b n gilt, reicht es zu zeigen, dass für irgendein n die Gleichheit a n 2005-2-2 Klausur 2 Klasse b Mathematik Lösung Zwei Folgen sind gegeben, in rekursiver und b n in expliziter Form: =2 4 ;a = 2 b n = 3 n3 n 2 8 3 n 4 a) Geben Sie die ersten drei Folgenglieder jeder Folge

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1

3.1 Folgen. ,...) die Folge der sogenannten Hauptbrüche in Q. Mathematik I WiSe 2005/ y = (y n ) n N = ( 1 3, 1 9, 1 27, 1 81, 1 Kapitel 3. Folgen und Reihen 3.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a = (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index

Mehr

Aufgabensammlung Grundlagen der Finanzmathematik

Aufgabensammlung Grundlagen der Finanzmathematik Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf

Mehr

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel;

Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; Kapitel Der Satz von Taylor. Taylor-Formel und Taylor-Reihe (Taylor-Polynom; Restglied; Integraldarstellung des Restgliedes; Lagrangesche Restgliedformel; die Klasse C ; reell analytische Funktionen) In

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zeitwert des Geldes Strukturkongruente Refinanzierung Rendite Zinskurve 2 Das

Mehr

Vernetzende Überlegungen zu Regression Rekursion Funktion

Vernetzende Überlegungen zu Regression Rekursion Funktion Vernetzende Überlegungen zu Regression Rekursion Funktion Vortrag bei der Lehrerfortbildung anlässlich der Tagung des AK Vernetzungen im Mathematikunterricht Darmstadt, 3. Mai 2013 buerker@online.de Gliederung

Mehr

Klausur Wirtschaftsmathematik VO

Klausur Wirtschaftsmathematik VO Klausur Wirtschaftsmathematik VO 02. Februar 2019 Bitte leserlich in Druckbuchstaben ausfüllen! NACHNAME: VORNAME: MATRIKELNUMMER: ERLAUBT: nur die Formelsammlung des Instituts! VERBOTEN: Taschenrechner

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA m+1 re = r m + i 2 Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

QM I (W-Mathe)-Klausur am

QM I (W-Mathe)-Klausur am QM I (W-Mathe)-Klausur am 06.07.206 Aufgabe a) Berechnen Sie den folgenden Grenzwert: 3 2 36+05 lim 5 4 20 b) Die Preis-Absatz Funktion eines Unternehmens sei gegeben durch: (p) = 8 0,6p. Bestimmen Sie

Mehr

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert

REIHENENTWICKLUNGEN. [1] Reihen mit konstanten Gliedern. [2] Potenzreihen. [3] Reihenentwicklung von Funktionen. Eine kurze Einführung Herbert Paukert Reihenentwicklungen Herbert Paukert 1 REIHENENTWICKLUNGEN Eine kurze Einführung Herbert Paukert [1] Reihen mit konstanten Gliedern [2] Potenzreihen [3] Reihenentwicklung von Funktionen Reihenentwicklungen

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

(a) Wie gross ist der Ameisenstaat ungefähr nach 1, 2, 3 oder allgemein n Wochen?

(a) Wie gross ist der Ameisenstaat ungefähr nach 1, 2, 3 oder allgemein n Wochen? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 04.0.8 Übung 3 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 8. Oktober 08 in den Übungsstunden Aufgabe In einem Ameisenstaat mit einer

Mehr

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen

Wachstumsprozesse. Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen Wachstumsprozesse Natürliches Wachstum Größenbeschränktes Wachstum Logistisches Wachstum Differenzialgleichungen klaus_messner@web.de www.elearning-freiburg.de Natürliches/exponentielles Wachstum Natürliches

Mehr

Übungen zur Vorlesung Mathematik 1

Übungen zur Vorlesung Mathematik 1 Fachbereich Technische Betriebswirtschaft Übungen zur Vorlesung Mathematik S. Hochgräber N. Hüser T. Skrotzki S. Böcker Mathe Übungsaufgaben V5..docx Übung Mathematik Böcker/Hochgräber Übung Grundlagen

Mehr

Liechtensteinisches Gymnasium

Liechtensteinisches Gymnasium Schriftliche Matura Liechtensteinisches Gymnasium Prüfer: Huber Sven Klassen 7Sa / 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Geben Sie die zur Rechnung nötigen Einzelschritte an. 2) Skizzen

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

1. Was ist eine Wahrscheinlichkeit P(A)?

1. Was ist eine Wahrscheinlichkeit P(A)? 1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Serie 6 D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger Serie 6 Die ersten Aufgaben sind Multiple-Choice-Aufgaben (MC), die online gelöst werden. Bitte schicken Sie Ihre Lösungen zu den Online MC-Fragen bis

Mehr

3. Mit c n = ( 1) n ist. 4. Mit d n = 2 n ist. 5. Mit y n = ( 1 3) n. 6. Ist x n = (1 + 1 n )n, dann ist. Die Zahl a n heißt die n-te Fibonaccizahl.

3. Mit c n = ( 1) n ist. 4. Mit d n = 2 n ist. 5. Mit y n = ( 1 3) n. 6. Ist x n = (1 + 1 n )n, dann ist. Die Zahl a n heißt die n-te Fibonaccizahl. Kapitel 3. Folgen und Reihen 3. Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als a, a, a 3,...) = a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

Didaktische Bemerkungen

Didaktische Bemerkungen zu den Rekursionsformeln und der Arbeit mit Derive 6.0 1 Exponentielles Wachstumsmodell Es sei (i) f t =f 0 e k t und die Rekursionsformel zu (i) lautet: f t 1 =q f t bzw. f n 1 =q f n. Mit f(t+1) in (i)

Mehr

Folgen und Reihen. Kapitel Zahlenfolgen

Folgen und Reihen. Kapitel Zahlenfolgen Kapitel 2 Folgen und Reihen 2. Zahlenfolgen Definition. Eine Folge reeller Zahlen a 0,a,a 2,..., die gewonnen wird durch eine Vorschrift, die jeder natürlichen Zahl n N genau eine reelle Zahl a n zuordnet,

Mehr

Künzer Samstag, Mathematik für Wirtschaftswissenschaften. Lösung zur Klausur

Künzer Samstag, Mathematik für Wirtschaftswissenschaften. Lösung zur Klausur Künzer Samstag, 282 Aufgabe I Es ist f (x = ( x 2 e x2 /2 Mathematik für Wirtschaftswissenschaften Lösung zur Klausur Für x R ist f (x = genau dann, wenn x {, +} ist Somit sind dies die einzigen Flachstellen

Mehr