[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration

Größe: px
Ab Seite anzeigen:

Download "[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration"

Transkript

1 1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem hat sich herausgestellt, dass das Verhältnis der Stoffmengen im Gleichgewicht gleich dem Verhältnis der Reaktionsgeschwindigkeiten der Hin- und der Rückreaktion ist. Dieses Verhältnis der Reaktionsgeschwindigkeiten ist die Gleichgewichtskonstante. Diese Ergebnisse sind rein empirisch, basieren also auf Experimenten. Man kann ausgehend von Experimenten eine Hypothese aufstellen. Für den Versuch hier ist diese Hypothese im obigen Absatz zusammengefasst. Eine Hypothese ist solange gültig, bis irgendwann ein Experiment zu Ergebnissen führt, die nicht im Einklang mit der Hypothese stehen. Es gibt aber auch noch eine andere Methode um eine Hypothese zu beweisen. Diese Methode ist die theoretische Ableitung. Im Folgenden ist die theoretische Ableitung für eine einfache Gleichgewichtsreaktion zwischen den Stoffen A und B durchgeführt. Man kann sie in drei Teile einteilen: 1. Ansatz 2. Mathematische Lösung 3. Diskussion der Ergebnisse, Grenzfälle Der Ansatz ist hier mit Gleichung 7) gegeben. Die mathematische Lösung ist der größte Teil der Ableitung. Neben vielen Termumformungen sind hierbei die Rechenmethoden Aufleiten und Integration erforderlich. Die Lösungen des Ansatzes sind die Gleichungen 25) und 27). Schreibweise Um bei längeren Gleichungen ein wenig Schreibarbeit zu sparen, wird hier die häufig benutze Schreibweise mit eckigen Klammern für die molare Kozentration eines Stoffs hier A) verwendet. [A] = ca) in den Einheiten mol/l 1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration handelt, die also zum Zeitpunkt 0 vor der Einstellung des Gleichgewichts vorliegt. Die Konzentrationen im Gleich-

2 2 gewicht haben ein tiefgestelltes Unendlich-Zeichen [A], weil sich das Gleichgewicht im Grenzfall unendlich langer Zeit einstellt. 1. Ansatz Wir betrachten hier ein einfaches chemisches Gleichgewicht mit je einem Edukt A und einem Produkt B. A B 2) Zur Beginn der Reaktion ist die Stoffmengenkonzentration [A] von A gleich der Anfangsstoffmengenkonzentration [A] = [A] 0. Es ist zu Beginn also nur A und kein B vorhanden. Zur aktuellen Zeit t ist eine bestimmte Stoffmenge x Umsatz) abreagiert. Die Stoffmengenkonzentration von A ist dann: [A] = [A] 0 x 3) Die Stoffmengenkonzentration des gebildeten Stoffs B zur aktuellen Zeit t muss gleich der abreagierten Menge von Stoff A sein, d.h.: [B] = x 4) Wenn wir uns an die Physik erinnern, dann wissen wir, dass die Geschwindigkeit v der zurückgelegte Weg geteilt durch den verstrichenen Zeitintervall ist. Analog ist die Reaktionsgeschwindigkeit v die abreagierte Stoffmenge negatives Vorzeichen) A pro Zeitintervall oder alternativ die gebildete Stoffmenge positives Vorzeichen) B pro Zeitintervall: v = [A] t = [B] t Das Delta-Zeichen bedeutet Differenz oder Änderung bzw. Intervall. Nun stellt sich die Frage, wie die Reaktionsgeschwindigkeit mit den Stoffmengen der beiden Stoffe A und B zusammenhängt. Je mehr von dem Edukt A vorhanden ist, desto schneller wird Produkt B durch abreagieren von Stoff A gebildet. Die Reaktionsgeschwindigkeit der Bildung von B ist also proportional zur Stoffmengenkonzentration A. Der Proportionalitätsfaktor ist die Geschwindigkeitskonstante k 1 für die Hinreaktion. 5)

3 3 Wenn nun aber mehr vom Produkt vorhanden ist, dann wird es bei einer Gleichgewichtsreaktion auch schneller wieder zu A zurückreagieren. Bei dieser Rückreaktion verringert sich die Menge an B, was durch eine negatives Vorzeichen berücksichtigt werden muss. Die Proportionalitätskonstante ist die Geschwindigkeitskonstante für die Rückreaktion. Wenn man Hin- und Rückreaktion zusammenfasst folgt, dass die Änderung der Stoffmengenkonzentration [B] von B von der aktuell vorliegenden Stoffmengenkonzentration von A und B in folgender Weise abhngt: [B] t = k 1 [A] }{{} Hinreaktion [B] }{{} Rueckreaktion Jetzt können wir für die Stoffmengenkonzentrationen die obigen Gleichungen 3 un 4 einsetzen. Außerdem ersetzen wir die Differenzenquotienten ) durch den Differentialquotienten d). Während endlich groß ist, ist d unendlich klein. Man kann also unendlich kleine, sogenannte infinitesimal kleine Schritte der Reaktion berechnen. Dies führt dazu, dass ein Zick-Zack Verlauf, wie bei dem Umfüllexperiment auftritt, verschwindet und man eine glatte Kurve erhält. Wenn man nun die Gleichungen 3 und 4 in Gleichung 6 einsetzt, so lautet die zu lösende Gleichung schließlich: 6) dt = k 1[A] 0 x) x 7) 2. Mathematische Lösung Nun stellen wir die Gleichung ein wenig um Äquivalenzumformung). Zuerst wird die Klammer aufgelöst: dt = k 1[A] 0 k 1 x x 8) Dann klammern wir x aus: dt = k 1[A] 0 )x 9) Zur weiteren Berechnung müssen wir noch die Variablen x und t trennen, d.h. jede dieser Variablen soll nur auf einer Seite der Gleichung vorkommen:

4 4 k 1 [A] 0 )x = dt 10) Um diese Gleichung zu lösen, müssen beide Seiten integriert werden. Dazu ist es notwendig die Gleichung so umzustellen, dass man eine Form erhält, für die die Stammfunktion siehe unten) bekannt ist. Hierzu ist ein bisschen mathematische Erfahrung oder eine Liste der lösbaren Integrale notwendig. Also Los! Zunächst multiplizieren wir auf beiden Seiten mit ): ) k 1 [A] 0 )x = )dt 11) Dann teilen wir auf der linken Seite alle Terme sowohl im Nenner als auch im Zähler durch ) : k 1 [A] 0 x = )dt 12) k 1 + ) Jetzt multiplizieren wir auf beiden Seiten mit 1 und erhalten: x k 1[A] 0 = )dt 13) k 1 + Jetzt kann man die Gleichung integrieren. Auf der linken Seite wird der Umsatz x von 0 bis zur Stoffmengenkonzentration [B] zur aktuellen Zeit t integriert. Auf der rechten Seite wird die Zeit von 0 bis zur aktuellen Zeit t integriert: [B] 0 x k 1[A] 0 = k 1 + t 0 )dt 14) Diese Integrale lassen sich lösen. Um zu integrieren, muss man die Funktion zunächst aufleiten. Dies ist die Umkehrung des Ableitens. Nehmen wir eine Funktion gx) und berechnen die Ableitung gx) = lnx c) 15) g x) = 1 16) x c dann erhalten wir eine Funktion, die der, die wir hier lösen wollen, vergleichbar ist. Der Vergleich der linken Seite von Gleichung 14 mit

5 5 Gleichung 16 ergibt c = k 1 [A] 0 / ). Da Aufleiten die Umkehrung des Ableitens ist, können wir ausgehend von der Funktion fx) = 1 17) x c die aufgeleitete Funktion Stammfunktion F x)) direkt bestimmen: F x) = lnx c) 18) Die Integrationskonstante ist hier weggelassen, da sie im nächsten Schritt gleich wieder gekürzt werden kann.) Für das Integral auf der linken Seite von Gleichung 14 kann man dann also die Stammfunktion mit der unteren Grenze 0 und der oberen Grenze [B] einsetzen: ln x k 1[A] 0 [B] 0 = )t 19) Das Integral auf der rechten Seite ist leicht zu lösen und wurde hier direkt berechnet. Bei der Integration der linken Seite setzt man in die Stammfunktion für die Integrationsvariable x die obere Grenze [B] ein und zieht dann die Stammfunktion ab, in die die untere Grenze 0 eingesetzt wurde. ln [B] k ) 1[A] 0 ln 0 k ) 1[A] 0 Die Logarithmen kann man zusammenfassen = )t 20) ) [B] k 1 [A] 0 k ln 1 +k ) 2 k 1 [A] 0 = )t 21) k 1 + und dann links den ln zu entfernen, indem man die rechte Seite in den Exponenten von e hebt. [B] k 1[A] 0 k 1 + k 1[A] 0 = e k1+k2)t 22) k 1 + Im nächsten Schritt wird die Gleichung mit dem Nenner der linken Seite multipliziert. [B] k 1[A] 0 = k 1[A] 0 e k 1+ )t 23) Nach Addition des zweiten Terms der linken Seite natürlich auf beiden Seiten) erhalten wir eine Gleichung, die angibt welche Stoffmengenkonzentration von B zur aktuellen Zeit t vorliegt:

6 6 [B] = k 1[A] 0 k 1[A] 0 e k 1+ )t 24) Durch Ausklammern kann man diese Funktion noch etwas vereinfachen. [B] = k 1[A] 0 1 e k 1 + )t ) 25) Wenn wir die Stoffmengenkonzentration von B kennen, können wir auch die Stoffmengenkonzentration von A zur aktuellen Zeit t berechnen. Diese muss die Ausgangskonzentration von A minus der gebildeten Menge von B sein: [A] = [A] 0 [B] 26) Einsetzten von [B] Gleichung 25) in Gleichung 26 ergibt die gesuchte Funktion für die Stoffmengenkonzentration von A zur aktuellen Zeit t; [A] = [A] 0 k 1[A] 0 1 e k 1 + )t ) 27) Mit diesen beiden Gleichungen kannst Du nun den Fortgang der Reaktion bis zum Gleichgewicht berechnen. Er handelt sich dabei offensichtlich um Exponentialfunktionen. Dies entspricht dem exponentiellen Verlauf der Füllmengen in dem Umfüllexperiment. 3. Diskussion der Ergebnisse, Grenzfälle Die Lösungen des Ansatzes Gleichung 7)) sind die Gleichungen 25) und 27). Wie gelangt man mit diesen Gleichungen an die Stoffmengenkonzentration von A und B im Gleichgewicht? Da sich das Gleichgewicht im Grenzfall sehr langer Reaktionszeit einstellt, braucht man einfach nur den Grenzwert limes) der Funktionen für t gegen unendlich berechnen: [B] = lim t [B] 28) Hierbei ist [B] die Stoffmengenkonzentration von B im Gleichgewicht. Für die Exponentialfunktion folgt im Grenzfall unendlicher Reaktionszeit: lim t e k 1+ )t = 0 29)

7 7 Mit anderen Worten wir können in Gleichung 25 für die Exponentialfunktion Null einsetzten. Dadurch vereinfacht sich die Funktion für [B] Gleichung 25) und wir erhalten: [B] = [A] 0 k 1 30) Es ist nützlich die Geschwindigkeitskonstanten k 1 und durch die Gleichgewichtskonstante K = k 1 ersetzen. Dazu muss man jeden Term im Zähler und Nenner in Gleichung 30 durch teilen und erhält und erhält dann schließlich: [B] = [A] 0 k 1 k ) K [B] = [A] 0 32) K + 1 In gleicher Weise kann die Stoffmengenkonzentration von A im Gleichgewicht berechnet werden: Einsetzen von t in Gleichung 27 liefert: Trickreiches Umstellen :) führt zu: [A] lim t [A] 33) [A] = [A] 0 1 k ) 1 k1 + [A] = [A] 0 k ) 1 ) k2 [A] = [A] 0 34) 35) 36) Division durch für alle Termen im Zähler und Nenner von Gleichung 36 ergibt: [A] = [A] 0 1 k 1 37) + 1 Das Ergebnis lautet dann nach Ersetzen von k 1 durch K: ) 1 [A] = [A] 0 K )

8 8 Im letzten Schritt wollen wir jetzt noch das Verhältnis der Stoffmengenkonzentrationen von Produkt B und Edukt A im Gleichgewicht berechnen. Dazu brauchen wir einfach nur die oben abgeleiteten Gleichungen 32 und 38 einsetzen: ) K K+1 [B] = [A] 0 [A] [A] 1 0 K+1 ) 39) Auf der rechten Seite dieser Gleichung kann man alles bis auf K kürzen. Es folgt, dass das Verhältnis der Stoffmengenkonzentration im Gleichgewicht gleich der Gleichgewichtskonstante ist: [B] [A] = K 40) Diese Gleichung nennt man das Massenwirkungsgesetz MWG). Man kann es auch allgemein für eine Reaktion mit zwei Edukten und zwei Produkten ableiten oder andere beliebige Gleichgewichtsreaktionen. Die Vorgehensweise ist gleich, allein der mathematische Aufwand steigt. Die Ableitungse hat uns gezeigt, dass die Stoffmengen bzw. die Stoffmengenkonzentrationen sich bei der betrachteten Reaktion zeitlich entsprechend einer Exponentialfunktion ändern. Dies stimmt mit der empirischen Beobachtung aus dem Umfüllexperiment überein. Des weiteren haben wir je eine Gleichung für die Berechnung der Stoffmengenkonzentrationen A und B im Gleichgewicht erhalten. Um diese auszurechnen, benötigen wir nur die Gleichgewichtskonstante K und die Anfangskonzentration. Am Ende haben wir auch das Massenwirkungsgesetz exakt ableiten können.

c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol

c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol Berechnungen zum Massenwirkungsgesetz 1/13 Jakob 2010 Fall 1a: Gegeben: Gleichgewichtskonzentrationen aller Stoffe; Gesucht: Gleichgewichtskonstante Die Reaktion 2A + B 2C befindet sich im Gleichgewicht.

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Praktische Einführung in die Chemie Integriertes Praktikum:

Praktische Einführung in die Chemie Integriertes Praktikum: Praktische Einführung in die Chemie Integriertes Praktikum: Versuch 1-2 (MWG) Massenwirkungsgesetz Versuchs-Datum: 20. Juni 2012 Gruppenummer: 8 Gruppenmitglieder: Domenico Paone Patrick Küssner Michael

Mehr

Chemie Klausur #1 12.2

Chemie Klausur #1 12.2 Chemie Klausur #1 12.2 Chemisches Gleichgewicht Ein chemisches Gleichgewicht liegt bei allen Reaktionen vor, die umkehrbar sind. Dabei wird bei bestimmten Bedingungen vor allem die Synthese (Erstellung)

Mehr

Kleines Wasserlexikon

Kleines Wasserlexikon Kleines Wasserlexikon Lösung von Kohlenstoffdioxid. Kohlenstoffdioxid CO 2 ist leicht wasserlöslich und geht mit manchen Inhaltsstoffen des Wassers auch chemische Reaktionen ein. In einem ersten Schritt

Mehr

Dissoziation, ph-wert und Puffer

Dissoziation, ph-wert und Puffer Dissoziation, ph-wert und Puffer Die Stoffmengenkonzentration (molare Konzentration) c einer Substanz wird in diesem Text in eckigen Klammern dargestellt, z. B. [CH 3 COOH] anstelle von c CH3COOH oder

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Formelsammlung Chemie

Formelsammlung Chemie 1 Formelsammlung Chemie Joachim Jakob, Kronberg-Gymnasium Aschaffenburg chemie-lernprogramme.de/daten/programme/js/formelsammlung/ Inhaltsverzeichnis 1 Avogadro Konstante N A 2 2 Molare Masse M 2 3 Molares

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Lernzettel Mathe Inhaltsverzeichnis

Lernzettel Mathe Inhaltsverzeichnis Lernzettel Mathe Inhaltsverzeichnis Aufgabe 1 - Vollständige Induktion 2 Aufgabe 2 - Grenzwertbestimmung 2 Aufgabe 3 - Lin/Log 2 Aufgabe 4 - Barwert/Endwert 3 Aufgabe 5 - Maximalstellen, steigend/fallend

Mehr

Lösungen (ohne Aufgabenstellungen)

Lösungen (ohne Aufgabenstellungen) Kapitel 1 Das chemische Gleichgewicht Lösungen (ohne Aufgabenstellungen) Aufgaben A 1 Die Hin- und die Rückreaktion läuft nach der Einstellung des Gleichgewichts mit derselben Geschwindigkeit ab, d. h.

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Chemie am Friedrich-Leopold-Woeste-Gymnasium Hemer

Chemie am Friedrich-Leopold-Woeste-Gymnasium Hemer Einführungsphase Unterrichtsvorhaben III Thema/Kontext: Methoden der Kalkentfernung im Haushalt Basiskonzepte (Schwerpunkt): Basiskonzept Chemisches Gleichgewicht / Basiskonzept Energie Schwerpunkte übergeordneter

Mehr

4. Wässrige Lösungen schwacher Säuren und Basen

4. Wässrige Lösungen schwacher Säuren und Basen 4. Wässrige Lösungen schwacher Säuren und Basen Ziel dieses Kapitels ist es, das Vorgehenskonzept zur Berechnung von ph-werten weiter zu entwickeln und ph-werte von wässrigen Lösungen einprotoniger, schwacher

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. -I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure

Mehr

2. Chemische Reaktionen und chemisches Gleichgewicht

2. Chemische Reaktionen und chemisches Gleichgewicht 2. Chemische Reaktionen und chemisches Gleichgewicht 2.1 Enthalpie (ΔH) Bei chemischen Reaktionen reagieren die Edukte zu Produkten. Diese unterscheiden sich in der inneren Energie. Es gibt dabei zwei

Mehr

Chemische Reaktionen. 1 Lernziele. 2 Stoffe, Stoffmenge und Molmasse. 2.1 Reine Stoffe. Physik und Systemwissenschaften 1

Chemische Reaktionen. 1 Lernziele. 2 Stoffe, Stoffmenge und Molmasse. 2.1 Reine Stoffe. Physik und Systemwissenschaften 1 Chemische Reaktionen 1 Lernziele Sie kennen die Begriffe Stoffmenge und Molmasse. Sie können aus einer chemischen Reaktionsgleichung herauslesen, welche Stoffmengen bei der Reaktion entstehen bzw. verbraucht

Mehr

Was ist Reaktionskinetik?

Was ist Reaktionskinetik? Was ist Reaktionskinetik? Die Reaktionskinetik ist die Lehre von der Geschwindigkeit chemischer Reaktionen. Diese Reaktionsgeschwindigkeit wird von verschiedenen Faktoren beeinflusst, deren Erforschung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

ph-wert Berechnungen mit Hilfe eines Taschencomputers

ph-wert Berechnungen mit Hilfe eines Taschencomputers ph-wert Berechnungen mit Hilfe eines Taschencomputers Ein Leitprogramm für die Chemie Urs Leutenegger, Dr. sc. nat. ETH Kantonsschule Zug Christian Wittenhorst, dipl. Ing. ETH Kantonsschule Zug Leitprogramm»

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen

4 Stöchiometrie. Teil II: Chemische Reaktionsgleichungen. 4.1 Chemische Reaktionsgleichungen 35 4 Stöchiometrie Teil II: Chemische Reaktionsgleichungen Zusammenfassung Chemische Reaktionsgleichungen geben durch die Formeln der beteiligten Substanzen an, welche Reaktanden sich zu welchen Produkten

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

Grundlagen der Chemie

Grundlagen der Chemie 1 Das Massenwirkungsgesetz Verschiebung von Gleichgewichtslagen Metastabile Systeme/Katalysatoren Löslichkeitsprodukt Das Massenwirkungsgesetz Wenn Substanzen miteinander eine reversible chemische Reaktion

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen

Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen H. Gruber, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für GTR und CAS Inhaltsverzeichnis Inhaltsverzeichnis 1 Ganzrationale

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Vorkurs Mathematik für Informatiker 3 Logarithmen

Vorkurs Mathematik für Informatiker 3 Logarithmen 3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Chemie für Studierende der Biologie I

Chemie für Studierende der Biologie I SäureBaseGleichgewichte Es gibt verschiedene Definitionen für SäureBaseReaktionen, an dieser Stelle ist die Definition nach BrønstedLowry, die Übertragung eines H + Ions ( Proton ), gemeint. Nach BrønstedLowry

Mehr

Grundlagen der Chemie Verschieben von Gleichgewichten

Grundlagen der Chemie Verschieben von Gleichgewichten Verschieben von Gleichgewichten Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Prinzip des kleinsten Zwangs Das

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

Einkommensteuertarif. Herleitung der Zahlenwerte

Einkommensteuertarif. Herleitung der Zahlenwerte Anhang D: Steuertarife in Deutschland Einommensteuertarif Herleitung der Zahlenwerte Prof Dr Andreas Pfeifer, Hochschule Darmstadt Februar 015 In diesem Beitrag wird erlärt, wie die Berechnungsformeln

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Chemie (Grundkurs) Einlesezeit: Bearbeitungszeit: 30 Minuten 210 Minuten Thema 1 Wasserstoff Thema 2 Organische Verbindungen und ihr Reaktionsverhalten

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008 Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008 Verfasser: Zihlmann Claudio Teammitglied: Knüsel Philippe Datum: 29.10.08 Assistent: David Weibel E-Mail: zclaudio@student.ethz.ch 1. Abstract

Mehr

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung

Inhaltsverzeichnis. Seite 1: Matrizen. Seite 23: Funktionen. Seite 51: Integralrechnung. Seite 69: Binomialverteilung Inhaltsverzeichnis Seite : Matrizen Seite : Funktionen Seite 5: Integralrechnung Seite 69: Binomialverteilung Seite 86: Statistik/Normalverteilung Seite 04: Vektoren Seite 40: Wachstum Lineare Algebra

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

3. Säure-Base-Beziehungen

3. Säure-Base-Beziehungen 3.1 Das Ionenprodukt des Wassers In reinen Wasser sind nicht nur Wassermoleküle vorhanden. Ein kleiner Teil liegt als Ionenform H 3 O + und OH - vor. Bei 25 C sind in einem Liter Wasser 10-7 mol H 3 O

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 7 2 Gebrochenrationale

Mehr

2 Terme 2.1 Einführung

2 Terme 2.1 Einführung 2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.

Mehr