Lehrbrief 1 Technik Seite 1 von 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lehrbrief 1 Technik Seite 1 von 7"

Transkript

1 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin leier erforerlich. Wir benötigen in er Regel nur Wissen, as in er Schule bis zur 10. Klasse behanelt wure. Um uns bezüglich er Hirn - Rechenleistung etwas zu entlasten, schauen wir uns erstmal en Taschenrechner an. Benötigt wir für iesen Fernkurs ein einfacher,,wissenschaftlicher'' Taschenrecher. Ein,,Küchenrechner'' reicht nicht. Wenn Dein Taschenrechner ie Tasten EE oer 10 x oer EXP un/oer LOG besitzt, bist Du auf er sicheren Seite. Wenn nicht, empfehlen wir en Kauf es TI-30 von Texas Instruments (egal welche Ausführung). Der TI-30 ist ein einfacher wissenschaftlicher Taschenrechner, wie er in er Schule benutzt wir. Er ist nicht programmierbar un besitzt nur eine Speicherstelle für eine Zahl. Bitte achte arauf, bei er Prüfung nicht mit einem programmierbaren Taschenrechner aufzutauchen, ieser ist als Hilfmittel nicht zugelassen. Was müssen wir kennen: Aition, Subtraktion, Multiplikation, Division, Potenzen (x y ), ie Wurzel( x ) un Logaritmen (log). Die vier Grunrechenarten setze ich als bekannt voraus. Kopfschmerzen machen manchmal Potenzen, Wurzeln un Logarithmen, sowie as Umformen von einfachen Gleichungen. Gleichungen umstellen In iesem Kurs wir es immer wieer nötig sein, einfache Gleichungen umzustellen. Bei en Strichrechenarten ( + un - ) ist as trivial, häufig brauchen wir en Dreisatz. Grunlegen bei allen Formelumstellungen ist ie sogenannte Äquivalenzumformung. Damit ist gemeint, ass man eine umzustellene Formel erstmal hinschreibt un ann auf beien Seiten gleiche Operationen ausführt. Beispiel 1: Bei nachstehener Formel ist c gesucht: a + b = c - a b = c c steht auf er rechten Seite Rechenbefehl + auf beien (!) Seiten a b = c =0, kann also weggelassen weren

2 Lehrbrief 1 Technik Seite 2 von 7 a b = c nun noch umstellen (c auf ie linke Seite) c=a b Solange man alle Operationen sowohl auf er linken als auch auf er rechten Seite urchführt, bleibt as Gleichheitszeichen weiter richtig. Somit ist ie Gleichung unveränert (eben nur umgestellt). Beispiel 2: Bei nachstehener Formel ist c gesucht: a b=c a b = c : auf beien (!) Seiten a b = c = c =1, kann als Faktor weggelassen weren a b = c 1 = c umstellen c= a b

3 Lehrbrief 1 Technik Seite 3 von 7 Noch einige alte Schulweisheiten zum Umstellen von Gleichungen un zur Eingabe in en Taschenrechner: Punktrechnung kommt vor Strichrechnung Beispiel: a b c tippt man nicht er Reihe nach in en Taschenrechner, sonern erst ie Ziffern b c un ann a Besonerheit Hat man einen Bruchstrich, so kann man sich im Zähler (oben) un Nenner (unten) ie Klammern azuenken. Beispiel: a b c = a b c Dasselbe gilt bei Exponenten. Beispiel : 10 3x t 3x t =10 Wie löse ich eine Klammer auf, in er eine Aition ausgeführt wir? Beispiel: a b c Hier wir ie Zahl vor er Klammer mit en in er Klammer stehenen Zahlen jeweils multipliziert, anschließen wir aiert. a b c =a b a c Hinweis: Mit en Variablen a,b,c ist as Ganze sehr formelhaft. Zur Vereutlichung einfach mal Zahlen einsetzen un nochmal urchspielen. Man sieht sehr leicht, wie unterschielich ie Ergebnisse weren, wenn z.b. Punkt- un Strichrechnung vertauscht weren. Vorschlag : a = 3, b = 7, c = 11

4 Lehrbrief 1 Technik Seite 4 von 7 Potenzen Einige Beispiele: 10²=10 10= = =3125 Der Exponent (as ist ie Hochzahl ) sagt aus, wieviel mal ie Basis mit sich selbst multipliziert weren muss. In er Technik ist eine solche exponentielle Schreibweise bei sehr großen oer sehr kleinen Zahlenwerten üblich. Man verwenet hier meist en Exponent zur Basis 10. Beispiel: Frequenzangabe Hz Hz Hz 3.5 MHz (hier beginnt as 80m Amateurfunkban) Beim Taschenrechner kann man sich aussuchen, wie man iese Zahl eingeben möchte. Am einfachsten geht as mit er EE -Taste: tippe: 3.5 [EE] 6 Anzeige es Taschenrechners: Die EE-Taste beeutet mal 10 x bestimmt (hier 6)., wobei ie nachfolgene Zahl as x Hinweis: Wir beziehen uns immer auf en TI-30, wenn wir Tasten am Taschenrechner beschreiben. Anere Taschenrechner haben teilweise abweichene Beschriftungen, z.b. heißt ie EE Taste bei CASIO EXP un bei aneren wieerum 10 x. Wurzelrechnung Die Wurzelrechnung ist ie Umkehroperation er Potenzrechnung. Bei er Ermittlung er Wurzel wir eine Zahl (y) gesucht, ie mit sich selbst multipliziert ie Ausgangszahl ergibt (im Beispiel ist as x). Beispiel: y= x (aners geschrieben y y= x oer auch y 2 = x ) Nehmen wir einfache Zahlen, um ies zu vereutlichen. x = 4 Die Wurzel von 4 ist 2, enn 2 2 oer 2² ist 4

5 Lehrbrief 1 Technik Seite 5 von 7 Eine solche Wurzel kann urch QUADRIEREN aufgelöst weren. Beispiel: a=4 Die Formel ist nach a umzutellen. a = 4 : a = a 2 = 4 16 ² ()², quarieren Das Quarat hoch 2 un ie Wurzel heben sich auf. a = 16 ² Logarithmen Hierbei geht es arum, einen Exponent ( ie Hochzahl ) zu finen, er mit einer gegebenen Basis eine bestimmte Zahl ergibt. Beispiel: 10 x = 1000 Wie groß ist x? 10 x = 1000 log 10 auf beien Seiten log x = log log 10 un 10( hoch ) auf er linken Seite heben sich gegenseitig auf. Das vormals als Exponent geschriebene x steht nun unten. x = log nun in en Taschenrechner eingeben 1000 un ann ie [log]-taste rücken - Ergebnis: 3 x = 3 log = 3 gesprochen: Der Logarithmus von 1000 zur Basis 10 ist 3.

6 Lehrbrief 1 Technik Seite 6 von 7 In er Regel weren in er Technik für ie Angabe von Werten nur Potenzen zur Basis 10 verwenet. Die Verwenung von Logarithmen bezieht sich analog azu ebenfalls fast immer auf ie Basis 10. Aus iesem Grun wir iese 10 nicht immer als log 10 mitgeschrieben, sonern einfach weggelassen. log1000 gesprochen: Der Logarithmus von Da keine weitere Angabe nach em log erfolgt, ist von er Basis 10 auszugehen. Es gibt natürlich auch Logarithmen zu beliebigen Basiswerten, jeoch sin iese mit einer Ausnahme für uns nicht relevant. Diese Ausnahme bezieht sich auf ie Eulersche Zahl e ( = 2, ). Diese Zahl kommt häufig als Basis bei Wachstunsprozessen vor, meist in Potenzen (anere Namen: e-funktion oer natürliche Exponentialfunktion ) wie U t =Umax e t / Möchte man iese Funktion beispielsweise nach (gesprochen tau ) umstellen, muss man im Lauf er Umformung en Logarithmus zur Basis e (anerer Name: natürlicher Logarithmus ) bilen. Auf em Taschenrechner finet man iese Funktionen hinter en Tasten ln un e x. Weiteres über Potenzen un Logarithmen folgt an er jeweiligen Stelle im Kurs (Verstärker, Verlustrechnung an Antennenleitungen, Antennengewinn...)

7 Lehrbrief 1 Technik Seite 7 von 7 Übungsaufgaben Erstmal ie Beienungsanleitung es eigenen Taschenrechners urchlesen, auch wenn er iese Woche noch nicht für ie Aufgaben benötigt wir. Bitte macht euch mit en Tastenbezeichnungen eures Rechners vertraut. Bitte löst ie nachstehenen Aufgaben un senet sie zur Durchsicht bis nächsten Montag an Die Lösung finet ihr jeweils im nächsten Lehrbrief. Bei erkennbaren gravierenen Problemen wir Klaus sich mit euch in Verbinung setzen. 1.) f U =t g Formel umstellen nach U 2.) x=3c D Formel umstellen nach D 3.) x y = A 3 Formel umstellen nach A 4.) U =R I Formel umstellen nach R 5.) t t 3= R z Formel umstellen nach R 6.) 3 R 3 =18 Wie groß ist R? 7.) U =R I un P=U I Bestimme hieraus eine Formel, in er nur ie Variablen U, P un R vorkommen. 1 8.) f = 2 LC Die Gleichung ist nach L umzustellen. In en nächsten Lehrbriefen weren neben en Elektrotechnik-Aufgaben noch weitere Matheübungen folgen. Das Schreiben von Formeln in Textverarbeitungen ist ohne einen Formeleitor etwas schwierig. Wir verwenen OpenOffice für unsere Arbeit un haben mit em integrierten Formeleitor gute Erfahrungen gemacht. Auch Wor beinhaltet einen solche Funktion. Anmerkung es Autors: Dies ist mit er schlimmste Lehrbrief überhaupt. Nur Mathe, kein Funk. Ich verspreche, ass es im nächsten Lehrbrief eutlich interessanter un auch praktischer wir. Leier brauchen wir iese Grunlagen, so kann ich euch nicht avon verschonen....un jetzt hast Du es ja auch geschafft.

Mathematische Kenntnisse

Mathematische Kenntnisse Lehrbrief 1 Technik Seite 1 von 9 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Amateurfunk ist nun mal ein technisches Hobby, eshalb sin einige grunlegene mathematische

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

3 Berechnungen und Variablen

3 Berechnungen und Variablen 3 Berechnungen und Variablen Du hast Python installiert und weißt, wie man die Python-Shell startet. Jetzt kannst Du etwas damit machen. Wir fangen mit ein paar einfachen Berechnungen an und wenden uns

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008 Der Bauablauf bei freistehenen Trockenmauern Version Januar 2008 2008 Gerhar Stoll Trockenmaurer / Dipl. Arch. ETH/SIA Hüeblistrasse 28 8636 Wal / Switzerlan +41/55/246'34'55 +41/78/761'38'18 info@stonewalls.ch

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden

Mehr

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Gesucht Stuenten, ie minestens ie Vorlesungen aus en ersten 2

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB

Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrgliedriger Termee. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB Schule Thema Personen Bunesgymnasium für Berufstätige Salzburg Mathematik 1 -Arbeitsblatt 1-9: Multiplizieren mehrglieriger Termee 1F Wintersemester 01/013 Unterlagen: LehrerInnenteam GFB Ein neues Problem

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v.

Leicht. Leicht. Leicht. Brandschutz ist doch ganz leicht. Leichtbeton mit besten Werten. Bundesverband Leichtbeton e.v. Leicht Leicht Leicht Branschutz ist och ganz leicht Leichteton mit esten Werten Bunesveran Leichteton e.v. 1 Der Branschutz Die für en Branschutz zustänige Norm ist ie DIN 4102. Die gültige Ausgae atiert

Mehr

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der

2 RECHENGESETZE 2 auch dieses Rechengesetz gilt, wenn einmal bewiesen, natürlich vorwärts wie rückwärts, also gilt dann ebenfalls: Es folgt wieder der 1 DEFINITION DER POTENZIERUNG 1 Potenzgesetze 1 Definition der Potenzierung Wir definieren für eine rationale Zahl a und eine natürliche Zahl n die Potenzierung wie folgt: a n := a a a ::: a Diese Art

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Logarithmen und Exponentialgleichungen

Logarithmen und Exponentialgleichungen Logarithmen und Exponentialgleichungen W. Kippels 8. April 2011 Inhaltsverzeichnis 1 Definitionen 4 2 Gesetze 5 3 Logarithmen und Taschenrechner 5 4 Exponentialgleichungen 7 5 Übungsaufgaben zu Exponentialgleichungen

Mehr

Übersicht über wichtige und häufig benötigte mathematische Operationen

Übersicht über wichtige und häufig benötigte mathematische Operationen Bruchrechnung Übersicht über wichtige und häufig benötigte mathematische Operationen Addition/Subtraktion von (ungleichnamigen) Brüchen: Brüche erweitern, sodass die Nenner gleichnamig sind, indem Zähler

Mehr

Mathe-Übersicht INHALTSVERZEICHNIS

Mathe-Übersicht INHALTSVERZEICHNIS S. 1/13 Mathe-Übersicht V. 1.1 2004-2012 by Klaus-G. Coracino, Nachhilfe in Berlin, www.coracino.de Hallo, Mathe-Übersicht Diese Datei enthält verschiedene Themen, deren Überschriften im INHALTSVERZEICHNIS

Mehr

RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN

RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN Addition und Subtraktion mit Variablen Es dürfen nur Ausdrücke mit gleichen Variablen addiert oder subtrahiert werden. a und a² sind auch unterschiedliche Variablen.

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

Einführung in die Mechanik Teil 4: Kinematik (4)

Einführung in die Mechanik Teil 4: Kinematik (4) SERVICE NEWSLEER Ausgabe: / 5 Im letzten eil er Serie wure bereits ie Bereitstellung von Verzerrungstensoren angekünigt. Wie as Wort bereits impliziert muss ein Maß gefunen weren, as ie Deformation es

Mehr

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7

Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7 Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die

Mehr

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs

Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs Einführung in das Arbeiten mit MS Excel 1. Bildschirmaufbau Die Tabellenkalkulation Excel basiert auf einem Rechenblatt, das aus Spalten und Zeilen besteht. Das Rechenblatt setzt sich somit aus einzelnen

Mehr

1 Dein TI nspire CAS kann fast alles

1 Dein TI nspire CAS kann fast alles INHALT 1 Dein kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Ein Problem... 1 3 Menü b... 3 4 Symbolisches Rechnen... 3 5 Physik... 4 6 Algebra... 5 7 Anbindung an

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen von Frank Rothe Das vorliegende Übungsblatt ist als Anregung gedacht, die Sie in Ihrer Klasse in unterschiedlicher Weise umsetzen können. Entwickelt

Mehr

(* = HB3 Stoff, die Kennzeichnung der für HB3 wichtigen Teile mit einem Stern (*) ist eine wertvolle Hilfe beim praktischen Studium).

(* = HB3 Stoff, die Kennzeichnung der für HB3 wichtigen Teile mit einem Stern (*) ist eine wertvolle Hilfe beim praktischen Studium). Inhalt (* = HB Stoff, die Kennzeichnung der für HB wichtigen Teile mit einem Stern (*) ist eine wertvolle Hilfe beim praktischen Studium). MATHEMATIK 0. Wie man mit Zahlen umgeht* 0.. Wichtige Grundsätze*..

Mehr

WEG bedeutet WIR! JCH UP weiß: Du schläfst noch unbewusst

WEG bedeutet WIR! JCH UP weiß: Du schläfst noch unbewusst Mein lieber kleiner Geistesfunken, zu wen möchtest Du GeHören? WER steht Dir näher? Meine geistige SCH-ER-BeN oer ie von Dir

Mehr

De Taschäräschnr Casio (Reihe: 9750, 9850,...)

De Taschäräschnr Casio (Reihe: 9750, 9850,...) De Taschäräschnr Casio (Reihe: 9750, 9850,...) Übersicht: 1. Nullstellen 2. Gleichungen 2. oder 3. Grades lösen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. Steigung

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Gleichungen lösen Wie mach ich das?

Gleichungen lösen Wie mach ich das? Gleichungen lösen Wie mach ich das? Wozu ist das gut? Ein alter Bauer sagt: Ich habe einige Hühner und Schafe. Gemeinsam sind wir eine fröhliche achtköpfige Familie mit 24 Füßen. Können wir herausfinden,

Mehr

Logarithmen. Gesetzmäßigkeiten

Logarithmen. Gesetzmäßigkeiten Logarithmen Gesetzmäßigkeiten Einführung Als erstes muss geklärt werden, für was ein Logarithmus gebraucht wird. Dazu sollte folgendes einführendes Beispiel gemacht werden. Beispiel 1: 2 x = 8 Wie an diesem

Mehr

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken

Superförster. Deutschland sucht den. Spieldauer: etwa 20 Minuten. 2 bis 4 Spieler ab 9 Jahren. Ein Kartenspiel für. Begeisterung wecken Ein Kartenspiel für 2 bis 4 Spieler ab 9 Jahren Spielauer: etwa 20 Minuten Worum geht s? Ihr sei Förster un versucht, le eure Aufgaben im W zu erleigen. Für Klimaschutz un Nachhtigkeit gibt es Pluspunkte;

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

WOCHENPLAN MATHEMATIK

WOCHENPLAN MATHEMATIK Wochenplan Übersicht NACHHILFE WINTERTHUR & ÜRICH WOCHENPLAN MATHEMATIK Mathematik Sekundarstufe Woche Thema Unterthema/ Hilfsmittel 1 : Umformen Klammern, Brüche, Potenzen, Variablen Algebra: Gleichungen

Mehr

Hallo! Du hast gerade deinen gemacht oder deine Ausbildung erfolgreich absolviert. Jetzt möchtest Du dich informieren, welche Möglichkeiten sich dir eröffnen. Du bist gerade dabei deinen Abschluß zu machen?

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Einführung des Rechners mit Beispielen aus der Mathematik. Abstandsmessungen. Weg Zeitdiagramme. Distance Match. Lernzielkontrolle

Einführung des Rechners mit Beispielen aus der Mathematik. Abstandsmessungen. Weg Zeitdiagramme. Distance Match. Lernzielkontrolle Einführung des Rechners mit Beispielen aus der Mathematik Abstandsmessungen Weg Zeitdiagramme Distance Match Lernzielkontrolle Inhaltsverzeichnis TI-84 PLUS im Mathematikunterricht Seite 1 TI-84 PLUS wichtige

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN

Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7 4. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Mathematik: Mag. Wolfgang Schmid Arbeitsblatt 7. Semester ARBEITSBLATT 7 RECHNEN MIT LOGARITHMEN Für das Rechnen mit Logarithmen gibt es nun natürlich eigene Rechengesetze, welche wir uns nun anschauen

Mehr

KLIX OUTLOOK. Getränkeautomaten. Johann C. Bredehorst GmbH & Co. KG Bahnhofstr. 15 32105 Bad Salzuflen

KLIX OUTLOOK. Getränkeautomaten. Johann C. Bredehorst GmbH & Co. KG Bahnhofstr. 15 32105 Bad Salzuflen Tel. +49 (0) 52 22-93 09 90 Fax +49 (0) 52 22-93 09 920 E-Mail info@j-c-breehorst.e KLIX OUTLOOK Getränkeautomaten Tel. Fax E-Mail +49 (0) 52 22-93 09 90 +49 (0) 52 22-93 09 920 info@j-c-breehorst.e Vielfalt

Mehr

Weitere einfache Eigenschaften elementarer Funktionen

Weitere einfache Eigenschaften elementarer Funktionen Kapitel 6 Weitere einfache Eigenschaften elementarer Funktionen 6.1 Polynome Geg.: Polynom vom Grad n p(x) = a 0 + a 1 x +... + a n 1 x n 1 + a n x n, also mit a n 0. p(x) = x n ( a 0 x + a 1 n x +...

Mehr

Viel Spaß im Studium!

Viel Spaß im Studium! Fakultät für Informations- un Kognitionswissenschaften Wilhelm-Schickar-Institut für Informatik Vorkurs Mathematik Barbara Rakitsch un Thomas Nestmeyer April 0 Vorwort Dieses Skript ist für en Vorbereitungskurs

Mehr

Umkehrfunktion Logarithmus Logarithmusfunktion. Mathematik W10. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W10 1 / 33

Umkehrfunktion Logarithmus Logarithmusfunktion. Mathematik W10. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W10 1 / 33 Mathematik W10 Mag. Rainer Sickinger LMM, BR v 1 Mag. Rainer Sickinger Mathematik W10 1 / 33 Mathematische Maschinen Sei f : A B eine Funktion. Die Umkehrfunktion f 1 ist nun wie folgt festgelegt: f 1

Mehr

Militzke Verlag. Muster / Nicht als Kopiervorlage freigegeben. 1. Ich entdecke mich. Was ich im Spiegel sehe

Militzke Verlag. Muster / Nicht als Kopiervorlage freigegeben. 1. Ich entdecke mich. Was ich im Spiegel sehe 1. Ich entdecke mich Was ich im Spiegel sehe Wieder einmal betrachtet sich Pauline im Spiegel. Ist mein Bauch nicht zu dick? Sind meine Arme zu lang? Sehe ich besser aus als Klara? Soll ich vielleicht

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

1. Binomische Formel. Hilfe 1.1. Seite Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b

1. Binomische Formel. Hilfe 1.1. Seite Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b Hilfe 1.1 1. Binomische Formel 1. Binomische Formel: (a + b)² = a² + 2ab + b²= a a + 2 a b + b b 1. Binomische Formel (Formel mit einem + ): (a + b)² = a a + 2 a b + b b = a² + 2ab + b² In der binomischen

Mehr

Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen.

Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen. Vorbemerkung Diese Unterlage bezieht sich auf Excel 2010 (auf Deutsch). Die Benutzeroberfläche kann in anderen Versionen der Software erheblich anders aussehen. Einiges, das bei der Bearbeitung der Übung

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Übungsaufgaben mit Lösungen Basisumformungen, [B] Grundlagenrechnen

Übungsaufgaben mit Lösungen Basisumformungen, [B] Grundlagenrechnen Mathe-Trainings-Heft Prüfungsvorbereitung für Oberstufe und Abitur Übungsaufgaben mit Lösungen Basisumformungen, [B] Grundlagenrechnen Terme, Brüche und Potenzen Logarithmen, Kopfrechnen Teilbarkeitsregeln

Mehr

Grundlagen der Tabellenkalkulation Die wichtigsten Funktionen im Überblick Christian Schett

Grundlagen der Tabellenkalkulation Die wichtigsten Funktionen im Überblick Christian Schett Grundlagen der Tabellenkalkulation Die wichtigsten Funktionen im Überblick Christian Schett Lektion 01: Spalten, Zeilen, Zellen Video-Tutorial: http://www.youtube.com/watch?v=wxt2dwicl38 Tabellenkalkulationsprogramme:

Mehr

Nina. 2. Ninas Mutter lebt nicht mit Nina und der Familie zusammen. Warum könnte das so sein? Vermute. Vielleicht ist sie. Möglicherweise.

Nina. 2. Ninas Mutter lebt nicht mit Nina und der Familie zusammen. Warum könnte das so sein? Vermute. Vielleicht ist sie. Möglicherweise. Seite 1 von 6 1. Hier siehst du Bilder von Nina und den Personen, mit denen Nina zusammenwohnt. Schau dir die Szene an und versuche, die Zitate im Kasten den Bildern zuzuordnen. Zu jedem Bild gehören zwei

Mehr

Multiplikationstafeln

Multiplikationstafeln Multiplikationstafeln Rechenintensive Arbeiten in der Landesvermessung und Astronomie, sowie im Handel, machten es in früheren Jahrhunderten wünschenswert, höhere Rechenarten auf niedrigere zurück zu führen.

Mehr

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge.

Vorkurs Mathematik Dozent: Dipl.-Math. Karsten Runge. Vorkurs Mathematik 17.08.-28.08.15 Dozent: Dipl.-Math. Karsten Runge E-mail: karsten.runge@hs-bochum.de www.hs-bochum.de\imt > Mathematik-Vorkurs > Mathematik-Werkstatt Die Mathematik-Werkstatt bietet

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Anfrage aus dem Kantonsrat KR-Nr. 11 U2000 betreffend schulische und berufliche Förderung jugendlicher Mütter

Anfrage aus dem Kantonsrat KR-Nr. 11 U2000 betreffend schulische und berufliche Förderung jugendlicher Mütter Bilungsirektion es Kantons Zürich Mittelschul- un Berufsbilungsarnt Bilungsentwicklung 25.4.2000 000425/b Bilungsentwicklung Tel. O1 347 27 71 E-Mail: bach@schulnetz ch INFO-PARTNER Amt für Jugen un Berufsberatung

Mehr

Armacell International GmbH

Armacell International GmbH Patent- un Markenstrategien in einem international agierenen Unternehmen Armacell International GmbH mae by Armacell Präsentiert von Mechthil Ruthmann Manager Intellectual Property & Risk Management mae

Mehr

Wenn Du Deinen Rechner zum ersten Mal einschaltest, verlangt er von Dir einige Angaben. Wähle als Sprache Deutsch.

Wenn Du Deinen Rechner zum ersten Mal einschaltest, verlangt er von Dir einige Angaben. Wähle als Sprache Deutsch. INHALT 1 Dein TI nspire CX CAS kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Der Startbildschirm... 2 2.3 Berechnungen... 2 3 Menü b... 3 4 Symbolisches Rechnen...

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

14. Dezibel. 14.1 Definitionen

14. Dezibel. 14.1 Definitionen Dezibel 14-1 14. Dezibel 14.1 Definitionen Um Leistungs- und se über mehrere Dekaden hinweg sinnvoll darstellen zu können, hat man das Dezibel als logarithmische Maßeinheit eingeführt. Es können somit

Mehr

Vertriebspartner/In sein

Vertriebspartner/In sein Beginnen Sie eine neue Zukunft. Wir begleiten Sie! Freuvoll! Chancenreich! Fair! Was kann ich tun? urch! Sie Starten Vertriebspartner/In weren Vertriebspartner/In sein Ihre Chance für mehr Einkommen, Freiheit

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner

Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Weiterbildung und Zusatzausbildung der PHZ Luzern Interessantes und Spannendes aus der Welt der Mathematik September 2006, Dieter Ortner Rechengesetze 1. Rechengesetze für natürliche Zahlen Es geht um

Mehr

25 kann ohne Rest durch 5 geteilt werden! ist wahr

25 kann ohne Rest durch 5 geteilt werden! ist wahr Lehrbrief 2: Lektion 8 - C -Praxis 4-1 - 5.2 Einfache Entscheidungen mit if und die Vergleichsoperatoren Nun tauchen wir immer tiefer in die Geheimnisse von C ein und beschäftigen uns mit einem sehr wichtigen

Mehr

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen

Technische Universität Berlin Wintersemester 2010/11. Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wiederholung mathematischer Grundlagen Prof. Dr. Frank Heinemann Technische Universität Berlin Wintersemester 2010/11 Allgemeine Volkswirtschaftslehre 2 - Makroökonomie Wieerholung mathematischer Grunlagen Dieses Übungsblatt enthält keine abzugebenen

Mehr

A-1 ICH. Prüferblatt SUULINE OSA 2012. I. Bildbeschreibung + Gespräch Der Prüfling muss mindestens 10 Sätze sagen.

A-1 ICH. Prüferblatt SUULINE OSA 2012. I. Bildbeschreibung + Gespräch Der Prüfling muss mindestens 10 Sätze sagen. A-1 ICH 1. Wo ist dein Lieblingsplatz? Wann bist du da und was machst du da? 2. Warum ist es schön, ein Haustier zu haben? 3. Welche Musik und Musiker magst du? Warum? Wann hörst du Musik? Ihr(e) Schüler(in)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Das Rechnen mit Logarithmen -E Mathematik, Vorkurs Spezielle Logarithmen Der natürliche Logarithmus ist von besonderer Bedeutung in den Anwendungen: Basiszahl ist die Eulersche Zahl e: log e x ln x gelesen:

Mehr

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a

2.3 Logarithmus. b). a n = b n = log a. b für a,b 0 ( : gesprochen genau dann bedeutet, dass beide Definitionen gleichwertig sind) Oder log a 2.3 Logarithmus Bsp. Seite 84 mitte: Wie lange muss man Fr. 10 000.- zu 5,1% anlegen, um Fr. 16 000.- zu erhalten? Lösen Sie die Zinseszinsformel nach q n auf Aus q n erfolgt die Berechnung von n mittels

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

8. Uninformierte Suche

8. Uninformierte Suche 8. Uninformierte Suche Prof. Dr. Ruolf Kruse University of Mageurg Faculty of Computer Science Mageurg, Germany ruolf.kruse@cs.uni-mageurg.e S otationen () otationen: Graph Vorgänger (ancestor) von Knoten

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr