Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen

Größe: px
Ab Seite anzeigen:

Download "Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen"

Transkript

1 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen Internet:

2 Einführung des Integrals 15 Das Integral wird aus einer geometrischen Fragestellung hergeleitet: Wie bestimmt man die Flächen zwischen einer Kurve und der x-achse innerhalb des Intervalls [a; b]? In der Schule lernt man: b A = f x dx a Dabei gibt es aber einen Haken! Später mehr dazu. a A b

3 Der Hauptsatz 16 In der Schule wird der Zusammenhang zwischen Differenzialund Integralrechnung gezeigt. Hauptsatz der Differenzial- und Integralrechnung: a b f x dx = F x a b = F b F a Hierbei nennt man F(x) eine Stammfunktion von f(x). Es gilt der fundamentale Zusammenhang: F x = f x Dies bedeutet Integrieren ist die Umkehrung des Differenzierens, daher sagt man auch aufleiten.

4 Stammfunktionen 17 Aufgrund des Zusammenhangs F (x) = f(x) sind Stammfunktionen nicht eindeutig bestimmt! Denn x dx = 1 3 x3 und x dx = 1 3 x x3 = x 1 3 x3 + 5 = x Erkenntnis: Stammfunktionen sind bis auf eine Konstante C eindeutig bestimmt. Es gilt also: f(x)dx = F(x) + C

5 Elementare Integrale 18 f(x) = F (x) c f(x) cx + C x n 1 n + 1 xn+1 + C, n 1 sin x cos x + C cos x sin x + C 1 x e x ln x + C e x + C

6 Rechenregeln für Integrale 19 Bezeichnung Rechenregel Summenregel f x + g x dx = f x dx + g x dx Konstanter Faktor c f x dx = c f x dx, c R Kettenregel rückwärts F g x f g x dx = g x Nur wenn g(x) linear ist, d.h. g(x) = mx + b gilt! b c b Intervallregel f x dx = f x dx + f x dx, c R a a c

7 Flächenberechnung mit dem Integral 130 Experiment: Gesucht ist die Fläche zwischen f(x) = sin (x) und der x-achse im Intervall [π; π]. π A = sin x dx = cos x π π π = cos π cos π = 1 1 = Negative Flächen???

8 Flächenberechnung mit dem Integral 131 Erkenntnis: Der Wert des Integrals stellt nicht immer die Fläche unter einer Kurve dar! Verläuft die Kurve teilweise unterhalb der x-achse, so kommt es zu Auslöschungen oder sogar zu einem negativen Vorzeichen! y Maßnahme: Integriere von Nullstelle zu Nullstelle und nimm Beträge! x

9 Rechenbeispiel 13 Gesucht ist die Fläche zwischen f(x) = x 3 + 1,5x 1,5x 1 und der x-achse im Intervall [ ; 1]. y Lösung: A = 0,5 f x dx 1 + f x dx =,5315 0,5 Die gesuchte Fläche beträgt etwa,5le. Mit GTR: f(x) bei Y 1 eingeben, abs(fnint(y 1,X,-,-0.5)) + abs(fnint(y 1,X,-0.5,1)) 0,5 1 x

10 Abi Pflichtteile Aufgabe 133 PT Aufgabe : e Berechnen Sie das Integral. ( VP) x + 4x dx 1 PT Aufgabe : 9 Berechnen Sie das Integral. ( VP) x 1 dx 4 PT Aufgabe : G ist eine Stammfunktion der Funktion g mit g(x) = 3 sin(4x). Der Punkt P 0 1 liegt auf dem Schaubild von G. Bestimmen Sie einen Funktionsterm von G. ( VP)

11 Abi Pflichtteile Lösungen 134 Lösung PT Aufgabe : 1 e x + 4x dx = ln x + x 1 e = 1 + e 0 + = e Lösung PT Aufgabe : 4 9 x 1 9 dx = x dx = 1 1 x1 x = 4 x x 4 9 = = 3 4 = 1 9 4

12 Abi Pflichtteile Lösungen 135 Lösung PT Aufgabe : Bilde zunächst eine Stammfunktion: G x = 3 sin 4x dx = x + 3 cos 4x + C 4 Da P 0 1 auf G liegt folgt G 0 = 1, also 1 = 3 4 cos 0 + C C = 1 4 Daraus ergibt sich der gesuchte Funktionsterm: G x = x cos 4x + 1 4

13 Fläche zwischen zwei Kurven 136 y g x Wie berechnet man die Fläche zwischen zwei Kurven in einem gegebenen Intervall [a;b]? f x Idee: Fläche obere Kurve minus Fläche untere Kurve. a b x b Ansatz: A = f a b x dx g a b x dx = f x g x a dx Vermeide negatives Vorzeichen durch Betragsbildung: b A = f x g x a dx

14 Fläche zwischen zwei Kurven 137 Beachte, dass es bei mehreren Flächenstücken wieder zu Auslöschungen kommen kann! Maßnahme: Bestimme die Schnittpunkte der Kurven, integriere von Schnittpunkt zu Schnittpunkt und nimm die Beträge. Für obige Abbildung gilt dann: y x 1 x x 3 x x x 3 A = f x g x dx + f x g x x 1 x dx

15 Rechenbeispiel Bestimme die Fläche zwischen den beiden Kurven von f(x) und g(x) zwischen den Schnittpunkten von Hand. Lösung: y f x = 1 x + x 1 x g x = 1 4 x3 4x 1 Zuerst die Schnittpunkte. g x = f(x) liefert: 1 4 x3 1 x 6x = 0 4 x 3 x 4x = 0 x(x x 4) = 0 x 1 = 0; x = 4; x 3 = 6 mit der p-q-formel.

16 f x = 1 x + x 1 Rechenbeispiel 1 g x = 1 4 x3 4x Nun berechnen wir die Fläche: 0 Es gilt A = f x g x 4 dx Mit f x g x = 1 4 x3 + 1 x + 6x folgt: 0 A = 1 4 x3 + 1 x + 6x dx 4 = = LE² = 1 16 x x3 + 3x 0 4

17 Rechenbeispiel 140 Bestimme die Fläche zwischen den beiden Kurven von f(x) und g(x) im Intervall [x 1 ; x 3 ] mit dem GTR. Lösung: f x = sin x x 1 x x 3 g x = cos 1,5x x Eingaben im Y-Editor: Y 1 = sin x und Y = cos 1.5x Kurven zeichnen lassen mit GRAPH Schnittpunkte mit ND CALC intersect x 1 = π; x = 0,46; x 3 = π

18 Rechenbeispiel 141 Die Fläche ist gegeben durch: 0,46 π A = (f x g(x)) dx + (f x g(x)) dx π 0,46 Dies gibt man im GTR so ein: abs(fnint(y 1 -Y,X,-π,0.46)) + abs(fnint(y 1 -Y,X,0.46,π)) fnint erhält man über MATH, abs erhält man über MATH im Menü NUM Der GTR liefert dann die Fläche mit A = 8,435 LE².

19 Rechenbeispiele Kettenregel 14 Rechenbeispiel 1: e x dx =? Lösung: x = e x dx = 1 ex + C Rechenbeispiel : 1 3x+ dx =? Lösung: 3x + = 3 1 dx = 1 ln 3x + + C 3x+ 3 Rechenbeispiel 3: cos x + 5 dx =? Lösung: x + 5 = cos x + 5 dx = 1 sin x C

20 Mittelwerte 143 Bei endlich vielen Werten arithmetisches Mittel: Alle Werte zusammenzählen und durch die Anzahl der Werte teilen. Mittelwert von 4, 8, 9? m = = 7 3 Was tun bei unendlich vielen Werten, z.b. bei Funktionswerten? Verwende das Integral, weil dieses eine unendliche Summe darstellt.

21 Geometrische Fragestellung 144 a A b f(x) Eine geometrische Frage führt zum selben Problem. Für die Fläche A links finde ein flächengleiches Rechteck mit der Intervalllänge als Grundseite. h = f(x 0 ) A f(x) Idee: Mittelwert der Funktionswerte ist die Höhe des Rechtecks. Mittelwert Integral a b a b

22 Integralformel für Mittelwerte 145 Der Mittelwert m einer Funktion f x im Intervall a; b ist gegeben durch: m = 1 b a a b f x dx Erläuterung: Das Integral bestimmt die Fläche unter der Kurve von f x im Intervall a; b. Fasst man dies als Fläche eines Rechtecks auf, so braucht man nur noch durch die Länge b a zu teilen und erhält die gesuchte Höhe m des Rechtecks.

23 Rechenbeispiele Berechne den Mittelwert von f(x) = x im Intervall 0;. Lösung: m = x dx = 1 1 x 0 = 1 0 = 1. Berechne den Mittelwert von f(x)=sin(x) im Intervall [0;π]. Lösung: m = 1 π 0 = 1 π π 0 sin x dx = 1 π 1 1 = 0 cos x 0 π

24 Gegenüberstellung 147 Diskreter (endlicher) Fall: m = 1 n x x n Kontinuierlicher Fall: m = 1 b a a b f x dx Angenommen man hat im diskreten Fall sehr viele Werte zu addieren. Kann man trotzdem die Integralformel anwenden? Ja man kann! Man muss allerdings Ungenauigkeiten in Kauf nehmen!

25 Rechenbeispiel 148 Ein Messfühler misst jede Stunde, beginnend mit Stunde 0, die aktuelle Umgebungstemperatur in einem Kühlraum. Während der ersten 0 Stunden wird der Temperaturverlauf durch f t = 0 0,05t wiedergegeben. Bestimme die Durchschnittstemperatur innerhalb der ersten 0 Stunden (also bis t = 0) zunächst mit der Integralformel. Bestimmen Sie nun den exakten Wert mit dem GTR und vergleichen Sie die Ergebnisse.

26 Lösung 149 Durchschnittswert mit der Integralformel: Hierbei entstehen Ungenauigkeiten! m = ,05x GTR dx 13,3 Ergebnis: Die Durchschnittstemperatur während der ersten 0 Stunden beträgt näherungsweise(!) 13,3 C.

27 Anmerkungen 150 Den genauen Wert erhält man mit dem GTR über sum(seq(y 1,X,0,0))/1 gefolgt von ENTER. Die Funktion sum erhält man über ND LIST im Menü MATH und die Funktion seq erhält man über ND LIST im Menü OPS. Der genaue Wert beträgt 13,16 C! Gegenüber dem Wert der Integralformel hat man eine Abweichung von etwa 0,167 C. Man muss von Fall zu Fall entscheiden, ob man solche Abweichungen in Kauf nehmen kann oder nicht.

28 Aufgabe 151 Eine Bakterienkultur vermehrt sich in den ersten 10 Stunden seit der Beobachtung exponentiell nach dem Gesetz f t = e 0,t. Hierbei wird t in Stunden und f(t) in Einheiten von gemessen. Welche Durchschnittsgröße hatte die Bakterienkultur zwischen der 4ten und der 8ten Stunde? Lösung: m = e 0,t 4 dt 6,8 (GTR: fnint(y 1,X,4,8)/4) Ergebnis: Zwischen der 4ten und der 8ten Stunde gab es durchschnittlich 6800 Bakterien.

29 Wahlteil 008 Analysis I 3 15 Aufgabe I 3.1 Ein Behälter hat ein Fassungsvermögen von 100 Liter. Die enthaltene Flüssigkeitsmenge zum Zeitpunkt t wird beschrieben durch die Funktion f mit f t = e 0,01t ; t 0 (t in Minuten, f(t) in Liter) a) Bestimmen Sie die mittlere Flüssigkeitsmenge während der ersten Stunde. Lösung: m = e 0,01t dt = 398,4

30 Rotationsvolumen 153 Rotation um die x-achse Rotation um die y-achse y y f(x) f(x) f(b) a b x a b x f(a) b V x = π f x a dx V y = π f 1 y dy y y 1

31 Umkehrfunktionen 154 Zur Berechnung von V y muss man die Umkehrfunktion f 1 y zu f x bilden. Hierzu löst man die Funktionsgleichung y = f x einfach nach x auf. Auf der rechten Seite der Gleichung steht dann die Umkehrfunktion. Rechenbeispiel: Nach x auflösen: y = f x = x + 5 x = y 5 = f 1 y

32 Aufgaben zur Umkehrfunktion 155 Finde zu folgenden Funktionen die Umkehrfunktion: 1. f x = x + 3. f x = e x 3. f x = x + 4x + 4 Lösungen: 1. x = y 3 f 1 x = x 3. x = ln y f 1 x = ln x 3. x = y f 1 x = x

33 Rechenbeispiel Berechne V x im Intervall 0; und V y im Intervall 0; 4 für f x = x. Lösung V x : V x = π x dx = π 1 5 x5 0 Lösung V y : Bestimme zuerst Umkehrfunktion zu f(x). Löse dazu einfach y = f x nach x auf! y = x x = y = f 1 y 0 4 V y = π y dy = π 1 y = 3 5 π = 8π

34 Rechenbeispiel 157 Für f x = x + berechne V x im Intervall [0; ] und V y im Intervall ; 3. Lösung V x : V x = π x + 0 = π 1 3 x3 + x 0 dx = π x + 0 = π = 0 3 π dx y x

35 f x = x + Rechenbeispiel 158 Lösung V y : Bestimme zuerst die Umkehrfunktion: y y = x + y = x + x = y = f 1 y 3 V y = π y 3 dy = π y dy x = π 1 3 y3 y 3 = π ,885π

36 Wahlteil 005 Analysis I c) 159 Rotationskörper: f t x = t cosx; π x π Das Schaubild von f t schließt mit der x-achse eine Fläche ein. Bei Rotation dieser Fläche um die x-achse entsteht ein Drehkörper. Berechnen Sie dessen Volumen in Abhängigkeit von t. Lösung: π V t = π t cosx π Dieses Integral kann nur mit dem GTR berechnet werden. Die erforderliche Integrationstechnik wird in der Schule nicht mehr unterrichtet! π dx = π t cosx dx 1,57 π t π

37 Rotationsvolumen um parallele Achsen 160 Wie berechnet man das Volumen eines Rotationskörpers, der um eine Parallele zur x- oder y-achse rotiert? Lösung: Verschiebe f(x) so, dass die neue Funktion g(x) um die x- Achse bzw. um die y-achse rotiert. Berechne V x bzw. V y mit den bekannten Formeln. Die Berechnungen sind meist sehr aufwändig. Entsprechend selten kommt diese Aufgabenstellung im Abitur vor.

38 Wahlteil 007 Analysis I c) 161 Rotationskörper: f x = 4 +cos π x Das Schaubild K rotiert im Intervall 0; 4 um die Gerade mit der Gleichung y = 4/3. Berechnen Sie das Volumen des entstehenden Rotationskörpers. Lösung: V = π f x dx,34

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals Einführung des Integrals 15 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz lächen Mittelwerte Rotationsvolumen Das Integral wird aus einer geometrischen ragestellung hergeleitet:

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 2.1

Mehr

Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen

Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen 1 Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 2.1 Ein zunächst leerer Wassertank

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Flächenberechnungen mit Integralen. Aufgaben und Lösungen.

Flächenberechnungen mit Integralen. Aufgaben und Lösungen. Flächenberechnungen mit Integralen Aufgaben und Lösungen http://www.elearning-freiburg.de 2 Aufgabe 1: Gegeben sei die Funktion f = 2 + 4 + 4. f = 2 + 4 + 4 a) Berechnen Sie die Fläche, die die Kurve mit

Mehr

KA 2 Mathematik Pflichtteil ohne Hilfsmittel

KA 2 Mathematik Pflichtteil ohne Hilfsmittel KA Mathematik 1. 06.03.015 Pflichtteil ohne Hilfsmittel Nr. 1. / 1 + 1 P Bestimmen Sie die erste Ableitung der Funktion f (x)=x (sin(x)). Handelt es sich bei P(0 0) um einen Hochpunkt, Tiefpunkt oder Sattelpunkt

Mehr

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.

Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1. 1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen der Aufgaben A 1.1 und A 1.2 klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1.1

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

Funktionsscharen. Zusatzthemen. Funktionsscharen. Berechnungen mit Funktionsscharen. Funktionsscharen. Ortskurven Extremwertaufgaben Bedienung des GTR

Funktionsscharen. Zusatzthemen. Funktionsscharen. Berechnungen mit Funktionsscharen. Funktionsscharen. Ortskurven Extremwertaufgaben Bedienung des GTR Funktionsscharen 335 334 Zusatzthemen Funktionsscharen Ortskurven Extremwertaufgaben Bedienung des GTR Eine Funktion, die neben dem üblichen Parameter noch einen zweiten Parameter besitzt, bezeichnet man

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung II

Abitur 2017 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen 1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe I 1 Die Abbildung zeigt den Verlauf

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel)

Übungsklausur Analysis & Geometrie Stausee & Personenaufzug Pflichtteil (ohne Hilfsmittel) Pflichtteil (ohne Hilfsmittel) ) Berechne die. Ableitung. a) f(x) 3x sin( x ) b) f(x) 3x sin( x ) (VP) 3 ) Berechne und vereinfache x 3) Bestimme die Lösungsmenge der Gleichung sin( x) dx. (3VP) cos(x)

Mehr

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.

n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=. Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen

Mehr

3.* Klausur Pflichtteil

3.* Klausur Pflichtteil EI M5 2010-11 MATHEMATIK 3.* Klausur Pflichtteil In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um den Wahlteil zu erhalten, gib bitte diesen Pflichtteil bearbeitet ab. 1. Aufgabe light

Mehr

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1

Analysis I. Teil 1. Bayern Aufgabe 1. Abitur Mathematik Bayern Abitur Mathematik: Musterlösung. D f =] 3; + [ x = 1 Abitur Mathematik: Bayern 2012 Teil 1 Aufgabe 1 a) DEFINITIONSMENGE f(x) = ln(x + 3) x + 3 > 0 x > 3 D f =] 3; + [ ABLEITUNG Kettenregel liefert f (x) = 1 x + 3 1 = 1 x + 3 b) DEFINITIONSMENGE 3 g(x) =

Mehr

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen 1 Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1 Der Laderaum eines Lastkahns ist

Mehr

Inhalt der Lösungen zur Prüfung 2015:

Inhalt der Lösungen zur Prüfung 2015: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analysis... 8 Wahlteil Analysis... Wahlteil Analytische Geometrie/Stochastik... Wahlteil Analytische Geometrie/Stochastik... 9 Pflichtteil Lösungen

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

3 Differenzialrechnung

3 Differenzialrechnung Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Produkt- und Kettenregel, Rotationskörper Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche

Mehr

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl.

, das Symmetrieverhalten des Graphen von f a. und die Werte von a, für welche die Wertemenge von f a. die Zahl 1 enthält. a 2 x 2 vgl. Abiturprüfung Berufliche Oberschule 00 Mathematik Technik - A II - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a ( ) a a mit a IR \ {0} in der von a unabhängigen Definitionsmenge D f IR \ {0}. Teilaufgabe.

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mathe-aufgaben.com Analysis: Eponentialfunktionen Analysis Klausur zu Eponentialfunktionen ohne Wachstum (Ableitung, Stammfunktion, Fläche, Rotationsvolumen, Etremwertaufgabe) Gymnasium ab J Aleander

Mehr

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 2. Produkt- und Kettenregel, Rotationskörper. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 2 Produkt- und Kettenregel, Rotationskörper Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2017 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 217 (ohne CAS) Baden-Württemberg Wahlteil Analysis A2 Hilfsmittel: GTR und Merkhilfe allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Mai 217 1 Aufgabe A

Mehr

Flächenberechnung mittels Untersummen und Obersummen

Flächenberechnung mittels Untersummen und Obersummen Flächenberechnung mittels Untersummen und Obersummen Ac Einstieg: Fläche unter einer Normalparabel mit f(x) = x 2 Wir approximieren durch Rechtecksflächen, wobei zunächst senkrecht zur x-achse 10 Streifen

Mehr

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3

Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3 Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Kapitel 8 Einführung der Integralrechnung über Flächenmaße

Kapitel 8 Einführung der Integralrechnung über Flächenmaße 8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Die Funktion ist gegeben durch ; 0. a) Die Tangente an den Graphen von im Punkt verläuft durch 0 0,5. Bestimmen Sie die Koordinaten von.

Die Funktion ist gegeben durch ; 0. a) Die Tangente an den Graphen von im Punkt verläuft durch 0 0,5. Bestimmen Sie die Koordinaten von. Aufgabe A1.1 Die Anzahl der Käufer einer neu eingeführen Smartphone-App soll modelliert werden. Dabei wird die momentane Änderungsrate beschrieben durch die Funktion 6000, ; 0 ( in Monaten nach Einführung,

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x

G13 KLAUSUR 1. (1) (2 VP) Bilden Sie die erste Ableitung der Funktion f mit. f(x) = e 2x+1 x G3 KLAUSUR PFLICHTTEIL Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () (2 VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = e 2x+. x (2) (2 VP) Gegeben ist die Funktion f mit f(x)

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil

Mehr

3. Probeklausur - Lösung

3. Probeklausur - Lösung EI M5 2010-11 MATHEMATIK 3. Probeklausur - Lösung 1. Aufgabe light up! (8 Punkte) Berechne die folgenden Integrale mit dem Hauptsatz. 2 ³ ² cos 3 ² Für die a) werden wir bald ein einfaches Verfahren kennen

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abitur Mathematik Baden-Württemberg 2012

Abitur Mathematik Baden-Württemberg 2012 Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)

Mehr

Abschlussprüfung Fachoberschule 2016 Mathematik

Abschlussprüfung Fachoberschule 2016 Mathematik Abschlussprüfung Fachoberschule 06 Aufgabenvorschlag A Funktionsuntersuchung /6 Gegeben ist die Funktion f mit der Funktionsgleichung f ( x) = x + x; x IR. Berechnen Sie die Funktionswerte f( x ) für folgende

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Übungsaufgaben Analysis hilfsmittelfrei

Übungsaufgaben Analysis hilfsmittelfrei Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)

Mehr

Differenzialrechnung

Differenzialrechnung 24 Differenzialrechnung Bedeutung der Ableitung Rechenregeln Tangenten- und Normalengleichung Kurvendiskussion Wachstumsprozesse E-Mail: klaus_messner@web.de, Internet: www.elearning-freiburg.de Tangentensteigung

Mehr

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung

III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS

Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.

Mehr

Aufgaben zu Ableitung und Integral der ln-funktion

Aufgaben zu Ableitung und Integral der ln-funktion Aufgaben zu Ableitung und Integral der ln-funktion. Bilden Sie von folgenden Funktionen jeweils die. Ableitung. a) f(x) = x+lnx b) f(x) = (lnx) c) f(x) = x(lnx) xlnx+x d) f(x) = e) f) x (lnx ) f(x) = x

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }.

= mit der Definitionsmenge D f = IR \ { 1 ; 3 }. Abiturprüfung Berufliche Oberschule 6 Mathematik 3 Technik - A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe. (

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

KOMPETENZHEFT ZU STAMMFUNKTIONEN

KOMPETENZHEFT ZU STAMMFUNKTIONEN KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte

Mehr

Hauptprüfung 2007 Aufgabe 3

Hauptprüfung 2007 Aufgabe 3 Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lösung Pflichtteilaufgaben zur Integralrechnung

Lösung Pflichtteilaufgaben zur Integralrechnung Testklausur K Integralrechnung# Lösung Pflichtteilaufgaben ur Integralrechnung Aufgabe : a) F) + b) f) F) Aufgabe : n+ n+ a) f) F) n + Für n kann keine Stammfunktion angegeben werden. Hinweis: Für die

Mehr

9. Lineare Gleichungssysteme

9. Lineare Gleichungssysteme 9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Pflichtteilaufgaben zur Integralrechnung

Pflichtteilaufgaben zur Integralrechnung Testklausur K Integralrechnung# Pflichtteilaufgaben zur Integralrechnung Aufgabe : Gib jeweils eine Stammfunktion an: a) f () = ² + f () = Aufgabe : Ermittle eine Stammfunktion für a) f() = n Für welche

Mehr

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung Abitur Mathematik: Baden-Württemberg 14 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer einfachen Funktion u(x) = x und einer Verkettung v(x) = e x

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Alexander Riegel.

Alexander Riegel. Alexander Riegel riegel@uni-bonn.de 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1

Mehr

Analysis 8.

Analysis 8. Analysis 8 www.schulmathe.npage.de Aufgaben Gegeben sind die Funktionen f a durch f a (x) = a x x + (x R x ; a R a ) a) Geben Sie die Koordinaten der Schnittpunkte der Graphen der Funktionen f a mit den

Mehr

Selbsteinschätzungstest

Selbsteinschätzungstest D-MATH ETHZ-Semesterbeginn HS 0 Selbsteinschätzungstest Dieser Test bietet Ihnen die Möglichkeit, Ihre mathematischen Schulkenntnisse abzurufen und zu überprüfen. Die Teilnahme ist freiwillig. Bei jeder

Mehr

Mathematik II Lösung 6. Lösung zu Serie 6

Mathematik II Lösung 6. Lösung zu Serie 6 Lösung zu Serie 6. a) In einem kritischen Punkt (x, ) von f gelten f x (x, ) x + und f (x, ) x, also x. Ferner gelten f xx (x, ) f (x, ) und f x (x, ), insbesondere also f xx (, ) < und f xx (, )f (, )

Mehr

Abiturprüfung Mathematik 13 Technik A II - Lösung

Abiturprüfung Mathematik 13 Technik A II - Lösung GS.6.6 - m6_3t-a_lsg_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung Teilaufgabe Gegeben ist die Funktion f mit f( x) mit der Definitionsmenge D f IR \ { ; 3 }. Teilaufgabe. ( BE) Geben Sie

Mehr

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung

Pflichtteil. Baden-Württemberg Aufgabe 1. Aufgabe 2. Musterlösung. Abitur Mathematik Baden-Württemberg Abitur Mathematik: Musterlösung Abitur Mathematik: Baden-Württemberg 2013 Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist das Produkt einer ganzrationalen Funktion u(x) = 2x 2 + 5x und einer Verkettung

Mehr

Mathematik im Berufskolleg II

Mathematik im Berufskolleg II Bohner Ott Deusch Mathematik im Berufskolleg II Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 6 ISBN 978--8-- Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

für Pharmazeuten und Lehramtskandidaten WS 2017/2018

für Pharmazeuten und Lehramtskandidaten WS 2017/2018 für Pharmazeuten und Lehramtskandidaten WS 2017/2018 Alexander Riegel riegel@uni-bonn.de 2 3 4 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0

Mehr

De Taschäräschnr TI-84

De Taschäräschnr TI-84 De Taschäräschnr TI-84 (Menü: Classic ) Übersicht: 1. Katalog 2. Nullstellen 3. Gleichungen lösen 4. Schnittpunkte bestimmen 5. Extrempunkte 6. Wendepunkte 7. y-werte ausrechnen lassen 8. Steigung einer

Mehr

Lösungen zur Prüfung 2014: Pflichtteil

Lösungen zur Prüfung 2014: Pflichtteil Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr