Analysis: Klausur Analysis

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Analysis: Klausur Analysis"

Transkript

1 Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz Januar 1 1

2 Pflichtteil - ohne Hilfsmittel Aufgabe P1: ( VP) Gib eine Stammfunktion an: a) f() = + cos(,5) b) g() = ( ) c) Gib die Stammfunktion H() der Funktion h() = 1+ an, für die H() = ist. Aufgabe P: ( + VP) Gegeben ist die Funktion f durch f() =,5, a) Skizziere das Schaubild K von f. Die -Achse, K und die Gerade = begrenzen im Bereich eine Fläche. Berechne den Inhalt dieser Fläche. b) Bestimme die Gleichung der Tangente t an den Graphen von f im Punkt B(/). Der Graph von f, seine Tangente in B(/) und die y-achse begrenzen eine Fläche. Berechne ihren Inhalt. Aufgabe P: ( VP) Gegeben ist die Funktion f mit f() =, >. Der Graph G von f, die -Achse und die Gerade = 1 begrenzen eine ins Unendlich reichende Fläche. Untersuche, ob ihr Inhalt einen Grenzwert hat. Aufgabe P: ( VP) Die Abbildung zeigt das Schaubild einer ganzrationalen Funktion f. Begründe, welche der folgenden Aussagen über die Funktion F() = f(t)dt wahr und welche falsch sind. (1) F() < () Der Graph von F ist für -1 < < 1 eine Linkskurve. () F(-) ist positiv. () F (1) ist Null

3 Wahlteil - mit GTR und Formelsammlung Aufgabe W1: ( + VP) Ein Staubecken wird zur Zeit der Schneeschmelze gefüllt. Da die Schneeschmelze temperaturabhängig ist, kann die momentane Zuflussrate des Wassers durch die Funktion w mit w(t) =,5 t t + t+ 5, t 1 beschrieben werden (t in Stunden seit Beobachtungsbeginn, w(t) in m h ). m a) In welchem Zeitraum ist die momentane Zuflussrate größer als 1 h? Zu welchem Zeitpunkt nimmt die momentane Zuflussrate am stärksten ab? Welche mittlere momentane Zuflussrate erhält man für die ersten 1 Stunden seit Beobachtungsbeginn? b) Zu Beobachtungsbeginn enthält das Staubecken 5 m³ Wasser. Wie viel Wasser enthält es nach 1 Stunden? Zeige (ohne GTR), dass die Funktion f mit 1 f(t) = t t + 18 t + 5 t+ 5 ; t 1 1 (t in Stunden seit Beobachtungsbeginn, f(t) in m³ ) die zum Zeitpunkt t im Staubecken enthaltene Wassermenge angibt. Nach welcher Zeit sind 5 m³ Wasser im Becken? Aufgabe W: ( + VP) Gegeben ist die Funktion f durch f() = ; + 1 Der Graph von f, die -Achse und die Geraden = und = schließen eine Fläche ein. Diese rotiert um die -Achse. Der dabei entstehende Rotationskörper stellt die Designstudie einer Flasche dar (Koordinatenangaben in cm). a) Welches Volumen hat die Flasche? b) Solche Flaschen sollen später gefüllt und in einem zylinderförmigen Karton verkauft werden. Dabei steht eine Flasche so in einem cm hohen Zylinder, dass sie an ihrer breitesten Stelle 1 cm Abstand vom Zylindermantel hat. Der die Flasche umgebende Hohlraum ist mit Holzwolle gefüllt. Welches Volumen hat der Hohlraum?

4 Lösungen Aufgabe P1: 1 1 1,5 1 1,5 a) f() = + cos(,5) F() = + sin(,5) = + sin(,5) 1,5,5 b) f() = ( ) F() = ( ) = ( ) = 1 1 c) Es ist H() = + + C 1 Es gilt H() = : = + + C C= 1 1 Die Stammfunktion lautet H() = + 1 Aufgabe P: a) Die Skizze der nach unten geöffneten Parabel wird mit Hilfe einer Wertetabelle durchgeführt. 1 5 y 1,5 1,5 -,5 - Es ist 1 1 f()d = (1 ) = = Da die Fläche unterhalb der -Achse liegt, ist das Ergebnis des Integrals negativ. 1 Die gesuchte Fläche beträgt A= Flächeneinheiten. Tangentengleichung im Punkt B(/): Die allgemeine Tangentenformel lautet y= f (u) ( u) + f(u) Die Berührung erfolgt an der Stelle u = : y= f () ( ) + f() Mit f () = folgt f () =. Außerdem ist f() =. Tangentengleichung in B: y= ( ) + und vereinfacht y= + 8

5 Der gesuchte grau markierte Flächeninhalt beträgt 1 A = ( + 8 (,5 ))d = ( + 8+,5 )d= + 8+ = + + = Flächeneinheiten Aufgabe P: Da die Fläche nach rechts offen ist, wird als obere Grenze die Variable = z gewählt. z z z z z d= d= = = + Für z + strebt + z Die nach rechts offene Fläche hat den Grenzwert A =. Aufgabe P: (1) Es ist F() = f(t)dt Die Fläche zwischen f(t) und der -Achse im Intervall von bis ist größer als. Die Aussage ist falsch. () Der Graph von F ist eine Linkskurve, wenn F () > ist. Da F () = f () ist, muss somit f () > sein. Im Intervall -1 < 1 ist das Schaubild von f() streng monoton wachsend, somit sind Steigungen der Tangenten an f() positiv und die Aussage ist wahr. () F( ) = f(t)dt liefert einen negativen Wert, da die Fläche zwar oberhalb der t-achse liegt, aber von rechts nach links integriert wird und daher das Integral negativ wird. Die Aussage ist falsch. 5

6 () F (1) = f (1) = ist wahr, da bei = 1 das Schaubild von f() einen Hochpunkt besitzt und damit auch eine waagrechte Tangente. Aufgabe W1: a) Zeitraum, in dem die Zuflussrate größer als 1 m³/h ist: Ansatz: w(t) > 1 Die beiden Schaubilder schneiden sich bei t = sowie bei t =,17. Die Zuflussrate ist größer als 1 m³/h im Zeitraum < t<,17. stärkste Abnahme der momentanen Zuflussrate: Die Zuflussrate nimmt am stärksten ab, wenn w(t) minimal wird. Die Zuflussrate wird nach t = 8 Stunden minimal. Mittlere momentane Zuflussrate = w(t)dt = 1= 8 1 m³/h (GTR). 1 b) Wassermenge nach 1 Stunden = 5+ w(t)dt = 5+ 95= 55 m³ 1 Die Stammfunktion f von w(t) mit f() = 5 beschreibt die zum Zeitpunkt t enthaltene Wassermenge., 5 Stammfunktion von w(t): f(t) = t t + t + 5t+ C 1 und vereinfacht f(t) = t t + 18t + 5t+ C 1 Aus f() = 5 folgt C = 5. 1 Damit lautet die gesuchte Stammfunktion f(t) = t t + 18t + 5t+ 5 und diese 1 stimmt mit der dargestellten Funktion überein.

7 Zeit, nach der 5 m³ im Becken sind: f(t) = 5 Lösung mit GTR: Nach t = 5,1 Stunden sind 5 m³ im Becken. Aufgabe W: a) Volumen der Flasche = π f() d 781, cm³ b) Die breiteste Stelle der Flasche entspricht dem Hochpunkt des Schaubildes. Mit dem GTR ergibt sich als Hochpunkt H(/5). Der Radius der Flasche an der breitesten Stelle beträgt daher r = 5 cm. Aufgrund des vorgegebenen Abstandes muss der Zylinder einen Radius von cm haben. Die Zylinderhöhe beträgt cm. V =π r h=π 9 cm³ Zylinder Der Hohlraum beträgt VHohlraum = 9 781, = 11, cm³. 7

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Pflicht- /Wahlteilaufgaben und Musterlösungen ur Integralrechnung Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Stammfunktion, Flächenberechnung, Rotationsvolumen Aleander Schwar

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Wahlteil Analysis 2 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 2015 1 Aufgabe

Mehr

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg

Pflichtteilaufgaben zu Funktionenkompetenz. Baden-Württemberg Pflichtteilaufgaben zu Funktionenkompetenz Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016 1 Übungsaufgaben: Ü1: Die Abbildung zeigt

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 2 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 2016 1 Aufgabe

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Hauptprüfung Fachhochschulreife Baden-Württemberg

Hauptprüfung Fachhochschulreife Baden-Württemberg Hauptprüung Fachhochschulreie 204 Baden-Württemberg Augabe 2 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com September 204 Gegeben ist die Funktion mit

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Abiturprüfung Mathematik 004 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f() = + 3 Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktion Wahlteilaufgaben Gymnasium Oberstufe J1 oder J2

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktion Wahlteilaufgaben Gymnasium Oberstufe J1 oder J2 Analysis Trigonometrische Funktion Wahlteilaufgaben Gymnasium Oberstufe J1 oder J2 Alexander Schwarz www.mathe-aufgaben.com Januar 2015 1 In einem Küstenort kann der Pegelstand im Hafenbecken durch die

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Mathematik im Berufskolleg II

Mathematik im Berufskolleg II Bohner Ott Deusch Mathematik im Berufskolleg II Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 6. Auflage 6 ISBN 978--8-- Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1

1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1 Neue Funktionen aus alten Funktionen: Produkt, Quotient, Verkettung Sind die Funktionen u mit u () = und v mit v () = cos () gegeben, so erhält man die Verkettung u v () = u v () dieser beiden Funktionen,

Mehr

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x

b) [2P] 7x Lösungsvorschlag 1: f '(x) = cos 3x 6x = 6x cos 3x K1 Punkte: / Note: Schnitt:.10.1 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende.

c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. VP b) Das Schaubild von hat für 36 genau zwei Wendepunkte. c) Das Schaubild von verläuft im Schnittpunkt mit der y-achse steiler als die erste Winkelhalbierende. 3. Gegeben ist die Funktionenschar mit

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

K2 KLAUSUR MATHEMATIK

K2 KLAUSUR MATHEMATIK K2 KLAUSUR MATHEMATIK NACHTERMIN 16.02.2012 Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 (max) 2 2 3 4 5 3 4 3 Wahlteil Analysis Aufgabe a b c (max) 10 3 5 Wahlteil Geometrie Aufgabe a b c (max) 7 4 5 Gesamtpunktzahl

Mehr

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 1. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 1 14.03.2016 Aufgabe PT WTA WTGS Gesamtpunktzahl (max) 30 15 15 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 3 4 4 3 WT Ana A.1a) b) c) Summe P. (max) 7 5 3 15 WT Geo G.a)

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals

Einführung des Integrals. Integralrechnung. Der Hauptsatz. Stammfunktionen. Einführung des Integrals Einführung des Integrals 15 14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz lächen Mittelwerte Rotationsvolumen Das Integral wird aus einer geometrischen ragestellung hergeleitet:

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

Graphen zuordnen und Funktionsterme ermitteln

Graphen zuordnen und Funktionsterme ermitteln Aufgaben Analsis Flächenberechnung Ganzrationale Funktion Tangenten ohne Einsatz des GTR Integralfunktion Graphen zuordnen und Funktionsterme ermitteln Wahr oder falsch? Integralfunktion Wahr oder falsch?

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e

Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben.

Der folgende Katalog soll Beispiele dafür aufzeigen, was konkret verlangt werden kann, ohne dabei den Anspruch auf Vollständigkeit zu erheben. Fundus für den Pflichtbereich / Mathematik-Abitur ab 4 Themenbereiche Der Pflichtteil soll aus kleineren Aufgaben bestehen, die ohne Hilfsmittel zu bearbeiten sind. Er soll die Grundkompetenzen abprüfen.

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Abiturprüfung 2011 mit ausführlichen Lösungen (Baden-Württemberg) Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Abiturprüfung 20 mit ausführlichen Lösungen (Baden-Württemberg) Das komplette Material finden Sie hier: School-Scout.de Abitur-Prüfung

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 4.0.206 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 30 5 5 60 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana A.a b c Summe P. (max 7 5 3 5 Punkte

Mehr

Mathematik - Oberstufe

Mathematik - Oberstufe Mathematik - Oberstufe Pflicht- /Wahlteilaufgaben und Musterlösungen zu trigonometrischen Funktionen Zielgruppe: Oberstufe Gymnasium Schwerpunkt: Ableitung, Gleichungen, Aufstellen von trigonometrischen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 3. Generalprobe mit allen Themen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 3 Generalprobe mit allen Themen Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an.

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an. Aufgabe 1 2e Gegeben ist die Funktion f mit f() = mit dem Definitionsbereich. e D = R + 9 a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

K2 - Klausur Nr. 2. Wachstumsvorgänge modellieren mit der Exponentialfunktion. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. K2 - Klausur Nr. 2 Wachstumsvorgänge modellieren mit der Exponentialfunktion Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Integralrechnung Aufgaben. Wasserbecken. Bergstollen-Aufgabe. BMX-Rampe. Deichquerschnitte. Wachstum von Wildblumen. Zuschauerquote.

Integralrechnung Aufgaben. Wasserbecken. Bergstollen-Aufgabe. BMX-Rampe. Deichquerschnitte. Wachstum von Wildblumen. Zuschauerquote. Integralrechnung Aufgaben Wasserbecken Bergstollen-Aufgabe BMX-Rampe Deichquerschnitte Wachstum von Wildblumen Zuschauerquote Wasserbecken Dreieck mit maximalem Flächeninhalt Ausflussgeschwindigkeit Gastank

Mehr

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz

Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Gymnasium ab Klasse 10 Alexander Schwarz Analysis Trigonometrische Funktionen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Hinweis: Außer bei Aufgabe darf der GTR benutzt werden. Aufgabe : Bestimme ohne GTR: a) sin(405

Mehr

1 Exponentielles Wachstum

1 Exponentielles Wachstum Schülerbuchseite 56 58 Lösungen vorläufig VI Anwendungen der Differential- und Integralrechnung Exponentielles Wachstum S. 56 S. 58 a) H (t) = 4000,0 t b),0 t = e k t,0 = e k k = ln,0 0,0 H (t) = 4000

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren ZK M A (ohne CAS) Seite von 4 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Die Titanwurz ist die Pflanze, die die größte Blüte der Welt hervorbringt. Für ein Referat hat ein Schüler

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Inhalt der Lösungen zur Prüfung 2012:

Inhalt der Lösungen zur Prüfung 2012: Inhalt der Lösungen zur Prüfung : Pflichtteil... Wahlteil Analsis... 8 Wahlteil Analsis... Wahlteil Analsis... 4 Wahlteil Analtische Geometrie... 8 Wahlteil Analtische Geometrie... Pflichtteil Lösungen

Mehr

Übungsaufgaben Analysis hilfsmittelfrei

Übungsaufgaben Analysis hilfsmittelfrei Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)

Mehr

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1)

Mathe-Abitur ab 2004: Fundus für den Pflichtbereich Lösungen (1) Mathe-Abitur ab 24: Fundus für den Pflichtbereich Lösungen () Die Autoren übernehmen keine Garantie für die Richtigkeit der Lösungen. Auch wurde sicher nicht immer der kürzeste und eleganteste Lösungsweg

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Übungsaufgaben mit Lösungen Analysis [1] Funktionsanalyse a-b-c-formel / p-q-formel Polynomdivision Ableitung / Integration

Übungsaufgaben mit Lösungen Analysis [1] Funktionsanalyse a-b-c-formel / p-q-formel Polynomdivision Ableitung / Integration Mathe-Trainings-Heft Prüfungsvorbereitung für Oberstufe und Abitur Übungsaufgaben mit Lösungen Analysis [] Funktionsanalyse a-b-c-formel / p-q-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

(Tipp: Formelbuch!) x3 dx?

(Tipp: Formelbuch!) x3 dx? Integralrechnung. bestimmte und unbestimmte Integrale (a) x ( + x ) dx =? (b) e x + e x dx =? (c) x 3 x + x x 6x + 9 dx =? (d) x cos x dx =?. Bestimmtes Integral x3 3x + 9 x dx =? 4 3. Bestimmtes Integral

Mehr

2 Wiederholung der Ableitungsregeln und höhere Ableitungen

2 Wiederholung der Ableitungsregeln und höhere Ableitungen 2 Wiederholung der Ableitungsregeln und höhere Ableitungen In der Abbildung sehen Sie die Graphen der Funktionen f und g mit f (x) = x 2 und g (x) = _ 1 x 2 4 sowie die Graphen der Ableitungsfunktionen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007 Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden

Mehr

Erfolg im Mathe-Abi 2011

Erfolg im Mathe-Abi 2011 Gruber I Neumann Erfolg im Mathe-Abi 211 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 5

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5 Natürliche Eponential- und Logarithmusfunktion Kapitel . Die natürliche Eponentialfunktion und ihre Ableitung 48 Arbeitsaufträge. Individuelle Lösungen Jahr 908 90 90 930 90 960 970 990 000 00 in Sekunden

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen 1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis I 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe I 1 Die Abbildung zeigt den Verlauf

Mehr

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist.

4 x x kleinste6 Funktionswert für alle x aus einer Umgebung von x 1 ist. Differenzialrechnung 51 1.2.2 Etrempunkte Die Funktion f mit f () = 1 12 3 7 4 2 + 10 + 17 3 beschreibt näherungsweise die wöch entlichen Verkaufszahlen von Rasenmähern. Dabei ist die Zeit in Wochen nach

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1

Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Aufgaben zum Grundwissen Mathematik 11. Jahrgangstufe Teil 1 Lehrplan: M 11.1.1 Graphen gebrochen-rationaler Funktionen M 11.1.2 Lokales Differenzieren Passende Kapitel im Schulbuch Fokus Mathematik 11:

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen

Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen 1 Abiturprüfung Mathematik 2015 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 1 Lösungen klaus_messner@web.de www.elearning-freiburg.de 2 Aufgabe A 1 Der Laderaum eines Lastkahns ist

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

Klassenarbeit GYM Klasse 10 Seite 1 Datum: Trigonometrische Funktionen. Erreichte Punkte:

Klassenarbeit GYM Klasse 10 Seite 1 Datum: Trigonometrische Funktionen. Erreichte Punkte: Klassenarbeit GYM Klasse 10 Seite 1 Datum: Thema: Trigonometrische Funktionen Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: GTR Aufgabe 1: (2 Punkte) Rechne in das jeweilige andere Winkelmaß um: a.

Mehr