Das Problem des Handlungsreisenden

Größe: px
Ab Seite anzeigen:

Download "Das Problem des Handlungsreisenden"

Transkript

1 Das Problem des Handlungsreisenden 0 Gliederung 1 Problemstellung 2 Historischer Hintergrund 3 Priorität und Komplexität des Problems 3.1 Anwendung im Alltag 3.2 Mögliche Erweiterungen 4 Lösung des Problems 4.1 Theoretischer Lösungsansatz 4.2 Umsetzung in Delphi 1 Problemstellung Das Problem des Handlungsreisenden Es existieren mehrere Punkte, die sich in ihrer geographischen Lage voneinander unterscheiden, wobei nur einige dieser Punkte mit direkten Wegen verbunden sind (Auch Einbahnstraßen sind möglich). Man sucht einen Algorithmus, der jeweils die kürzeste Verbindung zwischen mindestens zwei Punkten ausdrückt. Optimierungsproblem -> Es ist nicht schwierig eine gute Lösung zu finden. Die optimale zu finden gestaltet sich allerdings als eine Herausforderung! => Es handelt sich bei dem Problem des Handlungsreisenden demnach um eine Erweiterung des Labyrinthproblems. Aus Problemstellung ergeben sich zwei verschiedene Ausprägungen des Problems des Handlungsreisenden. Einerseits kann man die kürzeste Route zwischen zwei Knotenpunkten berechnen. Andererseits kann man die kürzeste Route berechnen, die durch mehrere Knotenpunkte geht. Im Folgenden werde ich beide Problemausprägungen erläutern und zuletzt dein Lösungsansatz und die Berechnung der kürzesten Route zwischen zwei Punkten aufzeigen. 2 Historischer Hintergrund - Das Problem tauchte höchst wahrscheinlich 1832 das erste Mal auf. Aus dieser Zeit ist ein Buch bekannt ( Der Handlungsreisende ) in dem das Problem zwar erwähnt, aber nicht wissenschaftlich untersucht wird. - Wissenschaftlich/ mathematisch untersucht wurde das Problem nachweisbar erst 1930 von Karl Menger. - Der US-amerikanische Mathematiker Hassler Whitney, der an der Princeton University in New Jersey (USA) arbeitete, prägte den Begriff Traveling Salesman Problem (Princeton ist eine der angesehensten Universitäten auf der ganzen Welt!). - Mit dem Problem des Handlungsreisenden beschäftigen sich Forscher noch heute intensiv, da bis jetzt lediglich Algorithmen gefunden wurden, deren Anzahl der Aufrufe, die direkt mit der Rechenzeit zusammenhängen, mit der Anzahl der 1

2 Knotenpunkten exponentiell ansteiget. Gesucht wird ein Algorithmus, bei dem dieser Vorgang linear verläuft. - Während das Finden der kürzesten Verbindung vor 50 Jahren mit 30 Knotenpunkten schon eine Herausforderung war, ist es heutzutage Forschern gelungen die kürzeste Verbindung zwischen mehreren Millionen Knotenpunkten zu finden, die nachweisbar weniger als 1% von der optimalen Verbindung abweicht. 3.1 Anwendung im Alltag Das Problem des Handlungsreisenden ist nicht nur in der Informatik von großer Bedeutung, sondern in fast allen Bereichen des Alltags. Hier einige Beispiele: - Ein Handlungsreisender hat die Aufgabe mehrere Orte anzufahren, wobei er selbst von der Wahl der kürzesten Route profitiert. Der Handlungsreisende kann verschiedene Identitäten annehmen z.b.: - Auslieferungsservice der Post - Postbote - ADAC-Pannendienst - Fluggesellschaft - Klempner - Handwerker - Kundendienst eines Unternehmens - Busgesellschaft - Bahn - Kreuzfahrtgesellschaft - Winterstreudienste - Taxigesellschaft Dies sind möglicherweise die nahe liegensten Anwendungsgebiete, doch auf keinen Fall die einzigen. Bei diesen Beispielen beherrscht ein Navigationssystem die Aufgabe, die kürzeste bzw. schnellste Route zu berechnen. - In der Elektroindustrie sucht man die kürzeste Verbindung verschiedener Lötpunkte, um nicht nur Zeit, Rohstoffe und Geld, sondern auch Platz zu sparen(-> Mikrochips, Handys, Computer, Laptops, Digitalkameras, usw.) - In der Automobilindustrie strebt man danach die Produktionsroboter so zu programmieren, dass sie die kürzeste Route zum Auftragen der Schweißpunke wählen um Zeit, Strom und somit auch Geld zu sparen. - Die Konstruktion von Bahnhöfen, Flughäfen, Museen und Stadien kann unter Beachtung des Problems des Handlungsreisenden erleichtert werden, wenn man die Bewegung der Menschenmassen voraussehen kann. - Da unsere Gesellschaft immer mehr zu einer High-Tech-Gesellschaft tendiert wird die Priorität des Problems des Handlungsreisenden in den kommenden Jahren und Jahrzehnten aus Gründen der immer wieder neu entwickelten Anwendungsgebiete steigen. 2

3 3.2 Mögliche Erweiterungen Man kann die Komplexität des Problems des Handlungsreisenden nahezu beliebig steigern. Es folgen einige Vorschläge, die größtenteils kombinierbar sind: - Man hat mehrere Handlungsreisende. - Man plant Fahrerwechsel ein. - Man achtet nicht nur auf die Länge der Streckenabschnitte, sondern auch auf die Geschwindigkeiten, die gefahren werden können. - (Berufs-)Verkehrsbedingte Engpässe umfahren. - Ausgelastete Straßen/ Staus umfahren. - Zusätzlicher Zwischenstopp zum Tanken einfügen. - Mautpflichtige Straßenabschnitte umfahren. 4 Lösung des Problems Gesucht ist die kürzeste Entfernung zwischen zwei Knotenpunkten. 4.1Theoretischer Lösungsansatz Der Lösungsansatz wird an einem Beispiel gezeigt. Die Buchstaben A bis G stellen Städte dar. Die Striche symbolisieren Verbindungsstraßen und die Zahlen geben ihre Länge in Kilometern an. Der orange gefärbte Pfeil weist auf eine Einbahnstraße hin. Eine mögliche Fragestellung könnte lauten: Welche Routen existieren, wenn man A als Ausgangs- und E als Zielstadt annimmt, und welche ist der kürzeste? Zur Übersicht habe ich alle Möglichkeiten in einem Baumdiagramm dargestellt: 3

4 Die Zahlen sind in Kilometer angegeben, wobei sich die grünen Zahlen auf die Verbindungsstrecken zwischen zwei nebeneinander liegenden Städten und sich die roten Zahlen auf die gesamte Streckt von A nach E beziehen. An erster Stelle im Baumdiagramm steht die Ausgangsstadt (A). Nun zeichnet man alle Möglichkeiten ein, wie man fahren kann. Immer wenn man auf eine Kreuzung trifft, wie zum Beispiel bei Punkt B, spaltet sich der Ast im Baumdiagramm und setzen sich unabhängig voneinander fort. In einem Programm sähe es so aus, dass der Algorithmus erst einen Weg vollständig zeigen würde. Wenn er bei dem Ziel E angekommen ist, würde er zu der vorigen Kreuzung zurückkehren und den Weg in eine andere Straße fortsetzen. Dieses Verfahren würde er solange durchführen, bis es alle Routen gefunden hätte. Man nennt es Backtracking. Auf diese Weise kommt man zu dem Ergebnis, dass die kürzeste Route von A nach E 90 Kilometer lang ist, das man auch der Skizze und dem Baumdiagramm entnehmen kann. Bei diesem Verfahren stößt man jedoch auf ein Problem, dass in dem oben stehenden Baumdiagramm mit drei orange gefärbten Punkten gekennzeichnet ist. Das Problem besteht darin, dass nicht alle Wege zum Zielpunkt E führen. Der Algorithmus würde in diesem Fall wegen einer Endlosschleife nie enden. Aus diesem Grund benötigt man für den eben beschriebenen Fall eine Abbruchbedingung. Das Problem würde ich folgendermaßen lösen: - Der Weg darf niemals zweimal durch denselben Punkt gehen. In diesem Fall müsste der Algorithmus zurück zur vorigen Kreuzung gehen und einen anderen Weg wählen. - Wenn der Algorithmus das erste Mal auf den Zielpunkt trifft merkt er sich die Länge dieser Route als kürzeste Route. Wenn er einen Weg wählt der länger als die kürzeste Route ist kehrt er automatisch zur vorigen Kreuzung zurück und nimmt einen anderen Weg. Wenn er erneut auf Den Zielpunkt trifft und diese neue Route kürzer ist als die kürzeste Route, dann merkt er sich die neue Route als die kürzeste Route. Diese Schritte wiederholt er so oft, bis er alle Möglichkeiten versucht hat. Dann bricht er (die Suche) ab und hat sich die wirklich kürzeste Route automatisch gemerkt. Der entscheidende Vorteil dieser Erweiterung ist, dass die Laufzeit dieses Algorithmus drastisch reduziert wird, da er nicht mehr alle Möglichkeiten komplett durchspielt, sondern nur noch die, dessen Strecke kürzer ist als die der bis jetzt gefundene kürzeste Verbindungsstrecke des Anfangs- mit dem Zielpunkt. 4

5 Aus dieser Erweiterung ergibt sich bei dem gleichen Beispiel folgendes Baumdiagramm, wenn man davon ausgeht, dass es von links nach rechts erstellt wird. Man kann leicht feststellen, dass das erste Baumdiagramm wesentlich umfangreicher ist, als das zweite. Man kann die verkürzte Laufzeit dieses erweiterten Algorithmus demnach schon an diesem Baumdiagramm ablesen. Hieraus ergeben sich bezüglich der Laufzeit des Algorithmus zwei extreme Fälle: Best case: o Der Algorithmus findet die kürzeste Lösung gleich auf dem ersten Ast (des Baumdiagramms) und kann die restlichen Lösungen zügig abbrechen, was Zeit einspart. o => Der Graph (x = Anzahl der Knotenpunkte und y = Laufzeit des Algorithmus) steigt somit nahezu linear. Worst case: o Der Algorithmus findet die Lösung erst auf dem letzten Ast (des Baumdiagramms) und muss somit erst alle anderen Möglichkeiten durchspielen, was viel Zeit bedarf. o => Der Graph (x = Anzahl der Knotenpunkte und y = Laufzeit des Algorithmus) steigt somit exponentiell an. Da jeder Aufruf des Algorithmus, je nach Anordnung der Knotenpunkte, zwischen dem best und worst case liegt, lässt sich die Laufzeit des Algorithmus in Bezug auf die Anzahl der Knotenpunkte graphisch (als Bereich) darstellen. 5

6 Die hellgrüne Fläche stellt die mögliche Laufzeit des Algorithmus dar. Wie man leicht erkennen kann distanzieren sich die beiden Graphen bei einer verhältnismäßig geringen Erhöhung der Anzahl der Knotenpunkte rapide. Somit vergrößert sich der Bereicht der möglichen Laufzeit. Die durchschnittliche Laufzeit befindet sich genau zwischen dem Grafen des best case (rot) und worst case (blau). 4.2 Umsetzung in Delphi Die Umsetzung in Delphi war die größte Hürde dieses Projekts. Aus diesem Grund werde ich Probleme, die aufgetreten sind auch ansprechen und einen Lösungsvorschlag bringen. Zunächst habe ich mir überlegt wie das Programm ungefähr ablaufen soll und welche bzw. wie viele Variablen der Algorithmus benötigt. Es folgt eine Beschreibung des Algorithmus des Programms. Zunächst ein Auszug des Delphi-Quelltextes des Algorithmus: 6

7 Zunächst habe ich für meinen Algorithmus einen Backtracking-Algorithmus in Betracht gezogen. Da bei dem Zurückspringen eine Reihe von Fehlern auftraten habe ich mich von dem Backtracking wieder etwas distanziert und den oben stehenden Algorithmus geschrieben. Das Programm funktioniert, auch wenn das Prinzip des Backtracking nicht den hauptsächlichen Weg darstellt, fehlerfrei. Mein Algorithmus wird, wie man oben sehen kann, iterativ (durch eine Schleife) aufgerufen. In der While-Schleife (6. Zeile) wird geprüft, ob man sich schon am Zielort befindet und ob der Weg bis jetzt schon länger ist, als der kürzeste zum Ziel führende Weg. In beiden Fällen würde der Vorgang abgebrochen und neu gestartet werden. Dies ist mit einem Ast des oben dargestellten Baumdiagramms, der schon zum Ziel geführt hat, oder schon zu lang ist, zu vergleichen. Auch bei dem Diagramm hat man schon gesehen, dass in diesem Fall zurückgesprungen und ein neuer Ast gewählt wird. Innerhalb dieser Schleife wird der Zufallsgenerator gestartet, um in der folgenden Zeile an einem Knotenpunkt einen zufälligen Weg nehmen zu können. In Zeile 10 wird die durch Zufall gewählte Nachbarstadt herausgefunden. In der folgenden Zeile wird der Gesamtstrecke der aktuellen Route die neu gegangene Teilstrecke addiert. In Zeile 11 wird der Variablen aktuell, in der ständig die aktuelle Stadt gespeichert ist, der neue Aufenthaltsort mitgeteilt. 7

8 In der folgenden Zeile wird die Variable punkt, in der die Anzahl der Knotenpunkte gespeichert ist um den neu ereichten Punkt erhöht. Anschließend werden die Variablen punkt und aktuell zurückgesetzt und die Variable rute, in der die Anzahl der Routen gespeichert ist um eins erhöht, um einen neuen Weg zu berechnen. Grundsätzlich ist zu sagen, dass innerhalb der While-Schleife eine mögliche Route berechnet wird. Genauer gesagt wird der, durch die For-Schleife neu angefangene Weg, bei jedem durchlauf dieser While-Schleife um einen Knotenpunkt erweitert. Dies ist die grundlegende Funktionsweise meines Algorithmus. In meinem Programm ist eine Anwendung dieses Algorithmus mit einigen Erweiterungen, die man sich innerhalb dieses Programms ansehen kann, dargestellt. 8

Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) Traveling Salesman Problem (TSP) Das Traveling Salesman Problem (TSP) ist ein bekanntes Optimierungsproblem. Ein Handlungsreisender soll in einer Rundreise (auch Tour genannt) n vorgegebene Städte besuchen.

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Einführung in die Informatik I Kapitel II.3: Sortieren

Einführung in die Informatik I Kapitel II.3: Sortieren 1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung

in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Graphentheorie... oder das Haus vom Nikolaus! Graphentheorie man könnte meinen, dass es hier um Funktionsgraphen geht, wie ihr sie

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Kürzeste und Schnellste Wege

Kürzeste und Schnellste Wege Kürzeste und Schnellste Wege Wie funktionieren Navis? André Nusser (Folien inspiriert von Kurt Mehlhorn) Struktur Straßennetzwerke Naiver Algorithmus Dijkstras Algorithmus Transitknoten Nachbemerkungen

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Traveling Salesman Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Traveling Salesman Unterrichtsform Lernen am Modell Voraussetzung Wahrscheinlich kennen viele Schüler/innen

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Fehlerarten. Validation. Wintersemester 2012/13. Dr. Tobias Lasser

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Fehlerarten. Validation. Wintersemester 2012/13. Dr. Tobias Lasser Programm heute Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 01/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München 1 Einführung Mathematische Grundlagen

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Kartentricks. 1 aus 21

Kartentricks. 1 aus 21 Kartentricks 1 aus 21 Man hat 21 Karten. Drei davon legt man offen nebeneinander. Auf diese werden der Reihe nach die restlichen Karten mit sichtbarem Bild gesetzt, wobei die vierte Karte auf die erste,

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Entwurf und Analyse von Algorithmen

Entwurf und Analyse von Algorithmen Entwurf und Analyse von Algorithmen (5. Sem 2VO MAT.319 & 1 UE MAT.320 // 3VU 716.325) VO/UE/VU: Oswin Aichholzer UE/VU: Birgit Vogtenhuber Institut für Softwaretechnologie Entwurf 22nd European und Analyse

Mehr

Programmablaufplan. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf

Programmablaufplan. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf Programmablaufplan Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung Motivation - Was sind Programmablaufpläne? Programme sind vordefinierte

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Seminar. Algorithmische Geometrie

Seminar. Algorithmische Geometrie Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.

Mehr

Algorithmen. Von Labyrinthen zu. Gerald Futschek

Algorithmen. Von Labyrinthen zu. Gerald Futschek Von Labyrinthen zu Algorithmen Gerald Futschek Wie kommt man aus einem Labyrinth (griechisch: Haus der Doppelaxt, wahrscheinlich Knossos auf Kreta) Labyrinth heraus? Labrys Grundriss des Palastes von Knossos

Mehr

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung:

2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung: 2.4 Schleifen Schleifen beschreiben die Wiederholung einer Anweisung bzw. eines Blocks von Anweisungen (dem Schleifenrumpf) bis eine bestimmte Bedingung (die Abbruchbedingung) eintritt. Schleifen unterscheiden

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Vorbemerkungen. Die Programmieroberfläche des ClassPad

Vorbemerkungen. Die Programmieroberfläche des ClassPad Vorbemerkungen Erfahrungen zeigen, dass die Programmiermöglichkeiten des ClassPad im Unterricht kaum genutzt werden. Dabei bieten aus unserer Sicht viele Situationen die Gelegenheit, die Programmieroberfläche

Mehr

Verzweigen und Beschränken

Verzweigen und Beschränken Verzweigen und Beschränken Branch and Bound Sarah Bertulat, Jens Weber 27. November 2014 Gliederung Allgemeines Funktionsprinzip Rucksackproblem Das Rundreiseproblem Fragen? Sarah Bertulat, Jens Weber:

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 5 Besprechung: 20. 24.11.2017 (KW 47) Vorbereitende

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 05 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen Grundlagen

Mehr

Lösungsvorschlag Serie 2 Rekursion

Lösungsvorschlag Serie 2 Rekursion (/) Lösungsvorschlag Serie Rekursion. Algorithmen-Paradigmen Es gibt verschiedene Algorithmen-Paradigmen, also grundsätzliche Arten, wie man einen Algorithmus formulieren kann. Im funktionalen Paradigma

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen

Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen Dokumentation zum Softwarepraktikum Abzählen und Konstruktion der Strukturisomere von Alkanen, Alkenen und Alkinen Bearbeitet von: Sabine Böhm Florian Häberlein Betreuer: Dr. Axel Kohnert Dipl.-math. Sascha

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

4 Rekursionen. 4.1 Erstes Beispiel

4 Rekursionen. 4.1 Erstes Beispiel 4 Rekursionen Viele Algorithmen besitzen sowohl eine iterative als auch eine rekursive Lösung. Sie unterscheiden sich darin, dass die iterative Version meist einen etwas längeren Kode besitzt, während

Mehr

1 Quadratische Funktionen Potenzfunktionen Potenzrechengesetze... 15

1 Quadratische Funktionen Potenzfunktionen Potenzrechengesetze... 15 A Wahrscheinlichkeiten Seite Kombinatorische Zählverfahren... Pascal sches Dreieck... 5 Binomialkoeffizient... 8 Vierfeldertafel... 9 5 Bedingte Wahrscheinlichkeiten... B Potenzfunktionen Quadratische

Mehr

Heuristische und exakte Lösungsansätze für das Handelsreisendenproblem. Dr. Gerold Jäger

Heuristische und exakte Lösungsansätze für das Handelsreisendenproblem. Dr. Gerold Jäger Heuristische und exakte Lösungsansätze für das Handelsreisendenproblem Dr. Gerold Jäger Arbeitsgruppe Prof. Dr. Paul Molitor Institut für Informatik Martin-Luther-Universität Halle-Wittenberg 30. September

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Simulation eines Geburtstagsproblems

Simulation eines Geburtstagsproblems Simulation eines Geburtstagsproblems Jürgen Appel Kurzfassung des Inhalts: Bei der Aufgabe handelt es sich um eine einfache Variante eines Geburtstagsproblems mit drei Personen. Die Wahrscheinlichkeit

Mehr

2.4. Mehrstufige Zufallsexperimente

2.4. Mehrstufige Zufallsexperimente 2.4. Mehrstufige Zufallsexperimente Zufallsexperimente können einstufig, also einmalig, durchgeführt werden oder auch mehrstufig, also wiederholt. Wirft man einen Würfel z.b. nur einmal, dann ist das Zufallsexperiment

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Informatik im Alltag: Wie funktionieren Navis?

Informatik im Alltag: Wie funktionieren Navis? Informatik im Alltag: Wie funktionieren Navis? Thema: Wegeprobleme (aus Algorithmen und Datenstrukturen) Dr. Guido Rößling TU Darmstadt Angelehnt an Material von Dr. Jens Gallenbacher Problemlösen für

Mehr

Rundreiseproblem und Stabilität von Approximationsalg.

Rundreiseproblem und Stabilität von Approximationsalg. Das Rundreiseproblem und Stabilität von Approximationsalgorithmen Friedrich Alexander Universität Erlangen-Nürnberg Seminar Perlen der theoretischen Informatik, 2008-01-19 http://verplant.org/uni/perlen/

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik Babeş-Bolyai Universität Fakultät für Mathematik und Informatik Oktober 2018 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich

Mehr

Heuristische Verfahren

Heuristische Verfahren Heuristische Verfahren Bei heuristischen Verfahren geht es darum in polynomieller Zeit eine Näherungslösung zu bekommen. Diese kann sehr gut oder sogar optimal sein, jedoch gibt es keine Garantie dafür.

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Technische Universität München SoSe 2017 Fakultät für Informatik, I-16 Lösungsblatt 4 Dr. Stefanie Demirci 31. Mai 2017 Rüdiger Göbl, Mai Bui Algorithmen und Datenstrukturen Aufgabe 1 Komplexität Berechnung

Mehr

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch Leitidee Lernkompetenzen Lambacher Schweizer Klasse 9 Anmerkungen: Der Lehrplan für das Gymnasium in Thüringen ist ein Doppeljahrgangslehrplan. Das bedeutet, dass die Inhalte, die im Lehrplan zu finden

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute Einführung Grundlagen von Algorithmen

Mehr

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen

1 Einführung. 2 Grundlagen von Algorithmen. 3 Grundlagen von Datenstrukturen. 4 Grundlagen der Korrektheit von Algorithmen Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Einführung Grundlagen von Algorithmen Grundlagen

Mehr

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990.

Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre 1990. Ein polynomieller Algorithmus für das N-Damen Problem 1 Einführung Der folgende Vortrag basiert auf dem Text A Polynomial Time Algorithm for the N-Queens Problem von Rok Sosic und Jun Gu aus dem Jahre

Mehr

Anwendungsaufgaben zur Differenzialrechnung. Berechnungen von Ableitungen Umformungen von Termen Zeichnen von Graphen

Anwendungsaufgaben zur Differenzialrechnung. Berechnungen von Ableitungen Umformungen von Termen Zeichnen von Graphen 5.4 Trassierung 1 Titel V2 5-4Trassierung 1 Version Mai 2011 Themenbereich Anwendungsaufgaben zur Differenzialrechnung Themen Trassierungsaufgaben Rolle des CAS Lösen von Gleichungen Berechnungen von Ableitungen

Mehr

9: Gewichtete Graphen

9: Gewichtete Graphen Chr.Nelius: Graphentheorie (WS 06/7) 9 9: Gewichtete Graphen Beispiel: Eine Straßenkarte mit Entfernungsangaben zwischen den Orten ist ein Beispiel für einen gewichteten Graphen. (9.) DEF: Ein Graph G

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

5.4 Trassierung 1. Von der mittleren zur lokalen Änderung. V2 5-4Trassierung 1. Anwendungsaufgaben zur Differenzialrechnung. Trassierungsaufgaben

5.4 Trassierung 1. Von der mittleren zur lokalen Änderung. V2 5-4Trassierung 1. Anwendungsaufgaben zur Differenzialrechnung. Trassierungsaufgaben 5.4 Trassierung 1 Titel V2 5-4Trassierung 1 Version Mai 2011 Themenbereich Anwendungsaufgaben zur Differenzialrechnung Themen Trassierungsaufgaben Rolle des GTR Lösen von Gleichungen Berechnungen von Ableitungen

Mehr

Lösungen zu Übungsblatt 2

Lösungen zu Übungsblatt 2 PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 217/18 Übungsblatt 2 Lösungen zu Übungsblatt 2 Aufgabe 1 Koppelnavigation. a) Ein Schiff bestimmt seine Position bei Sonnenuntergang durch den

Mehr

Was ist eine Funktion?

Was ist eine Funktion? Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Konzepte der Informatik Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 20.10.2015 Technische Universität Braunschweig, IPS Inhaltsverzeichnis Schilda-Rallye Was steckt dahinter? Darstellung von Graphen

Mehr

5 Die Gerade g 1 hat die Gleichung 6: y = 1 }

5 Die Gerade g 1 hat die Gleichung 6: y = 1 } Geraden Schülerbuchseite 199 01 5 Die Gerade g 1 hat die Gleichung 6: = 1 }. Die Gerade g hat die Gleichung : = 1 }. Die Gerade g hat die Gleichung 1: =. Die Gerade g hat die Gleichung : =. Die Gerade

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

OR für Wirtschaftsingenieure. Übungsserie 5: Das Traveling Salesman Problem

OR für Wirtschaftsingenieure. Übungsserie 5: Das Traveling Salesman Problem HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Operations Research Algorithmen auf Graphen OR für Wirtschaftsingenieure Übungsserie 5: Das Traveling Salesman Problem Aufgabe 1 : S 2, S 3, S 4,

Mehr

Programmieren und Problemlösen

Programmieren und Problemlösen Dennis Komm Programmieren und Problemlösen Komplexität von Algorithmen Frühling 2019 27. Februar 2019 Komplexität von Algorithmen Aufgabe Primzahltest Schreibe ein Programm, das eine ganze Zahl x als Eingabe

Mehr

Übung 04 Mehrkörper Keplerproblem

Übung 04 Mehrkörper Keplerproblem Übung 04 Mehrkörper Keplerproblem 1 1 Lösung 1.1 Skizzieren des Algorithmus Aufgabe 1 1. Erstellen Sie skizzenhaft eine Möglichkeit der Berechnung aller Kräfte einer beliebigen Anzahl von Himmelskörpern.

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP

Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP Seminararbeit: K-Opt und die Lin-Kernighan-Heuristik für das allgemeine TSP Tobias Boelter 28. Mai 2013 bei Prof. Dr. Rainer Schrader, Universität zu Köln Inhaltsverzeichnis 1 Einleitung 2 2 Lokale Suche

Mehr

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein!

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein! 4 Turingmaschinen Eingabeband nicht nur lesen, sondern auch schreiben kann und die zudem mit ihrem Lese-Schreib-Kopf (LSK) nach links und rechts gehen kann. Das Eingabeband ist zudem in beide Richtungen

Mehr

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis

Lineare Funktion. Wolfgang Kippels 3. November Inhaltsverzeichnis Lineare Funktion Wolfgang Kippels. November 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................

Mehr

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1.

Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Mathematik und angewandte Mathematik 1. HLW (1. Unterrichtsfach Lehrplan HAK: Mathematik und angewandte Mathematik 1. HAK (1. Jahrgang) 1. AUL (1. Jahrgang) Lehrplan HLW: Mathematik und angewandte Mathematik 1. HLW (1. Jahrgang) Lehrplan HTL: Mathematik

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR ARBEITSBLATT 13 EBENE KOORDINATENGEOMETRIE DER ORTSVEKTOR Bei sehr vielen mathematischen Aufgabenstellungen ist nicht nur die Länge von bestimmten Strecken oder der Umfang interessant, sondern auch die

Mehr

Radschnellweg Euregio

Radschnellweg Euregio Seite 1/5 1. VORGEHEN INTERAKTIVE KARTE... 1 2. REGISTRIEREN... 1 3. EINEN STRECKENABSCHNITT WÄHLEN... 2 4. EINEN EIGENEN VORSCHLAG ERSTELLEN... 2 5. EINEN VORSCHLAG SPEICHERN UND EINREICHEN... 4 6. EINEN

Mehr

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10

Kapitel 1.4. Exkurs: Entscheidbarkeit und Komplexität. Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Kapitel 1.4 Exkurs: Entscheidbarkeit und Komplexität Mathematische Logik (WS 2012/3) K. 1.4: Entscheidbarkeit und Komplexität 1/10 Algorithmen Ein Algorithmus oder eine Rechenvorschrift ist ein effektives

Mehr

Das Newton-Verfahren

Das Newton-Verfahren 1/14 Das Newton-Verfahren 11./12. Jgst. Bayern Doris Behrendt Gymnasium Marktbreit Stand: 12. März 2016 2/14 Formelsammlung Seite 72 oben, vierter Punkt: Newton-Iterationsformel: x n+1 = x n f(x n) f (x

Mehr

Clevere Algorithmen programmieren

Clevere Algorithmen programmieren ClevAlg 2017 Arithmetische Operationen Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 27. September 2017 Addition zweier Zahlen Addition von Zahlen Wir stellen Zahlen als Strings

Mehr

Abitur 2012 Mathematik Stochastik IV

Abitur 2012 Mathematik Stochastik IV Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2012 Mathematik Stochastik IV Nachdem die Verfilmung eines bekannten Romans erfolgreich in den Kinos gezeigt wurde, veröffentlicht eine Tageszeitung

Mehr

Einführung in die Informatik Turing Machines

Einführung in die Informatik Turing Machines Einführung in die Informatik Turing Machines Eine abstrakte Maschine zur Präzisierung des Algorithmenbegriffs Wolfram Burgard Cyrill Stachniss 1/14 Motivation und Einleitung Bisher haben wir verschiedene

Mehr

Programmieren 1 C Überblick

Programmieren 1 C Überblick Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Schnelle und genaue Routenplanung

Schnelle und genaue Routenplanung Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Tag der Informatik, 15. Juli

Mehr

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011

Schulbesuch Erich-Kästner Gesamtschule 07. April 2011 Schulbesuch Erich-Kästner Gesamtschule 07. April 0 Bünde Fakultät für Mathematik Universität Bielefeld dotten@math.uni-bielefeld.de Übersicht Was ist ein Sudoku-Rätsel? Die Regeln und das Ziel Zentrale

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

Folge 13 - Quicksort

Folge 13 - Quicksort Für Abiturienten Folge 13 - Quicksort 13.1 Grundprinzip des Quicksort Schritt 1 Gegeben ist ein unsortierter Array von ganzen Zahlen. Ein Element des Arrays wird nun besonders behandelt, es wird nämlich

Mehr

Thema: Analyse des Verhaltens dynamischer Wirkungsgefüge

Thema: Analyse des Verhaltens dynamischer Wirkungsgefüge Rahmenbedingungen: - Klasse 10, da einige Voraussetzungen (Anwendersysteme, Algorithmen) nötig sind - Bezug zu Inhalten aus der Mathematik, Physik, Politische Bildung, Biologie, Erdkunde - Software: Dynasys,

Mehr

Logarithmische Skalen

Logarithmische Skalen Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1

Mehr

Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich

Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich Prolog Tutorial Norbert E. Fuchs Institut für Informatik Universität Zürich Inhalt Vom deklarativen Wissen zum prozeduralen Programm Vom Programm zur Berechnung Elemente eines Prolog-Programms Zugverbindungen

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben

Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 8 Besprechung: 11. 15.12.2017 (KW 50) Vorbereitende

Mehr

6 Bestimmung linearer Funktionen

6 Bestimmung linearer Funktionen 1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1

Mehr

Grundlegende Programmierkonzepte: Abläufe mit Wiederholungen (Schleifen)

Grundlegende Programmierkonzepte: Abläufe mit Wiederholungen (Schleifen) Grundlegende Programmierkonzepte: Abläufe mit Wiederholungen (Schleifen) Wiederholung mit Abbruchbedingung (while-schleife) Kara soll geradeaus laufen, bis er vor einem Baum steht: Situation vor dem Start

Mehr